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Review

• Last lecture
• Multimodal problems
• Image captioning: pioneering dataset and model
• Visual question answering: pioneering dataset and model
• LXMERT: multimodal representations 

• Assignments (Canvas)
• Lab assignment 2 grades are out

• Email all regrade requests to our TA, Nick Cooper (a comment in Canvas is not sufficient)
• Problem set 4 due (final one) earlier today
• Lab assignment 3 (last one!) due in 1.5 weeks

• Questions?



Today’s Topics

• Other data modalities

• Internet-scale trained models

• Scaling laws

• Lab assignment 3: multimodal task

• Programming tutorial
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Recall: Data Types We Have Focused On

Images Text



Many Data Modalities Can Be Explored!

e.g., All Human Senses! e.g., Beyond Human Senses!



Another Popular Modality: Audio 



Speech Processing: Problem Definition

Input: spoken language Output: machine readable text

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



What Is Speech?

Compression waves created by pushing 
air from one’s lungs and modulating it 
using one’s tongue, teeth, and lips

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Why Is Speech Processing Challenging?

Input can be diverse 
including different accents, 
volumes, pace, and cadence

Temporal data needs to be 
segmented into distinct words

Technology can introduce artifacts 
including varying quality, echos, 
and background noise

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Application: Voice Typing on Mobile Devices



Application: Voice Typing for Productivity Apps

Demo starting at 2:00: https://www.youtube.com/watch?v=5UK4vLzU9co&t=76s



Application: Virtual Assistant

e.g., Amazon’s Echo with Alexa e.g., Google Home e.g., Baidu DuerOS

https://dueros.baidu.com/en/html/dueros/index.html



Application: Audio Transcription (e.g., Analysis & 
Situational/Permanent Hearing Impairments)

https://www.gmrtranscription.com/blog/podcast-transcription



Application: Video Captioning (e.g., Analysis & 
Situational/Permanent Hearing Impairments)

https://www.techsmith.com/blog/add-captions-subtitles-video/



Application: Speech Emotion Recognition 
(e.g., for Help Desks and Negotiators)



Application: Speaker Identification (e.g., Security)



Application: Language Identification



Application: Speech Enhancement



Evaluation: Spectrum of Tasks

Commands

(brief with small vocabulary)

Discourse

(lengthy with large vocabulary)



Evaluation: Word Error Rate 

• Indicates edit distance between the prediction and the target as follows:

• What indicates better performance: larger or smaller values?

Substitutions + Insertions + Deletions

Number of Words Spoken

word replaced 
(e.g., “goose” 
transcribed as 

“choose”)

word added
(e.g., “caboose” 
transcribed as 
“the goose”)

word omitted
(e.g., “it is a 

fun” transcribed 
as “it is fun”)



Evaluation: Word Error Rate Example

• Correct: The sun makes it look like uh a warm, day to go outside to adventure. 

• Predicted: The son makes it to bike with a swarm to go outside to Denver today.

• Number of words spoken?
• 15

• WER?

Substitutions + Insertions + Deletions

Number of Words Spoken

6 + 1 + 1

15
=   0.53



Evaluation: Word Error Rate Comparison

https://www.rev.com/blog/resources/what-is-wer-what-does-word-error-rate-mean



Evaluation: What Are Limitations of Word 
Error Rate as an Evaluation Metric?

• Does not indicate why errors occur
• Background noise (e.g., music, other talking)
• Specialized language (i.e., words reflecting domain expertise)
• Speaker pronunciations/accent

 

• Does not reflect whether transcription correctly captures:
• Capitalization
• Punctuation
• Numbers 
• Paragraphs

• May indicate poor quality when humans could understand the content 

• Weights all word errors equally



Popular Methods: Historical Context
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Popular Methods: Resembles What We Learned
DeepSpeech DeepSpeech2 Listen, Attend, and Spell

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



DeepSpeech

Encoder:

Decoder:

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



DeepSpeech

Input:

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Spectrogram: Visual Representation of Audio

Color: amplitude of frequency at a given time point

Created by sliding a short window across the audio signal and applying a Fourier transform to each window

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Background: Frequency Analysis of Audio Clip

https://dev.to/trekhleb/playing-with-discrete-fourier-transform-algorithm-in-javascript-53n5

Fourier transform: represents a signal as a sum of sines and cosines (frequency-domain):



DeepSpeech

Output: character sequence 
predicted by a softmax layer

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



CTC: Input-Output Representation

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



CTC: Input-Output Representation

Key idea: blank token supports silent stretches and letter repeats (e.g., “hello” vs “helo”)

https://distill.pub/2017/ctc/



CTC: Input-Output Representation

Key idea: blank token supports silent stretches and letter repeats (e.g., “hello” vs “helo”)

Supports recognizing the same word when spoken differently!

