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Review

* Last lecture
* Multimodal problems
* Image captioning: pioneering dataset and model
* Visual question answering: pioneering dataset and model
 LXMERT: multimodal representations

e Assignments (Canvas)

* Lab assignment 2 grades are out

* Email all regrade requests to our TA, Nick Cooper (a comment in Canvas is not sufficient)
* Problem set 4 due (final one) earlier today
e Lab assighment 3 (last one!) due in 1.5 weeks

e Questions?



Today’s Topics

* Other data modalities

* Internet-scale trained models

* Scaling laws

* Lab assignment 3: multimodal task

* Programming tutorial



Today’s Topics

e Other data modalities



Recall: Data Types We Have Focused On
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Many Data Modalities Can Be Explored!

e.g., All Human Senses!
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s N\ (in Meters)

Frequency
(in Hz)

e.g., Beyond Human Senses!
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Another Popular Modality: Audio




Speech Processing: Problem Definition

Input: spoken language Output: machine readable text

’.. > [D_oﬂ you ” understand “ me \

Raw Speech Signal Transcription

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



What Is Speech?

Compression waves created by pushing
*‘ air from one’s lungs and modulating it
using one’s tongue, teeth, and lips

Raw Speech Signal

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Why |s Speech Processing Challenging?

Input can be diverse
including different accents, Temporal data needs to be
volumes, pace, and cadence segmented into distinct words

'.» > ‘91_" you “ understand H me \

Raw Speech Signal Transcription

Technology can introduce artifacts
including varying quality, echos,

and background noise
Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Application: Voice Typing on Mobile Devices




Application: Voice Typing for Productivity Apps

dictation.io

Type with your voice. No setup required

Demo starting at 2:00: https://www.youtube.com/watch?v=5UK4vLzU9co&t=76s



Application: Virtual Assistant

e.g., Amazon’s Echo with Alexa e.g., Google Home e.g., Baidu DuerOS

https://dueros.baidu.com/en/html/dueros/index.html



Application: Audio Transcription (e.g., Analysis &
Situational/Permanent Hearing Impairments)

Podcast

=

https://www.gmrtranscription.com/blog/podcast-transcription



Application: Video Captioning (e.g., Analysis &
Situational/Permanent Hearing Impairments)

[Dogs barking] CMPRSA is the Lansing region's

https://www.techsmith.com/blog/add-captions-subtitles-video/



Application: Speech Emotion Recognition
(e.g., for Help Desks and Negotiators)




Application: Speaker Identification (e.g., Security)

PHONEXIA : USE CASES PARTNERS SERVICES

Speaker
Identification

Phonexia Speaker |deéntification (SID) technology uses the power of voice
biometrics to recognize a speaker automatically and with high accuracy
based on their voice. Its latest generation, called Déep Embeddings™,
uses deep neural networks for even greater performance.




Application: Language |dentification

@ translated LABS Research and Publications  Contact us

Automatic language identifier

Insert any text or pick a random example

Bonjour!




Application: Speech Enhancement

FAQ DOWNLOAD E’-‘L@AQ{EME BUY FORUM CONTACT
THE
FUNK
?

@

kin' The Funk? is a tool that helps you to detect the true quality
of your audio files in one batch.



Evaluation: Spectrum of Tasks

e —————

Commands Discourse

(brief with small vocabulary) (lengthy with large vocabulary)



Evaluation: Word Error Rate

* |Indicates edit distance between the prediction and the target as follows:

word replaced word added word omitted

(e.g., “goose” (e.g., “caboose”  (e.g., “itis a

transcribed as transcribed as  fun” transcribed
“choose”) “the goose”) as “itis fun”)

( J \ J \ J
| | I

Substitutions + Insertions + Deletions

Number of Words Spoken

* What indicates better performance: larger or smaller values?



Evaluation: Word Error Rate Example

e Correct: The sun makes it look like uh a warm,

e Predicted: The

sOon

makes it

 Number of words spoken?

* 15
* WER?

day

to]bike

with

d

Swarm

to go outside to

Substitutions + Insertions + Deletions

Number of Words Spoken

6+1+1

15

0.53

to go outside to adventure.

Denver

today.




