Pioneering Transformers

Danna Gurari University of Colorado Boulder Spring 2025

https://dannagurari.colorado.edu/course/neural-networks-and-deep-learning-spring-2025/

Review

- Last lecture:
 - Transformer overview
 - Self-attention
 - Common transformer ingredients
 - Pioneering transformer: machine translation
 - Programming tutorial
- Assignments (Canvas):
 - Lab assignment 2 due earlier today
 - Problem set 4 (last one!) due in one week
- Questions?

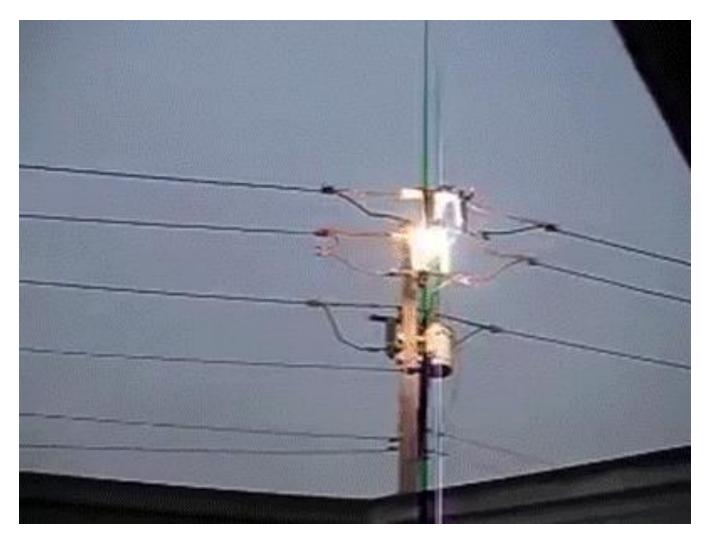
Today's Topics

- Explosion of transformers
- GPT
- BERT
- ViT
- Programming tutorial

Today's Topics

- Explosion of transformers
- GPT
- BERT
- ViT
- Programming tutorial

Explosion of Transformers in Society

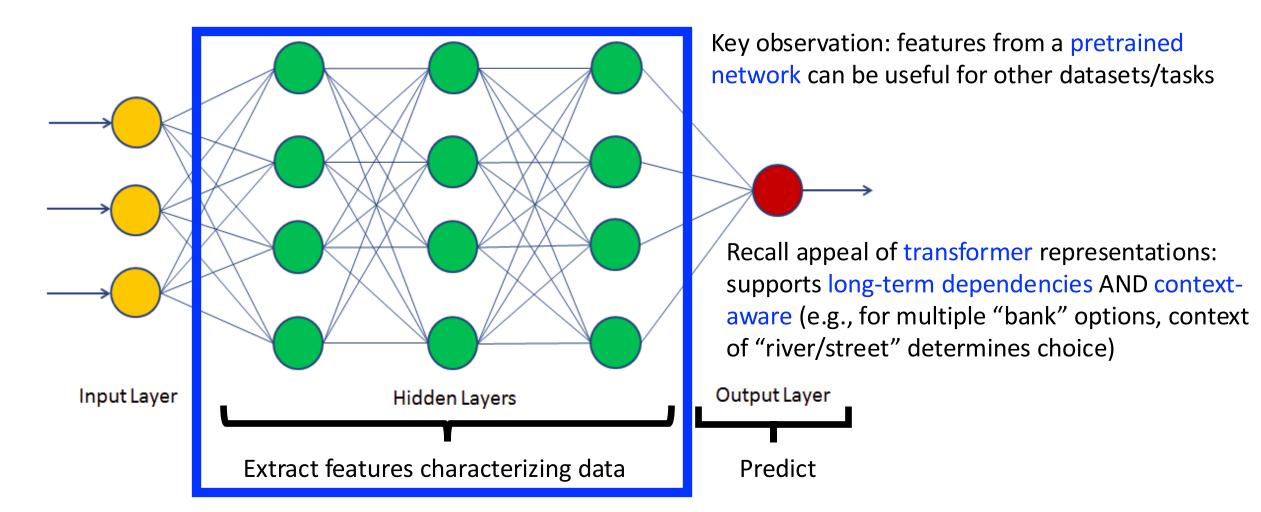


https://www.pinterest.com/pin/521784306804400819/

Initial Focus: Train Models for the Many Language Understanding Tasks

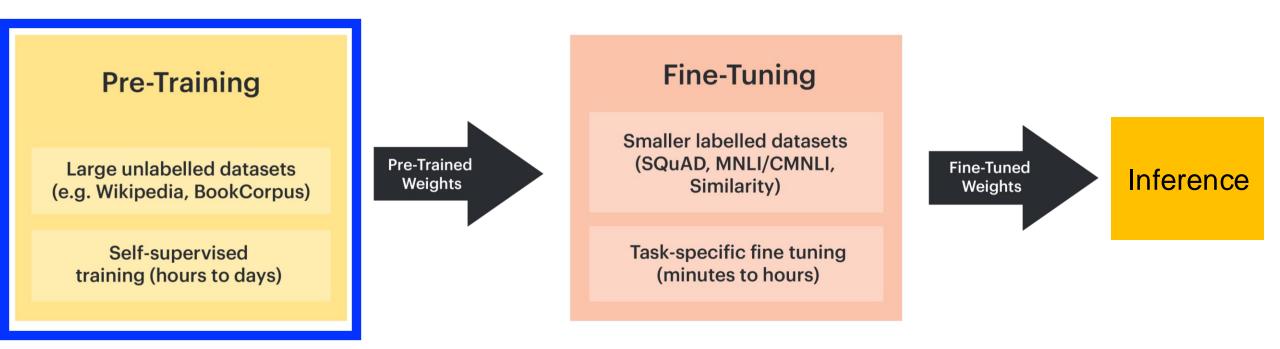
- Named entity recognition
- Recognizing semantically equivalent text, such as for pairs of questions or sentences
- Recognizing whether sentences are grammatically correct in English
- Question answering
- Machine translation
- And many more...