https://distill.pub/2017/ctc/



DeepSpeech

First hidden layer looks 
at context around input:

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



DeepSpeech

3 fully-connected layers 
followed by bidirectional LSTM:

Can this run in real-time?
- no, it must hear everything

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



DeepSpeech: Optimization Function (CTC)

The CTC loss function enables learning output alignment without a per input label

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



DeepSpeech: Optimization Function (CTC)

https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c

• How many timesteps (t) are in this example?
• 2

• How many token options (s) in this example?
• 3: 2 characters (a, b) and blank (“-”)

Predicts most plausible from all possible alignments: 
• Probability of “a” is sum of all “a” representations

• Probability of “aa”?
• 0.4 x 0.4 = 0.16

• Probability of “a-”?
• 0.4 x 0.6 = 0.24

• Probability of “-a”?
• 0.6 x 0.4 = 0.24

• Sum: 0.16 + 0.24 + 0.24 = 0.64



DeepSpeech: Optimization Function (CTC)

https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c

• How many timesteps (t) are in this example?
• 2

• How many token options (s) in this example?
• 3: 2 characters (a, b) and blank (“-”)

Predicts most plausible from all possible alignments: 
• Probability of “a”: 0.64
• Probability of “-” is sum of all “-” representations

• Probability of “--”?
• 0.6 x 0.6 = 0.36



DeepSpeech: Optimization Function (CTC)

https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c

• How many timesteps (t) are in this example?
• 2

• How many token options (s) in this example?
• 3: 2 characters (a, b) and blank (“-”)

Predicts most plausible from all possible alignments: 
• Probability of “a”: 0.64
• Probability of “”: 0.36
• And so on for all possible alignments…



DeepSpeech: Optimization Function (CTC)

https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c

Most plausible from all possible alignments 
learned with best path decoding



DeepSpeech: Optimization Function (CTC)

CTC uses dynamic programming to accelerate computation and is differentiable

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



DeepSpeech: Training (Key Ideas)

• 5,000 hours from 9,600 speakers

• Regularization
• Dropout

• Data augmentation: audio file translated 5 ms forward and backward

• Results boosted by incorporating a language model



Popular Methods: Resembles What We Learned
DeepSpeech DeepSpeech2 Listen, Attend, and Spell

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



DeepSpeech2

Extension of DeepSpeech that 
achieves a 7x speed-up and 
43.4% relative WER improvement 
with a deeper architecture

Similar output: 
(two architectures for 

English and Mandarin)

Same input:

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



DeepSpeech2

Training protocol difference from DeepSpeech: 
• More training data (11,940 hours for English 

and 9,400 hours for Mandarin)
• Curriculum learning: trains based on length 

of utterances for first epoch with shorter 
ones first (improves WER by over 1 point)

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Popular Methods: Resembles What We Learned
DeepSpeech DeepSpeech2 Listen, Attend, and Spell

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Listen, Attend, and Spell

Mimics original paper on sequence to 
sequence learning with attention where 
the decoder learns what to attend to in 
the encoded representation

Pyramid structure reduces 
number of input time steps

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Listen, Attend, and Spell

Input: more sophisticated hand-crafted 
representation than spectrogram

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Result

Chan et al. Listen, Attend and Spell. ICASSP 2016.

Attention enables 
visualizing alignment 
between audio signal 
and characters 



Popular Methods: Resembles What We Learned
DeepSpeech DeepSpeech2 Listen, Attend, and Spell

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019.



Trend: Multimodal Models with Audio Support

• Generate audio for videos

• Fake video detection

• Detangling different audio signals in a video

• Visual question answering (question asked audibly) 



Today’s Topics

• Other data modalities

• Internet-scale trained models

• Scaling laws

• Lab assignment 3: multimodal task

• Programming tutorial



Shift Around 2019: Internet-Scale Data

Key ingredients for deep learning:

1. Lots of training data

2. Sufficient hardware with modern GPUs

3. Transformer model architecture 



Historical Context
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GPT-2: Motivating Argument for NLP

Goal: multi-task learning so a model 
supports diverse domains and tasks

(e.g., recall fine-tuning with special symbols 
for BERT and GPT and LXMERT) 

Radford et al. Language Models are Unsupervised Multitask Learners. OpenAI Blog 2019.

e.g., Input string “Translate 
to French: [english text]”

Idea: use language for diverse domains and tasks

(i.e., no architectural change or special fine-
tuning symbols; this is called zero-shot learning) 

e.g., Input string 
“Summarize: [text]; TL;DR:”

https://botpenguin.com/glossary/multi-task-learning



GPT-2 Approach: Contain Supervised Fine-
Tuning Objectives Within Pre-Training Objective 

https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

Inference



GPT-2: Unsupervised Multi-Task Learning

• Learn from natural language on the Internet, since it already 
represents diverse domains and tasks

• Which source?