Evaluation: Word Error Rate Comparison

% Word Error Rate (WER)

20
18.42%
18
16.51%
15.82%
1 14.70%
14.22%
14
12
Rev.ai Speechmatics Google Microsoft Amazon
V2 Video

https://www.rev.com/blog/resources/what-is-wer-what-does-word-error-rate-mean



Evaluation: What Are Limitations of Word
Error Rate as an Evaluation Metric?

Does not indicate why errors occur
* Background noise (e.g., music, other talking)
» Specialized language (i.e., words reflecting domain expertise)
* Speaker pronunciations/accent

Does not reflect whether transcription correctly captures:
* Capitalization
* Punctuation
* Numbers
e Paragraphs

May indicate poor quality when humans could understand the content

Weights all word errors equally



Popular Methods: Historical Context

1945 1950

duluaea| aulyoen
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Popular Methods: Resembles What We Learned

DeepSpeech DeepSpeech2 Listen, Attend, and Spell

CIC
CTC Fully Connected

[e] Bl (e B2l [e] (sl [e] - [ [e] Uni or Bi-directional RNN

Fully Connected Uni or Bi-directional RNN w—/{
.
Uni or Bi-directional RNN Atteitior Dacoin

Uni or Bi-directional RNN

Uni or Bi-directional RNN
Uni or Bi-directional RNN zcoder ’ , ’ ’

Fully Connected 1 or 2D Convolution

1 or 2D Convolution

1 or 2D Convolution

B ST ST SR SN SN S S S
~ Log-Mel filter bank features  5(X) -

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



DeepSpeech

Decoder:

Encoder:

Fully Connected ((.
©

Specropran G/ LTIV ST W)

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.




CTC

DeepSpeech

Fully Connected

LSTM

Fully Connected

Input:

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Spectrogram: Visual Representation of Audio

Color: amplitude of frequency at a given time point

Time [sec]
Created by sliding a short window across the audio signal and applying a Fourier transform to each window

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Background: Frequency Analysis of Audio Clip

Fourier transform: represents a signal as a sum of sines and cosines (frequency-domain):

/ frequency

time

https://dev.to/trekhleb/playing-with-discrete-fourier-transform-algorithm-in-javascript-53n5



DeepSpeech

Output: character sequence
predicted by a softmax layer

Fully Connected ((‘
26 o

Specrogram (7.1 / /] / 1/ S T S

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.




CTC: Input-Output Representation

Time [sec]

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



CTC: Input-Output Representation

Key idea: blank token supports silent stretches and letter repeats (e.g., “hello” vs “helo”)

h h ele e
h e €
A |E

alEflfl e

€

O

First, merge repeat
characters.

Then, remove any €
tokens.

The remaining characters
are the output.

https://distill.pub/2017 /ctc/



CTC: Input-Output Representation

Key idea: blank token supports silent stretches and letter repeats (e.g., “hello” vs “helo”)

M C CHEH a1
clelzalalit |

C a IEREREan t

Supports recognizing the same word when spoken differently!

https://distill.pub/2017 /ctc/



DeepSpeech

First hidden layer looks
at context around input:

Specrogram (7.1 / /] / 1/ S T S

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.




DeepSpeech

3 fully-connected layers
followed by bidirectional LSTM:

Can this run in real-time?
- no, it must hear everything

Fully Connected ((.

C

Specogeam G/ 17 11 ST )

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



DeepSpeech: Optimization Function (CTC)

7000
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Time [sec]

The CTC loss function enables learning output alignment without a per input label

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



DeepSpeech: Optimization Function (CTC)

* How many timesteps (t) are in this example?

 How many token options (s) in this example?

Predicts most plausible from all possible alignments:
* Probability of “a” is sum of all “a” representations |

2

©
Il
—

3: 2 characters (a, b) and blank (“-")

Probability of “aa”?
e 04x04=0.16

Probability of “a-"?
e 04x0.6=0.24 _

Probability of “-a”? S y p—O
e 06x04=0.24

Sum: 0.16 +0.24 + 0.24 =0.64

https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86¢




DeepSpeech: Optimization Function (CTC)

* How many timesteps (t) are in this example?
e 2

 How many token options (s) in this example? p=1
« 3:2characters (a, b) and blank (“-”)
Predicts most plausible from all possible alignments: =
* Probability of “a”: 0.64 el
* Probability of “-” is sum of all “-” representations
* Probability of “--"?
e 0.6x0.6=0.36
p=0

https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86¢



DeepSpeech: Optimization Function (CTC)