Key Idea 1: Fine-Tune Pre-Trained Models



https://www.datacamp.com/community/tutorials/neural-network-models-r

Key Idea 2: Data Is Supervision for Pretraining



Since VERY challenging to collect large-scale human-annotated datasets, we don't!

https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

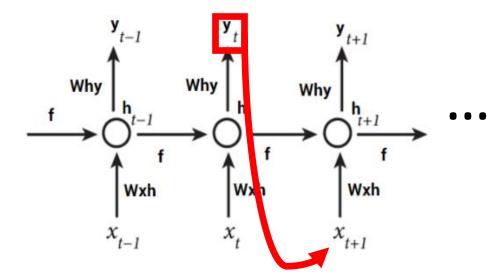
Key Idea 2: Data Is Supervision (Self-Supervised)

Recall, we already have seen self-supervised learning in our NLP-focused lectures:

RNNs (e.g., predict next character)

Word embeddings (e.g., predict nearby word for given word for word2vec)

Output Layer Softmax Classifier



Hidden Layer Probability that the word at a Linear Neurons randomly chosen, nearby Input Vector position is "abandor 0 0 0 Σ Σ ... "ability" 0 Σ 0 Σ 0 ... "able" 0 0 0 Σ 10.000 positions Σ 300 neurons ... "zone' 10,000 neurons

https://www.analyticsvidhya.com/blog/2017/12 /introduction-to-recurrent-neural-networks/ https://towardsdatascience.com/word2vec-skipgram-model-part-1-intuition-78614e4d6e0b

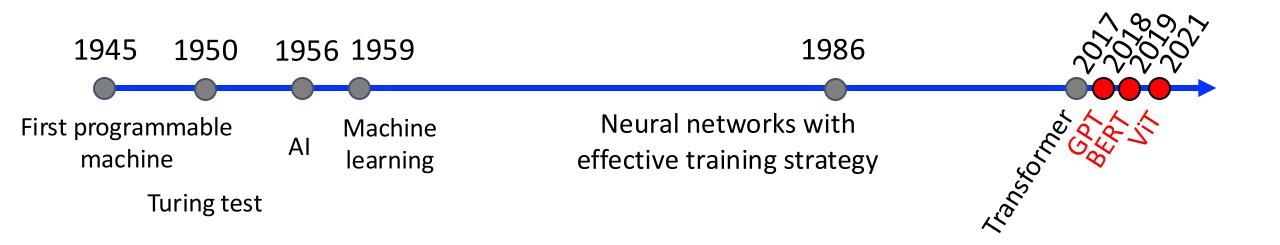
Key Idea 2: Data Is Supervision (Self-Supervised)

Relatively Cheap Can Collect Data Fast

https://lovevery.com/community/blog/child-development/thesurprising-learning-power-of-a-household-mirror/

https://www.rockettes.com/blog/ho w-to-use-the-mirror-in-dance-class/

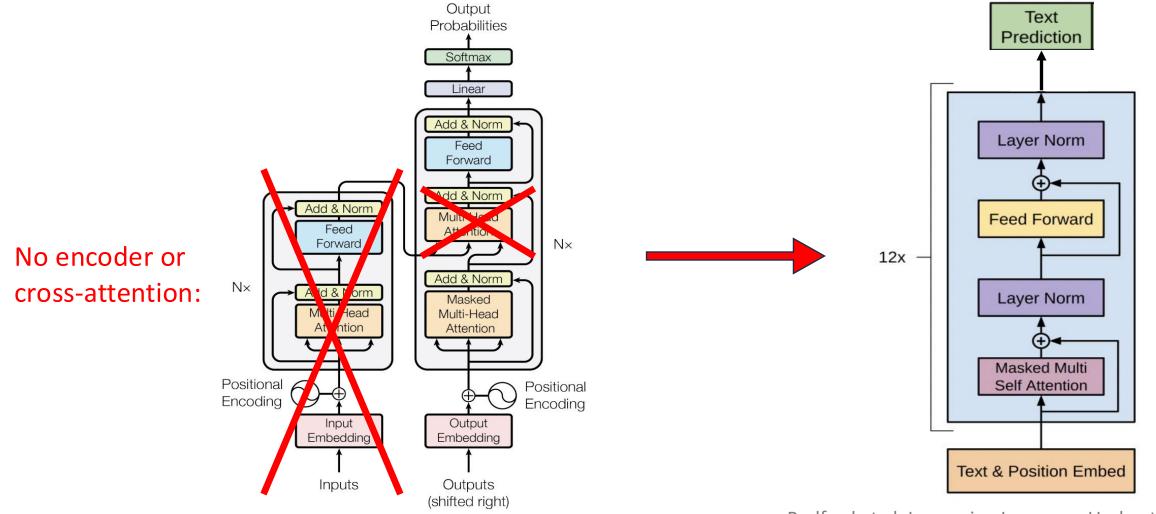
How to Develop Pre-trained Models?



Today's Topics

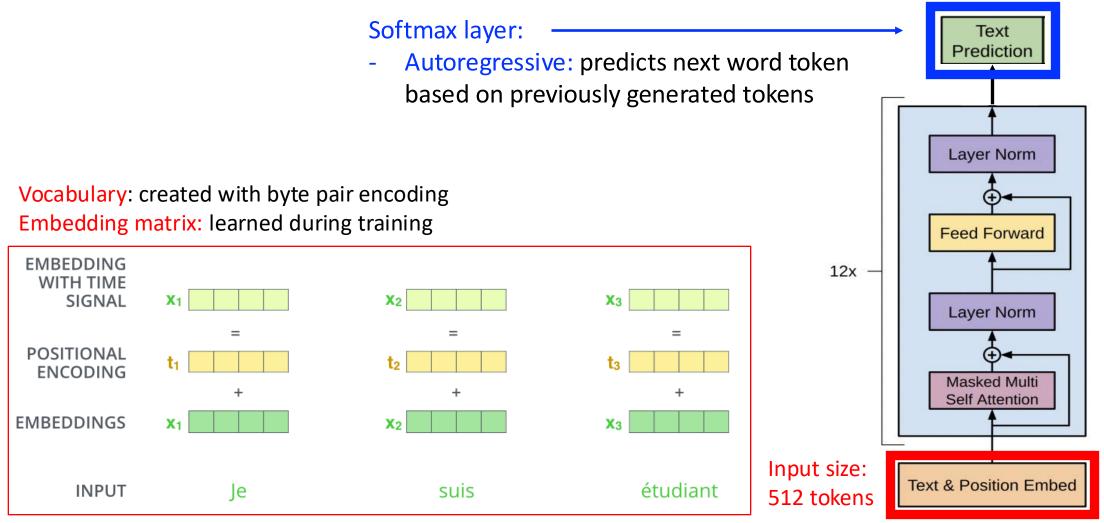
- Explosion of transformers
- GPT
- BERT
- ViT
- Programming tutorial

Architecture: Decoder of Pioneering Transformer



Vaswani et al. Attention Is All You Need. Neurips 2017.