•                                              : free monthly scrapes of Internet since 2008 

    from California non-profit organization (petabytes in size = ~1015 bytes)

• Full dataset poor for training (e.g., spam, broken links, biased content)

•                            : they used a subset of human-curated content in outbound 
links validated as high quality through “3 karma” ratings

• 45 million links through Dec 2017, de-duplicated and pre-processed

• Result: 8M documents = 40 GB
Radford et al. Language Models are Unsupervised Multitask Learners. OpenAI Blog 2019.



GPT-2: Architecture

Modified GPT:

- Layer norm layers re-positioned and added

- Parameter initialization modified

- Vocabulary expanded to 50,257 tokens

- Context size increased from 512 to 1,024 tokens

- More layers (i.e., 48 vs 12)

- More parameters (1,542M vs 124M*)

Architecture code is open-source (no training code)

Image source: Radford et al. Technical Report 2018.
Radford et al. Language Models are Unsupervised Multitask Learners. OpenAI Blog 2019.* Incorrect # reported in paper



GPT-2: Training

Same objective as GPT (predict next word)

Learning rate tuned manually based on 
results from training on 5% of training data

Image source: Radford et al. Technical Report 2018.
Radford et al. Language Models are Unsupervised Multitask Learners. OpenAI Blog 2019.



GPT-2 Experiments: Can Model Generalize to 
Novel Tasks and Domains Without Fine-Tuning?

https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

Inference



GPT-2 Experimental Findings

Achieved state-of-the-art performance on 7 of 8 
tested NLP dataset challenges in zero-shot setting

Acknowledgments: “Thanks to everyone who wrote the text, shared the 
links, and upvoted the content in WebText. Many millions of people were 

involved in creating the data that GPT-2 was trained on.”

Radford et al. Language Models are Unsupervised Multitask Learners. OpenAI Blog 2019.



CLIP: Done Again by Radford and OpenAI Team

Named after the proposed technique: Contrastive Language Image Pre-training

 
Radford et al. Learning Transferable Visual Models From Natural Language 
Supervision. ICML 2021.

Novelty: image analysis models trained with natural language supervision 
using the vast amounts of publicly available data on the Internet



CLIP Architecture

Radford et al. Learning Transferable Visual Models From Natural Language Supervision. ICML 2021

Text transformer (GPT-2)

Tried 8 variants: 3 ViT & 5 ResNet 



CLIP Training Text transformer (GPT-2)

Tried 8 variants: 3 ViT & 5 ResNet 

Task: predict which image-
text pairs match 

Data: 400 million image-text 
pairs from Internet from 
500,000 queries (e.g., words 
occurring  100+ times in 
English version of Wikipedia 
and all WordNet synonyms)

Training: with largest ResNet, 
took 18 days on 592 V100 
GPUs; with largest ViT,  took 
12 days on 256 V100 GPUs

Radford et al. Learning Transferable Visual Models From Natural Language Supervision. ICML 2021



CLIP Training Text transformer (GPT-2)

Tried 8 variants: 3 ViT & 5 ResNet 

- Learns feature embeddings 
for image and text encoders 
that push correct image-text 
pairs together and incorrect 
image-text pairs apart. 

- Learns nouns, verbs, 
adjectives, and more!

Radford et al. Learning Transferable Visual Models From Natural Language Supervision. ICML 2021



Zero-Shot Performance 
Evaluated on Over 30 Datasets



CLIP Inference

https://towardsdatascience.com/understanding-zero-shot-learning-making-ml-more-human-4653ac35ccab

e.g., zero-shot classification: 

1. Compute feature embedding for names of 
all classes in the dataset by its encoder

2. Compute feature embedding of novel image

3. Compute cosine similarity of each image- 
text pair embedding 

4. Apply softmax to identify most probable 
match (i.e., highest score)

Why this 
input format?

Mimics sentences 
in training data



CLIP Benchmark 
Datasets

Subset of datasets shown here:

Classification evaluation spanned 
fine-grained classification (e.g., 
food, bird, aircraft, and car 
categories), distribution shifts for 
ImageNet categories (e.g., 
corrupted images), and more



CLIP: Fine-Grained Classification Predictions

Radford et al. Learning Transferable Visual Models From Natural Language Supervision. ICML 2021



CLIP Is WIDELY Used; e.g., 



Many Other Internet-Scale Datasets Exist; e.g.,

https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama



Many Other Internet-Scale Datasets Exist; e.g.,

https://huggingface.co/datasets/HuggingFaceFW/fineweb



Today’s Topics

• Other data modalities

• Internet-scale trained models

• Scaling laws

• Lab assignment 3: multimodal task

• Programming tutorial



(arXiv 2020)



Scaling Laws: Empirical Observations

• Paper helped inspire examining how model performance is influenced by 
(1) Available compute, (2) Training data size, and (3) Model size

• What “law” do you see? 