* How many timesteps (t) are in this example?
e 2

 How many token options (s) in this example?
« 3:2characters (a, b) and blank (“-”)

Predicts most plausible from all possible alignments:
* Probability of “a”: 0.64

* Probability of “”: 0.36

 And so on for all possible alignments...

https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86¢



DeepSpeech: Optimization Function (CTC)

Most plausible from all possible alignments
learned with best path decoding

https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86¢



DeepSpeech: Optimization Function (CTC)
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CTC uses dynamic programming to accelerate computation and is differentiable

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



DeepSpeech: Training (Key ldeas)

e 5,000 hours from 9,600 speakers

* Regularization
* Dropout
e Data augmentation: audio file translated 5 ms forward and backward

* Results boosted by incorporating a language model



Popular Methods: Resembles What We Learned

DeepSpeech DeepSpeech2 Listen, Attend, and Spell
CTC
CTC Fully Connected
[e] [l [e] [l Ce] Dol [e] - [ Ced Uni or Bi-directional RNN

Fully Connected Uni or Bi-directional RNN w—/{
.

Uni or Bi-directional RNN Atteitior Dacoin

Uni or Bi-directional RNN :

Uni or Bi-directional RNN
Uni or Bi-directional RNN zcoder ’ , ’ ’

LSTM

1 or 2D Convolution

Fully Connected

1 or 2D Convolution

1 or 2D Convolution

B ST ST SR SN SN S S S
~ Log-Mel filter bank features  5(X) -

Spectrogn L7

- Spectrogram 2 ' A

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



DeepSpeeChZ Similar output:

(two architectures for
English and Mandarin)

Extension of DeepSpeech that
achieves a 7x speed-up and
43.4% relative WER improvement
with a deeper architecture

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



CTC

DeepSpeech?

Fully Connected

Uni or Bi-directional RNN
Uni or Bi-directional RNN
Uni or Bi-directional RNN
Training pro.to.col difference from DeepSpeec.h: T e e RS
* More training data (11,940 hours for English
and 9,400 hours for Mandarin) Uni or Bi-directional RNN
* Curriculum learning: trains based on length Uni or Bi-directional RNN
of utterances for first epoch with shorter Tor 2D Convolaton

ones first (improves WER by over 1 point) Tor2D Convennnes

1 or 2D Convolution

Spectrogram

| — ——

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Popular Methods: Resembles What We Learned

DeepSpeech DeepSpeech2 Listen, Attend, and Spell

CIC
CTC Fully Connected

[e] Bl (e B2l [e] (sl [e] - [ [e] Uni or Bi-directional RNN

Uni or Bi-directional RNN ‘w—/‘
.

Um or Bi'direCﬁona.l RNN Attention Decoder

Uni or Bi-directional RNN 7

Uni or Bi-directional RNN
Uni or Bi-directional RNN zcoder ’ , ’ ’

Fully Connected

LSTM

Fully Connected 1 or 2D Convolution

1 or 2D Convolution

1 or 2D Convolution
Spectrogram ’/,/'//// /,/,/v //////// // // ’///‘,.,,

""""""""" S5 - . . =
- Log-Mel filter bank features ~ (X) -

~ Spectrogram

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Listen, Attend, and Spell

Attention Decoder ~ #

Mimics original paper on sequence to
sequence learning with attention where
the decoder learns what to attend to in Encoder

the encoded representation

hy h, hs hy| - |y

Pyramid structure reduces
number of input time steps

Log-Mel filter bank features

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Listen, Attend, and Spell

Input: more sophisticated hand-crafted

representation than spectrogram
Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.




e g 0 o o e
S B A8 L el
i » alny "9~ 5 |

. : 3 : . !

" . d < 0 . N L - .=

e . " = 21 I | o ¥ L i - - u gl ] e, =

R b MR . , P by =

" N ‘, . ,. o - . -} ™ | N} 'l .

| < legl o Y] . . " - i ) s

v X L] : 1 s - . . ,. "l |

3 A P : - " [ MR L N TR T b R 2L
u it gl oY - 1L z = A " et i 2 g ¥ e e e S o L

Attention enables .

n
. . . . ‘» <space> | |
visualizing alignment 8 L
) ] 46 <space; =
between audio signal a -
I

and characters

<space

VXN Cc IoTNVXNc IoTNAaaoo

</S

Time
Chan et al. Listen, Attend and Spell. ICASSP 2016.