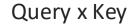
Recall: Input and Output



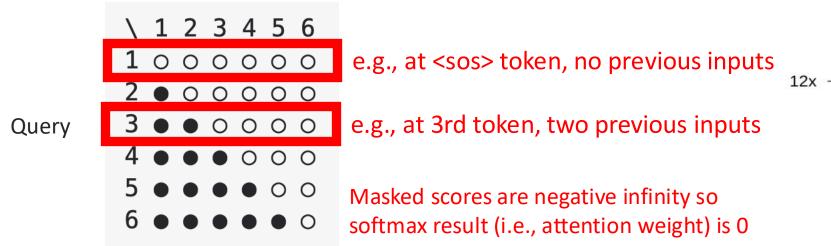
http://jalammar.github.io/illustrated-transformer/

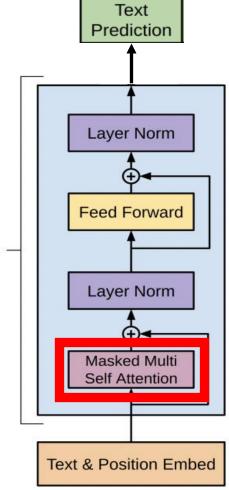
Recall: Masked Attention

Limit each word's new representation to only reflect earlier words (mimics inference time when only previous tokens can be seen):

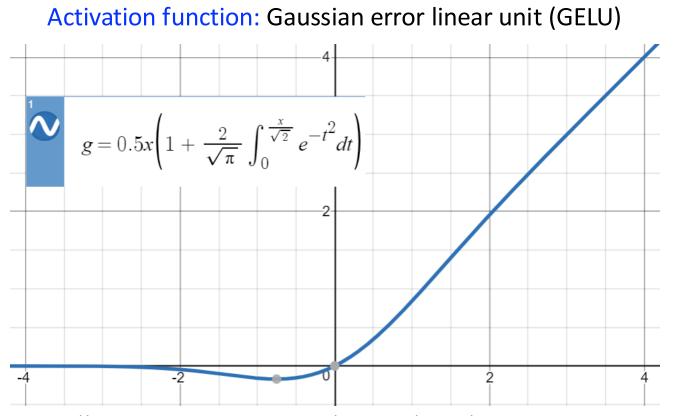


https://stackoverflow.com/questions/64799622/how-is-thegpts-masked-self-attention-is-utilized-on-fine-tuning-inference

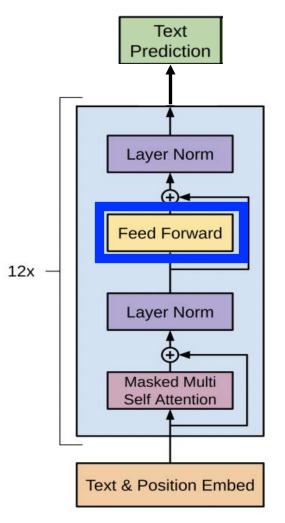




Architecture: Minor Tweak



https://datascience.stackexchange.com/questions/49522/what-is-gelu-activation

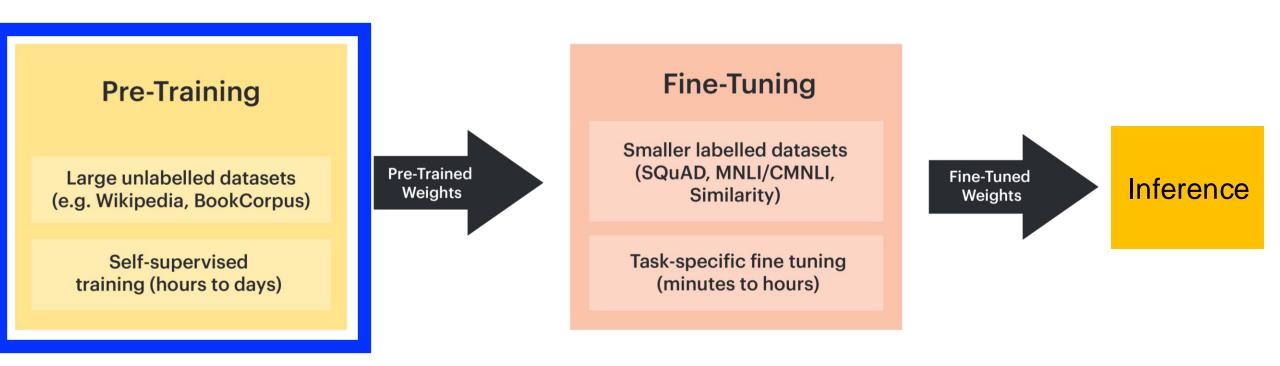




- Learn good representations for downstream tasks: pretraining objective function
- Make learning feasible: self-supervised pre-training
- Fine-tune pretrained models for downstream tasks with little architectural change

- Learn good representations for downstream tasks: pretraining objective function
- Make learning feasible: self-supervised pre-training
- Fine-tune pretrained models for downstream tasks with little architectural change

Why GPT? Generative Pre-Training

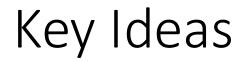


https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

Task: Predict Next Word Given Previous Ones

e.g.,

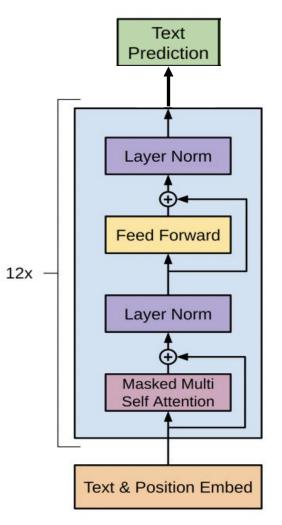
- 1. Background music from a _____
- 2. Many people danced around the _____
- 3. I practiced for many years to learn how to play the _____