Kaplan et al. Scaling Laws for Neural Language Models. arXiv 2020



Scaling Laws: Empirical Observations

Kaplan et al. Scaling Laws for Neural Language Models. arXiv 2020

Key observations: (1) Power-law relationship with each factor: changing one causes 
the other to change proportionally as a power (exponent) of it and (2) Increases to 
each improves performance smoothly (as long as all three are scaled together)



(CVPR 2022)

Novelty: first empirical analysis of how a model’s image captioning 
performance is influenced by scaling up vision-language pretraining



Architecture

Li et al. Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. ECCV 2020

BERT with Its Pretrained Weights



Architecture: Input (Caption + Objects)

Li et al. Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. ECCV 2020

Objects and their extracted 
features from Faster R-CNN



Pretraining Objective: Masked Token Loss

Li et al. Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. ECCV 2020

Like BERT, predicts masked tokens for 15% randomly masked
(uses context of surrounding words, image tags, and image features)



Fine-Tuning Task: Masked Token Loss

Li et al. Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. ECCV 2020

Same as pre-training: predict randomly masked tokens



Inference Time

Li et al. Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. ECCV 2020

Repeatedly predict a new [MASK] token, incorporating the 
predicted word into the sequence, until [STOP] is predicted.



Influence of Model and Dataset Sizes

Hu et al. Scaling Up Vision-Language Pre-training for Image Captioning. CVPR 2022

5 pre-training dataset sizes tested, 
using images from Internet (each 
with 1 alt text description)
(Most prior work had pre-trained on up to 4M images)

Fine-tuned to target dataset; 
e.g., COCO-Captions



Influence of Model and Dataset Sizes

Hu et al. Scaling Up Vision-Language Pre-training for Image Captioning. CVPR 2022

8 model sizes tested on COCO dataset



Influence of Model and Dataset Sizes

Hu et al. Scaling Up Vision-Language Pre-training for Image Captioning. CVPR 2022

State-of-the-art performance 
on 3 captioning datasets!



Influence of Model and Dataset Sizes

Hu et al. Scaling Up Vision-Language Pre-training for Image Captioning. CVPR 2022

What trend(s) do you observe?

Larger models WITH large training 
datasets yields better performance!



Today’s Topics

• Other data modalities

• Internet-scale trained models

• Scaling laws

• Lab assignment 3: multimodal task

• Programming tutorial



VizWiz-VQA Grand Challenge (7th year in 2025)

https://vizwiz.org



VizWiz: Authentic Use Case

Jeffrey Bigham et al. VizWiz: Nearly Real-time Answers to Visual Questions. UIST 2010



VizWiz: Authentic Use Case

Image

Jeffrey Bigham et al. VizWiz: Nearly Real-time Answers to Visual Questions. UIST 2010



VizWiz: Authentic Use Case

Image

Question

+

Jeffrey Bigham et al. VizWiz: Nearly Real-time Answers to Visual Questions. UIST 2010



VizWiz: Authentic Use Case

Image

+

Question

Jeffrey Bigham et al. VizWiz: Nearly Real-time Answers to Visual Questions. UIST 2010



VizWiz: Authentic Use Case

Image

+

(Optionally) Question

Answer

Jeffrey Bigham et al. VizWiz: Nearly Real-time Answers to Visual Questions. UIST 2010



VizWiz: Authentic Use Case

Users agreed to share 44,799 (62%) 
of requests for dataset creation

Jeffrey Bigham et al. VizWiz: Nearly Real-time Answers to Visual Questions. UIST 2010



VizWiz: Authentic Use Case

Anonymization
 

1. Transcribe questions (removes voice)

2. Re-save images (removes metadata)

Gurari et al. CVPR 2018



VizWiz: Authentic Use Case

Gurari et al. CVPR 2018

Anonymization

Transcribe questions

Re-save images

In-House Filtering 
(personally identifying information)



VizWiz: Authentic Use Case

Gurari et al. CVPR 2018

Anonymization

Transcribe questions

Re-save images

Data LabelingIn-House Filtering 
(high quality answers) 



VizWiz: Authentic Use Case

Gurari et al. CVPR 2018

VQA: 32,842 image/question pairs → 328,420 answers



Key Difference of Real-World Use Case from 
Status Quo: VQs Can Be Unanswerable!

Q: What is the 
expiration date?

A: unanswerable

Q: What is this a gift 
card for?

A: unanswerable

Q: What temperature 
is the dial set to?

A: unanswerable

Gurari et al. CVPR 2018



Today’s Topics

• Other data modalities

• Internet-scale trained models

• Scaling laws

• Lab assignment 3: multimodal task

• Programming tutorial
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