Popular Methods: Resembles What We Learned

DeepSpeech DeepSpeech2 Listen, Attend, and Spell

Athentlon Decoder

,,

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Trend: Multimodal Models with Audio Support

* Generate audio for videos
* Fake video detection
* Detangling different audio signals in a video

* Visual question answering (question asked audibly)



Today’s Topics

* Internet-scale trained models



Shift Around 2019: Internet-Scale Data

Key ingredients for deep learning:

1. Lots of training data

2. Sufficient hardware with modern GPUs

3. Transformer model architecture



Historical Context

1945 1950

duluaea| aulyoen
uoJ1dadiad
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1591 Sulun|
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GPT-2: Motivating Argument for NLP

Goal: multi-task learning so a model ldea: use language for diverse domains and tasks
supports diverse domains and tasks (i.e., no architectural change or special fine-
(e.g., recall fine-tuning with special symbols tuning symbols; this is called zero-shot learning)

for BERT and GPT and LXMERT)

e.g., Input string “Translate
to French: [english text]”

e.g., Input string
“Summarize: [text]; TL;DR:”

Task Specific Laye

https://botpenguin.com/glossary/multi-task-learing  Radford et al. Language Models are Unsupervised Multitask Learners. OpenAl Blog 2019.



GPT-2 Approach: Contain Supervised Fine-
Tuning Objectives Within Pre-Training Objective

Pre-Training

Large unlabelled datasets
(e.g. Wikipedia, BookCorpus)

Self-supervised
training (hours to days)

ine-Tuning

Smaller label

Pre-Trained (SQUAD, MNL'/C Fine-Tuned
Weights Similarity) WoiaFits Inference

c fine tuning
utes to hours)

https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html



GPT-2: Unsupervised Multi-Task Learning

e Learn from natural language on the Internet, since it already
represents diverse domains and tasks

* Which source?
0 % Crawl: free monthly scrapes of Internet since 2008

from California non-profit organization (petabytes in size = ~101> bytes)

« Full dataset poor for training (e.g., spam, broken links, biased content)

. reddit: they used a subset of human-curated content in outbound
links validated as high quality through “3 karma” ratings
* 45 million links through Dec 2017, de-duplicated and pre-processed

* Result: 8M documents =40 GB
Radford et al. Language Models are Unsupervised Multitask Learners. OpenAl Blog 2019.



Text
Prediction

GPT-2: Architecture !

A
Modified GPT: Layer Norm
- Layer norm layers re-positioned and added é‘i
- Parameter initialization modified ate FAorward
12X ~—

- Vocabulary expanded to 50,257 tokens

Layer Norm
- Context size increased from 512 to 1,024 tokens $
- More layers (i.e., 48 vs 12) Masked Muli

Self Attention
- More parameters (1,542M vs 124M*) 1
Architecture code is open-source (no training code) Text & Position Embed

i} _ Image source: Radford et al. Technical Report 2018.
Incorrect # reported in paper Radford et al. Language Models are Unsupervised Multitask Learners. OpenAl Blog 20109.



GPT-2: Training

Same objective as GPT (predict next word) — '}
Learning rate tuned manually based on Layer Norm
results from training on 5% of training data qt)‘i
Masked Multi
Self Attention
A

Text

Prediction
A

A

Layer Norm

-

Feed Forward

Text & Position Embed

Image source: Radford et al. Technical Report 2018.
Radford et al. Language Models are Unsupervised Multitask Learners. OpenAl Blog 20109.



GPT-2 Experiments: Can Model Generalize to
Novel Tasks and Domains Without Fine-Tuning?

Pre-Training

Large unlabelled datasets
(e.g. Wikipedia, BookCorpus)

Self-supervised
training (hours to days)

ine-Tuning

Smaller label

Pre-Trained (SQUAD, MNL'/C Fine-Tuned
Weights Similarity) WoiaFits Inference

c fine tuning
utes to hours)

https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html



GPT-2 Experimental Findings

Achieved state-of-the-art performance on 7 of 8
tested NLP dataset challenges in zero-shot setting

Acknowledgments: “Thanks to everyone who wrote the text, shared the
links, and upvoted the content in WebText. Many millions of people were
involved in creating the data that GPT-2 was trained on.”