- Learn good representations for downstream tasks: pretraining objective function
- Make learning feasible: self-supervised pre-training
- Fine-tune pretrained models for downstream tasks with little architectural change

Training

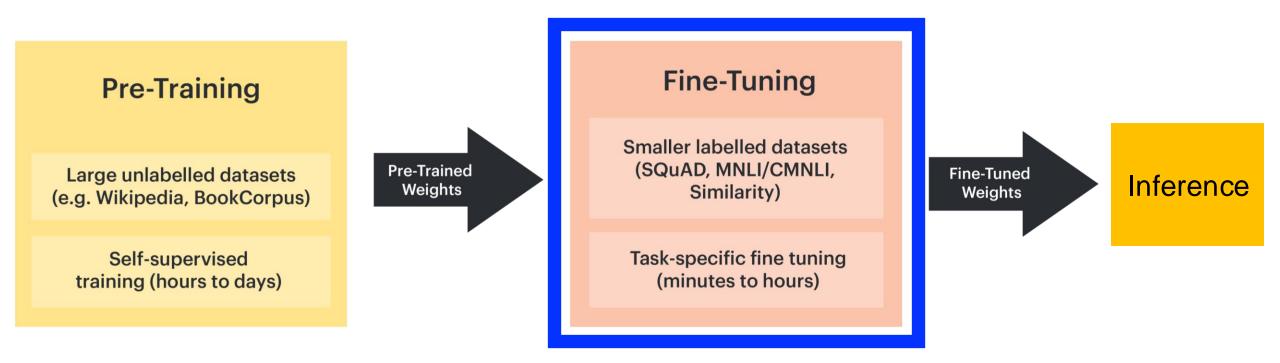
- Dataset/Task: predict next word using 800M words in BooksCorpus (>7,000 unpublished books)
- Mini-batch size: 64 sequences of 512 tokens each
- Regularization: dropout and L2 norm penalty
- Optimizer: Adam
- Training duration: 100 epochs



Key Ideas

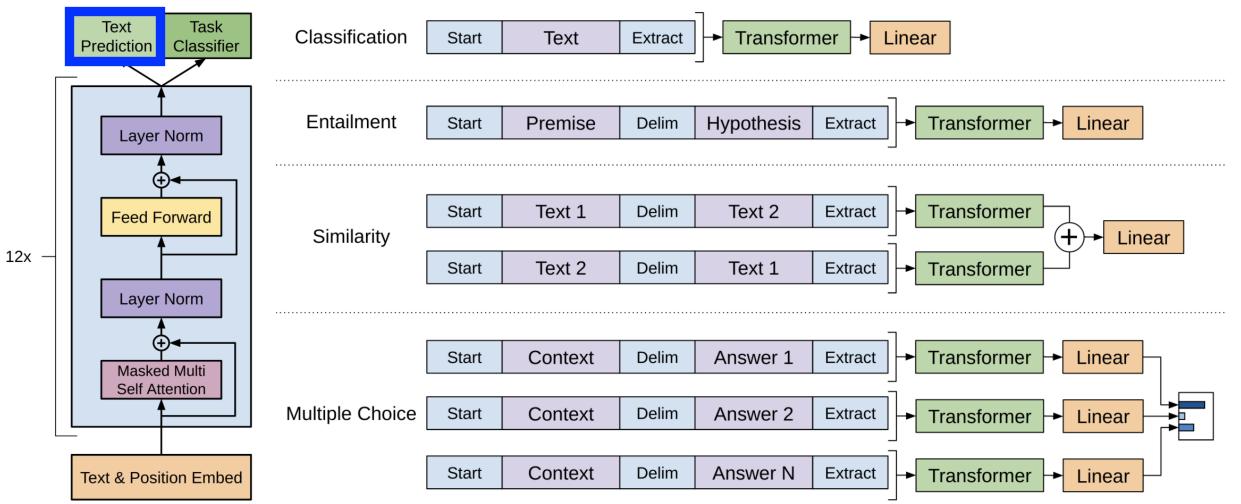
- Learn good representations for downstream tasks: pretraining objective function
- Make learning feasible: self-supervised pre-training
- Fine-tune pretrained models for downstream tasks with little architectural change

Fine-Tuning to Target Tasks

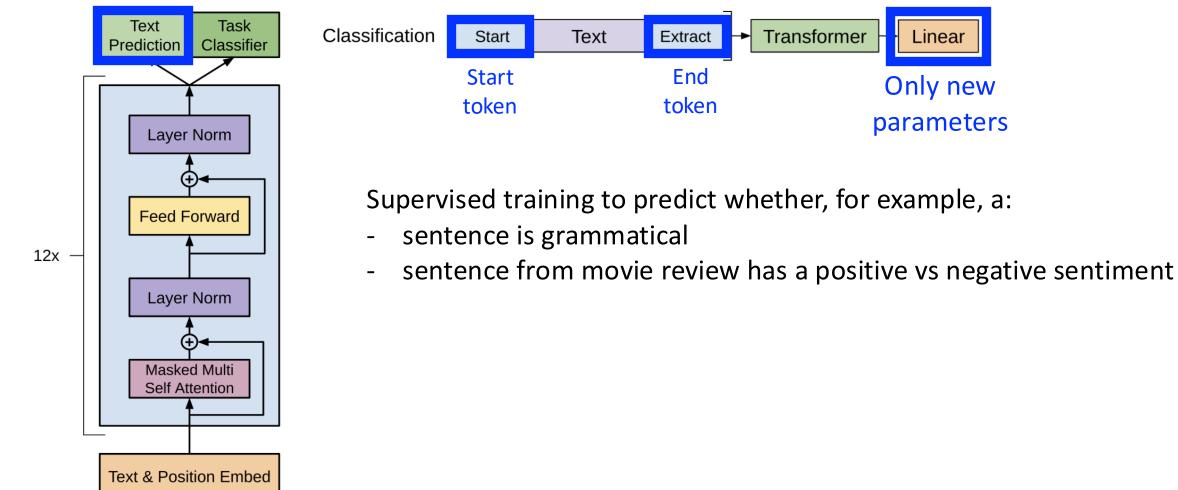


https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

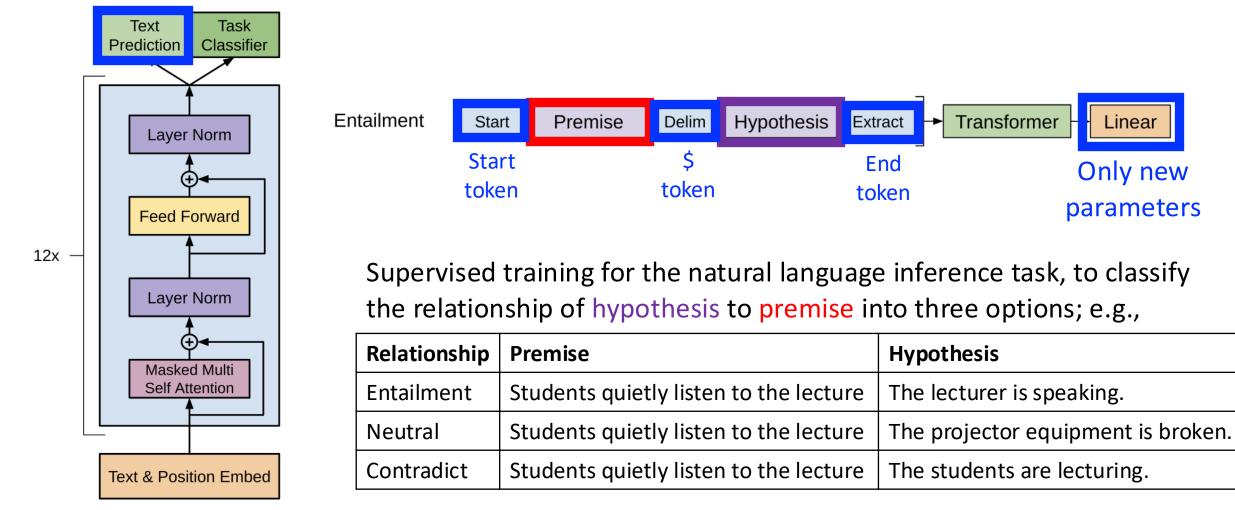
Auxiliary function improves performance



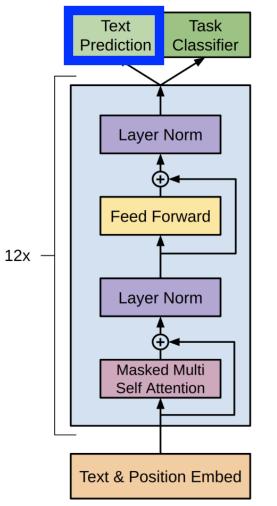
Auxiliary function improves performance

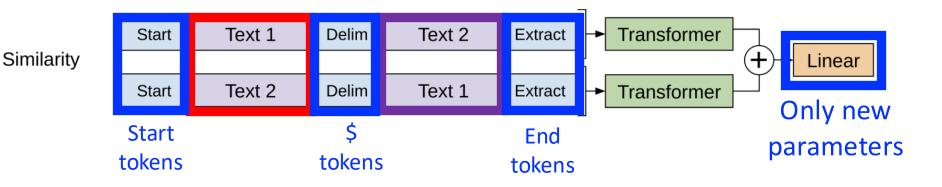


Auxiliary function improves performance



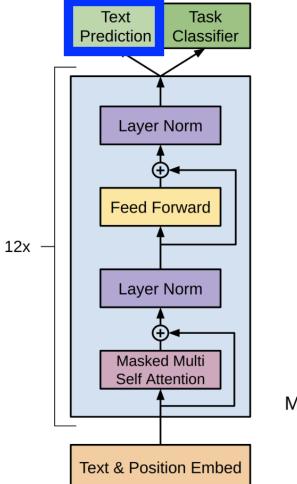
Auxiliary function improves performance



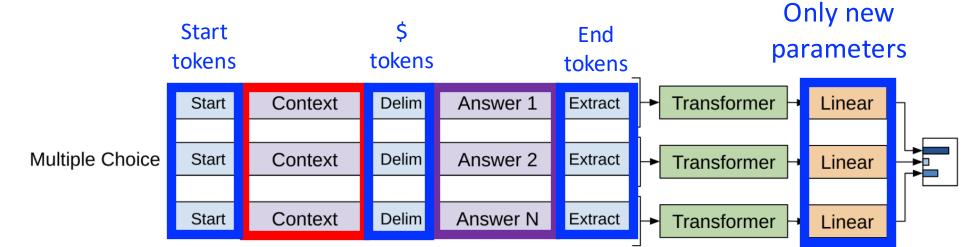


Supervised training to decide if two sentences are similar (given no inherent ordering of the two sentences, both orders are used)