Radford et al. Language Models are Unsupervised Multitask Learners. OpenAl Blog 20109.



CLIP: Done Again by Radford and OpenAl Team

Named after the proposed technique: Contrastive Language Image Pre-training

Radford et al. Learning Transferable Visual Models From Natural Language
Supervision. ICML 2021.

Novelty: image analysis models trained with natural language supervision
using the vast amounts of publicly available data on the Internet



CI_I P ArCh itectu re Text transformer (GPT-2)

/

Pepper the
: Text ,
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Radford et al. Learning Transferable Visual Models From Natural Language Supervision. ICML 2021



CLIP Training

Task: predict which image-
text pairs match

Data: 400 million image-text
pairs from Internet from
500,000 queries (e.g., words
occurring 100+ times in
English version of Wikipedia
and all WordNet synonyms)

Pepper the
aussie pup

|

Training: with largest ResNet,

took 18 days on 592 V100
GPUs; with largest ViT, took
12 days on 256 V100 GPUs

Tried 8 variants: 3 ViT & 5 ResNet

[

|

Text transformer (GPT-2)

\

Text

Encoder

!

!

!

,/,///*”//// Ty ) T | T Ty
) Il II.TI Il'T2 II’T3 II‘TN
S — 12 I2'T1 12‘T2 12‘T3 I2'TN
Image
I I;-T I;-T I;-T I;-T
Encoder » I3 3711 | 1371y 37N
—>» Iy INTy | InTy | INT3 InTn

Radford et al. Learning Transferable Visual Models From Natural Language Supervision. ICML 2021




Cl_l P Train | ﬂg Text transformer (GPT-2)

/

Pepper the
aussie pup —> Text

. Encoder l l i l

- Learns feature embeddings
for image and text encoders
that push correct image-text
pairs together and incorrect
image-text pairs apart.

=
=
NS
—
)
=
=

- Learns nouns, verbs, Image
.. » I3 I3T; | I3 Ty [pEEES I3-Ty

adjectives, and more! Encoder
Tried 8 variants: 3 ViT & 5 ResNet > In | |[INT; |InT2 |INT3 | .. |INTy

Radford et al. Learning Transferable Visual Models From Natural Language Supervision. ICML 2021



/ero-Shot Performance
Evaluated on Over 30 Datasets




CLIP Inference

(2) Create dataset classifier from label text

Why this —

input format?

A photo of
photo of 1} Text

dog >
' a {object}. Encoder

e.g., zero-shot classification: Mimics sentences

1. Compute feature embedding for names of bird in training data /
all classes in the dataset by its encoder

2. Compute feature embedding of novel image (3) Use for zero-shot prediction v v v v
3. Compute cosine similarity of each image- Ty | T, | T; . | Ty
text pair embedding

4. Apply softmax to identify most probable E'Eli%‘; — > LTy [ 1Ty | Ty | o |1 Ty

match (i.e., highest score)

!

A photo of
a dog.

https://towardsdatascience.com/understanding-zero-shot-learning-making-ml-more-human-4653ac35ccab



CLIP Benchmark
Datasets

Subset of datasets shown here:

Classification evaluation spanned
fine-grained classification (e.g.,
food, bird, aircraft, and car
categories), distribution shifts for
ImageNet categories (e.g.,
corrupted images), and more