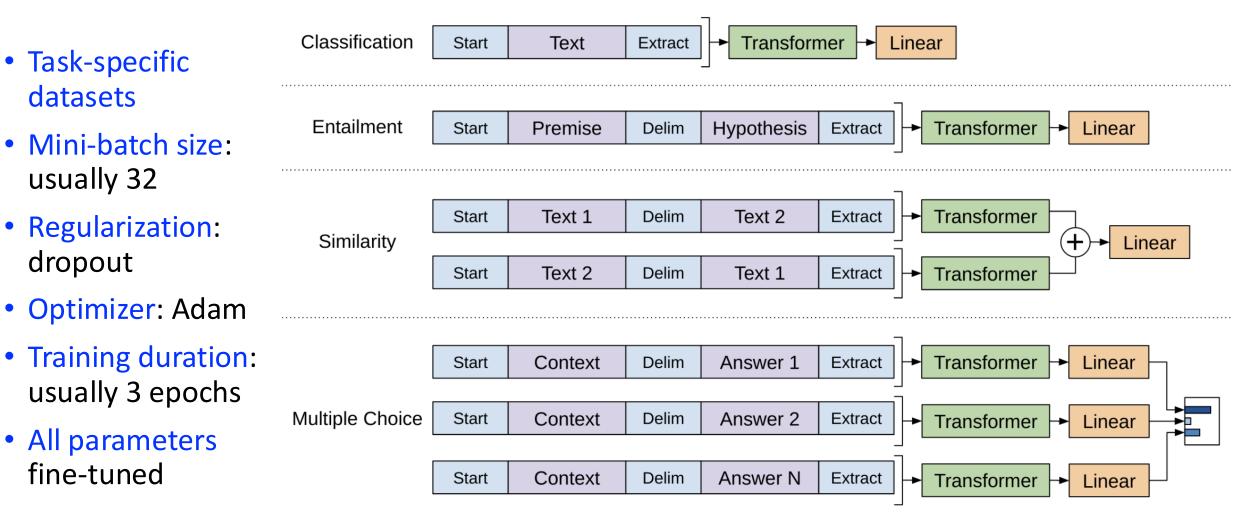
Auxiliary function improves performance



Supervised training to decide which answer results from the context (e.g., question about a document, concatenated); softmax layer generates probabilities for all options



Fine-Tuning to Target Tasks (Softmax Output): **Discriminative** (Instead of Generative)



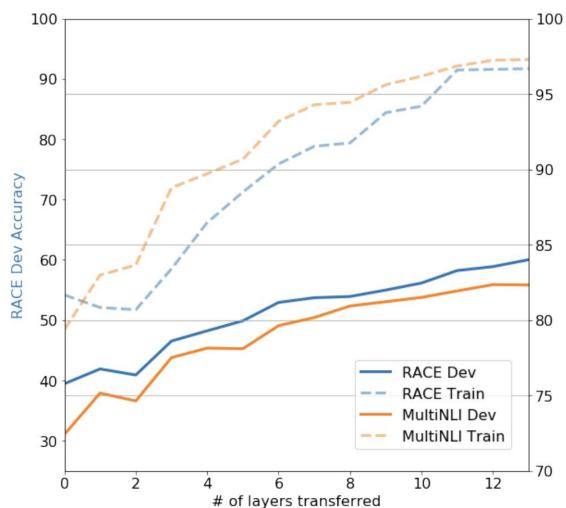
Experimental Findings

Achieved state-of-the-art performance on 9 of 12 tested NLP dataset challenges

Experimental Findings: Importance of Design Decisions?

• How many pretrained layers should be used for fine-tuning?

• All



Experimental Findings: Importance of Design Decisions?

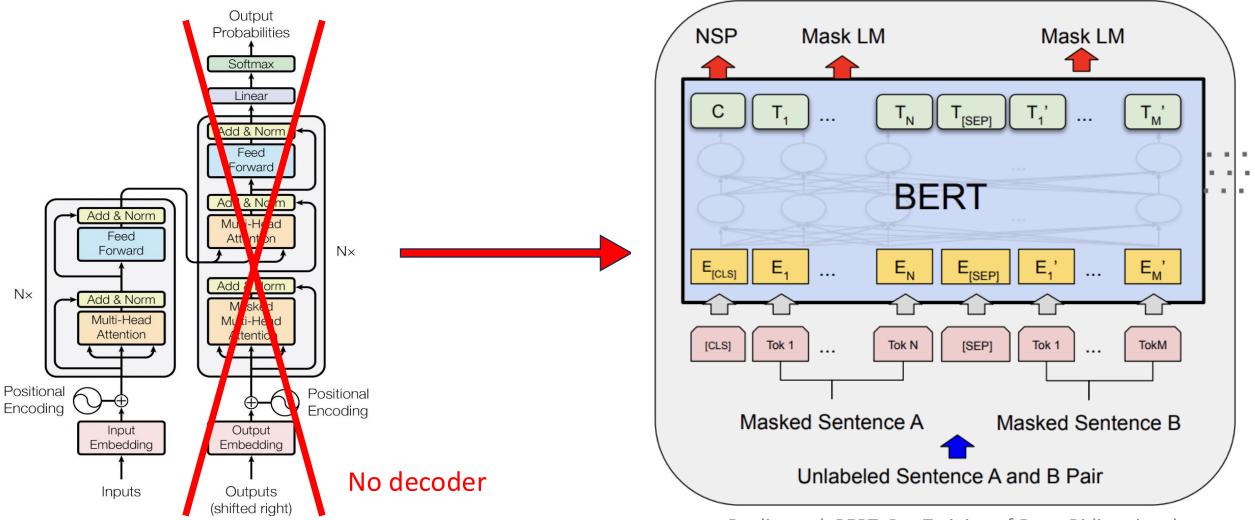
- How many pretrained layers should be used for fine-tuning? All
- Does pre-training help?
- Does the auxiliary language modeling task for fine-tuning help?
- Does using a transformer rather than LSTM help?

Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training Transformer w/o aux LM LSTM w/ aux LM	59.9 75.0 69.1	18.9 47.9 30.3	84.0 92.0 90.5	79.4 84.9 83.2	30.9 83.2 71.8	65.5 69.8 68.1	75.7 81.1 73.7	71.2 86.9 81.1	53.8 54.4 54.6

Today's Topics

- Explosion of transformers
- GPT
- BERT
- ViT
- Programming tutorial

Architecture: Encoder of Pioneering Transformer



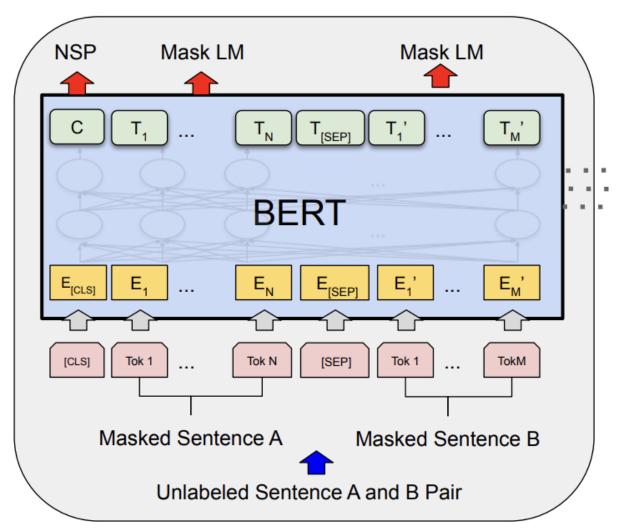
Vaswani et al. Attention Is All You Need. Neurips 2017.

Devlin et al. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. ACL 2019.

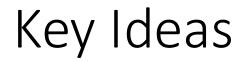
Architecture: Minor Tweaks

Like GPT, makes these changes:

- GELU activation functions in feedforward layers
- Subword tokenization (with WordPiece)



Devlin et al. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. ACL 2019.



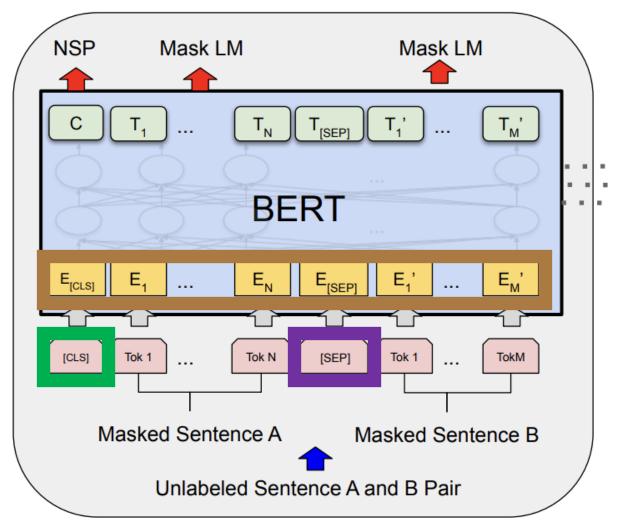
- Support diverse inputs: special tokens and embeddings
- Learn good representations for downstream tasks: pretraining objective functions
- Make learning feasible: self-supervised pre-training
- Fine-tune pretrained models for downstream tasks with little architectural change

- Support diverse inputs: special tokens and embeddings
- Learn good representations for downstream tasks: pretraining objective functions
- Make learning feasible: self-supervised pre-training
- Fine-tune pretrained models for downstream tasks with little architectural change

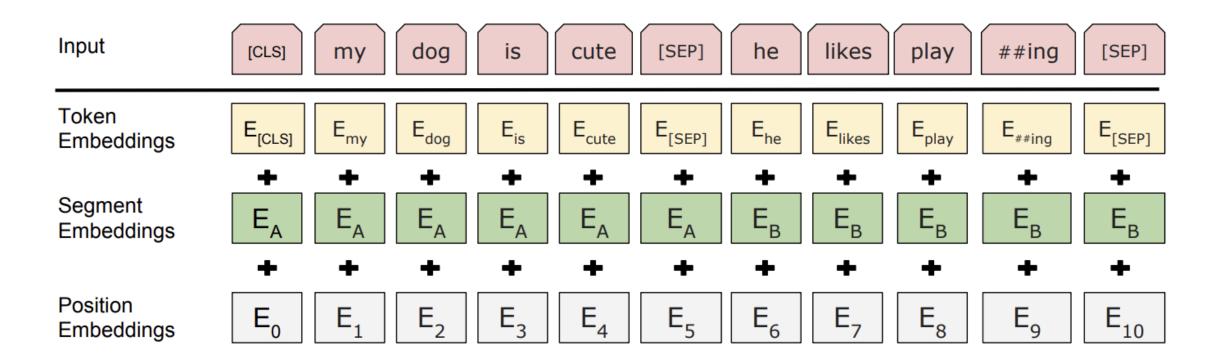
Architecture: Input Tokens

Augment 30,000 tokens from tokenizer with:

- CLS: representation of ENTIRE input (like GPT fine-tuned end token)
- SEP: separates two input sequences (like GPT fine-tuned delimiter token)
 Token embeddings created from the embedding matrix learned during training



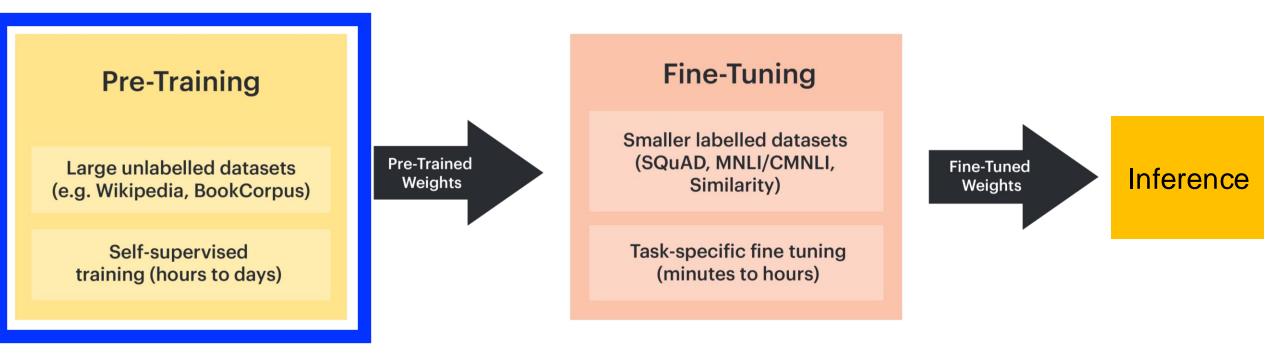
Architecture: Input to Transformer



As before, embedding matrices are learned during training; the novel segment embedding signifies to which of two sentences a token belongs

- Support diverse inputs: special tokens and embeddings
- Learn good representations for downstream tasks: pretraining objective functions
- Make learning feasible: self-supervised pre-training
- Fine-tune pretrained models for downstream tasks with little architectural change

BERT: Bidirectional Encoder Representation from Transformer



https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

Idea: Choose a Pretraining Task That Is **Not Unidirectional**

GPT's prediction of the next word given previous ones is unidirectional (left-to-right)