Dataset Classes Trainsize Testsize Evaluation metric
Food-101 102 75,750 25,250 accuracy
CIFAR-10 10 50,000 10,000 accuracy
CIFAR-100 100 50,000 10,000 accuracy
Birdsnap 500 42,283 2,149 accuracy
SUN397 397 19,850 19,850 accuracy
Stanford Cars 196 8,144 8,041 accuracy
FGVC Aircraft 100 6,667 3,333 mean per class
Pascal VOC 2007 Classification 20 5,011 4,952 11-point mAP
Describable Textures 47 3,760 1,880 accuracy
Oxford-IIIT Pets 37 3,680 3,669 mean per class
Caltech-101 102 3,060 6,085 mean-per-class
Oxford Flowers 102 102 2,040 6,149 mean per class
MNIST 10 60,000 10,000 accuracy
Facial Emotion Recognition 2013 8 32,140 3,574 accuracy
STL-10 10 1000 8000 accuracy
EuroSAT 10 10,000 5,000 accuracy
RESISC45 45 3,150 25,200 accuracy
GTSRB 43 26,640 12,630 accuracy
KITTI 4 6,770 711 accuracy
Country211 211 43,200 21,100 accuracy
PatchCamelyon 2 294,912 32,768 accuracy
UCF101 101 9,537 1,794 accuracy
Kinetics700 700 494,801 31,669 mean(topl, top5)
CLEVR Counts 8 2,000 500 accuracy
Hateful Memes 2 8,500 500 ROC AUC
Rendered SST2 2 7,792 1,821 accuracy
ImageNet 1000 1,281,167 50,000 accuracy




CLIP: Fine-Grained Classification Predictions

Oxford-lIIT Pets FGVC Aircraft
correct label: Maine Coon correct rank: 1/37 correct probability: 99.99% correct label: Boeing 717 correct rank: 2/100 correct probability: 9.91%

flas md-920, a type of aircraft.

a photo of a persian, a type of pet. ta of a boeing 717, a type of aircraft.

a photo of a ragdoll, a type of pet, pto of 3 fokker 100, a type of alrcraft.
a photo of a birman, a type of pet.

oto of a medoanell douglas de-9-30, a type of aircraft.

a photo of a slamese, a type of pet. ota of a boeing 727-200, a type of aircraft.

T T T

0 20 40 60 80 100 0 20 40 60 80 100

Radford et al. Learning Transferable Visual Models From Natural Language Supervision. ICML 2021



CLIP Is WIDELY Used; e.g.,

CLIPScore:
A Reference-free Evaluation Metric for Image Captioning

Jack Hessel' Ari Holtzman' Maxwell Forbes' Ronan Le Bras' Yejin Choi'
f Allen Institute for Al
tPaul G. Allen School of Computer Science & Engineering, University of Washington

{jackh, ronanlb}@allenai.org {ahai,mbforbes,yejin}@cs.washington.edu

~

How £ CLIPScore works

CANDIDATE
Two dogs run towards each :
other on a marshy area. S 7 CLIPScore




Many Other Internet-Scale Datasets Exist; e.g.,

Tokens Open source Curated data sources Deduplication level
RedPajama 1.21T Partial
RefinedWeb-600B 600B No
RefinedWeb-5T No No
LLaMA 1.4T No Partial
MPT 1T No Partial
MassiveText No

https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama



Many Other Internet-Scale Datasets Exist; e.g.,

Fénewdeb

The finest collection of data the web has to offer

= ~
'

https://huggingface.co/datasets/HuggingFaceFW/fineweb



Today’s Topics

 Scaling laws



(arXiv 2020)

Scaling Laws for Neural Language Models

Jared Kaplan * Sam McCandlish*
Johns Hopkins University, OpenAl OpenAl

jaredk@jhu.edu sam@openai.com
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Scaling Laws: Empirical Observations

Test Loss

Paper helped inspire examining how model performance is influenced by
(1) Available compute, (2) Training data size, and (3) Model size

What “law” do you see?
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Kaplan et al. Scaling Laws for Neural Language Models. arXiv 2020



Scaling Laws: Empirical Observations

Key observations: (1) Power-law relationship with each factor: changing one causes
the other to change proportionally as a power (exponent) of it and (2) Increases to
each improves performance smoothly (as long as all three are scaled together)
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Kaplan et al. Scaling Laws for Neural Language Models. arXiv 2020



(CVPR 2022)

Scaling Up Vision-Language Pre-training for Image Captioning

Xiaowel Hu, Zhe Gan, Jianfeng Wang, Zhengyuan Yang,
Zicheng Liu, Yumao Lu, Lijuan Wang
Microsoft

Novelty: first empirical analysis of how a model’s image captioning
performance is influenced by scaling up vision-language pretraining



Architecture

BERT with Its Pretrained Weights

Features
Network
Embeddingg () (O OO OO O O O O O O O O O
[CLS] A dog is [MASK] on a . [SEP] || dog ~  [SEP]
Data = A < = N -
Word Tokens Object Tags Region Features

Li et al. Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. ECCV 2020



Architecture: Input (Caption + Objects)
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Li et al. Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. ECCV 2020



Pretraining Objective: Masked Token Loss
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Like BERT, predicts masked tokens for 15% randomly masked
(uses context of surrounding words, image tags, and image features)

Li et al. Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. ECCV 2020



Fine-Tuning Task: Masked Token Loss
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Same as pre-training: predict randomly masked tokens

Li et al. Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. ECCV 2020



Inference Time
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Repeatedly predict a new [MASK] token, incorporating the
predicted word into the sequence, until [STOP] is predicted.

Li et al. Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. ECCV 2020



Influence of Model and Dataset Sizes
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Hu et al. Scaling Up Vision-Language Pre-training for Image Captioning. CVPR 2022



Influence of Model and Dataset Sizes
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Influence of Model and Dataset Sizes
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Influence of Model and Dataset Sizes
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Hu et al. Scaling Up Vision-Language Pre-training for Image Captioning. CVPR 2022

What trend(s) do you observe?

Larger models WITH large training
datasets yields better performance!



Today’s Topics

* Lab assignment 3: multimodal task



VizWiz-VQA Grand Challenge (7t year in 2025)

@ ®
v I Z Home Browse Dataset Tasks & Datasets v Workshops v+ Acknowledgments

2025 V1zW1z Grand Challenge Workshop

Overview

Our goal for this workshop is to educate researchers about the technological needs of people with vision impairments while
empowering researchers to improve algorithms to meet these needs. A key component of this event will be to track progress

on five dataset challenges, where the tasks are to recognize objects in few-shot learning_scenarios, answer visual guestions,

ground answers, recognize visual guestions with multiple answer groundings, locate objects in few-shot learning_scenarios,

classify images in a zero-shot setting. The second key component of this event will be a discussion about current research

and application issues, including invited speakers from both academia and industry who will share their experiences in

building today’s state-of-the-art assistive technologies as well as designing next-generation tools.

https://vizwiz.org




VizWiz: Authentic Use Case

Jeffrey Bigham et al. VizWiz: Nearly Real-time Answers to Visual Questions. UIST 2010



VizWiz: Authentic Use Case
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Jeffrey Bigham et al. VizWiz: Nearly Real-time Answers to Visual Questions. UIST 2010



VizWiz: Authentic Use Case

n

Image

—_— +
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Recording... QueStiOn

Use the microphone button
to record a question.

Jeffrey Bigham et al. VizWiz: Nearly Real-time Answers to Visual Questions. UIST 2010



VizWiz: Authentic Use Case
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Jeffrey Bigham et al. VizWiz: Nearly Real-time Answers to Visual Questions. UIST 2010



VizWiz: Authentic Use Case

Image
+
(Optionally) Question

Answer

Jeffrey Bigham et al. VizWiz: Nearly Real-time Answers to Visual Questions. UIST 2010



VizWiz: Authentic Use Case

Users agreed to share 44,799 (62%)
of requests for dataset creation

Jeffrey Bigham et al. VizWiz: Nearly Real-time Answers to Visual Questions. UIST 2010



VizWiz: Authentic Use Case

Anonymization

1. Transcribe questions (removes voice)

9 — [T

2. Re-save images (removes metadata)

-

Gurari et al. CVPR 2018



VizWiz: Authentic Use Case

Anonymization In-House Filtering

(personally identifying information)

1. Transcribe questions AN ACNKL £

9 — [T

2. Re-save images

-

Gurari et al. CVPR 2018



VizWiz: Authentic Use Case

Anonymization In-House Filtering Data Labeling
(high quality answers)

9 N
&
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1. Transcribe questions

9 — [T

2. Re-save images

-

Gurari et al. CVPR 2018



VizWiz: Authentic Use Case

VQA: 32,842 image/question pairs = 328,420 answers

Gurari et al. CVPR 2018



Key Difference of Real-World Use Case from
Status Quo: VQs Can Be Unanswerable!
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Q: What is the Q: What is this a gift Q: What temperature

expiration date? card for? is the dial set to?
A: unanswerable A: unanswerable A: unanswerable

Gurari et al. CVPR 2018



Today’s Topics

* Programming tutorial



Today’s Topics
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