- 1. Background music from a _____
- 2. Many people danced around the _____
- 3. I practiced for many years to learn how to play the _____

Two Tasks

- 1. Predict masked token (key contribution)
- 2. Predict if one sentence follows a second sentence (augments understanding of how sentences relate)

Task 1: Predict Masked Token (aka, Cloze Task) Feed forward network softmax R_{love} R_{Paris} R_{[SEP} $R_{\text{beautiful}} R_{\text{[MASK]}} R_{\text{[SEP]}} R_{\text{I}}$ $R_{[CLS]}$ R_{Paris} R_{is} R_{a} Modifies 15% of random tokens in each input: - for 80%, uses mask token Encoder 12 - for 10%, uses random token - for 10%, uses original token Encoder 3 Encoder 2 (Latter 20% mitigate learning which are masked tokens, forcing model to Encoder 1 understand EVERY input token)

is

а

[CLS] Paris

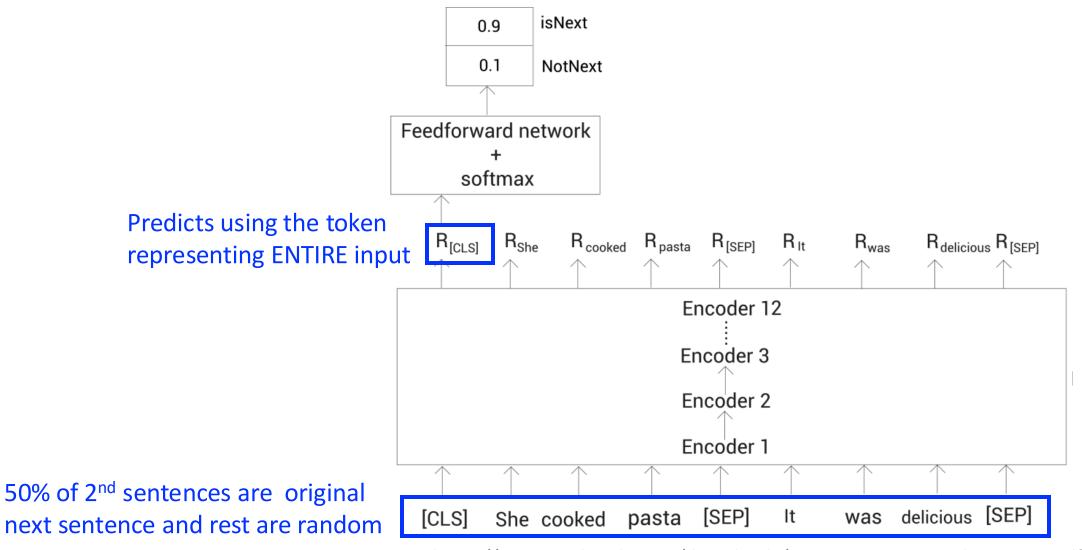
https://static.packt-cdn.com/downloads/9781838821593_ColorImages.pdf

beautiful [MASK] [SEP]

Paris [SEP]

love

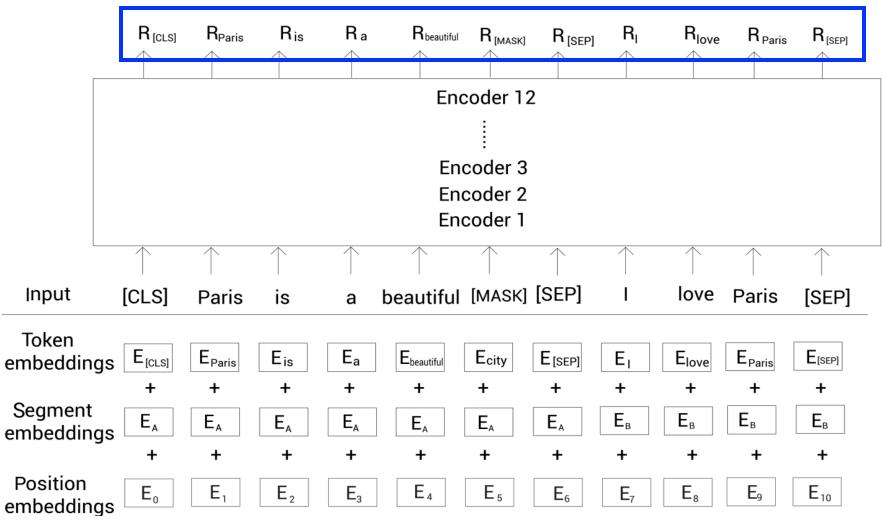
Task 2: Predict if Next Sentence Task



https://static.packt-cdn.com/downloads/9781838821593_ColorImages.pdf

Bidirectional Encoder Representation

Representations of ENTIRE context



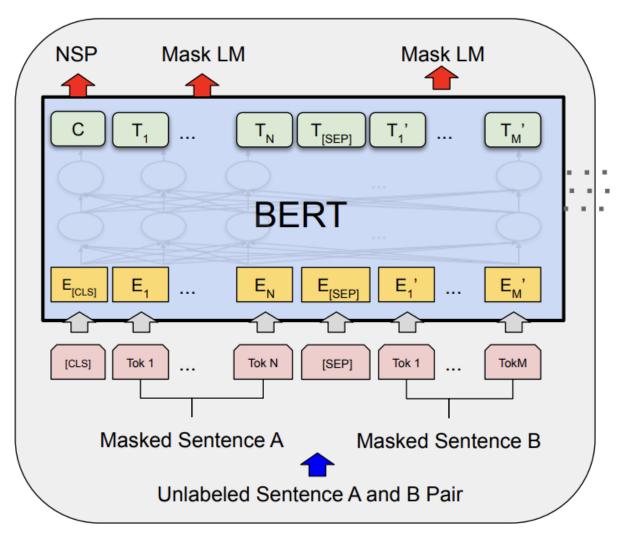
https://static.packt-cdn.com/downloads/9781838821593_ColorImages.pdf

Key Ideas

- Support diverse inputs: special tokens and embeddings
- Learn good representations for downstream tasks: pretraining objective functions
- Make learning feasible: self-supervised pre-training
- Fine-tune pretrained models for downstream tasks with little architectural change

Training

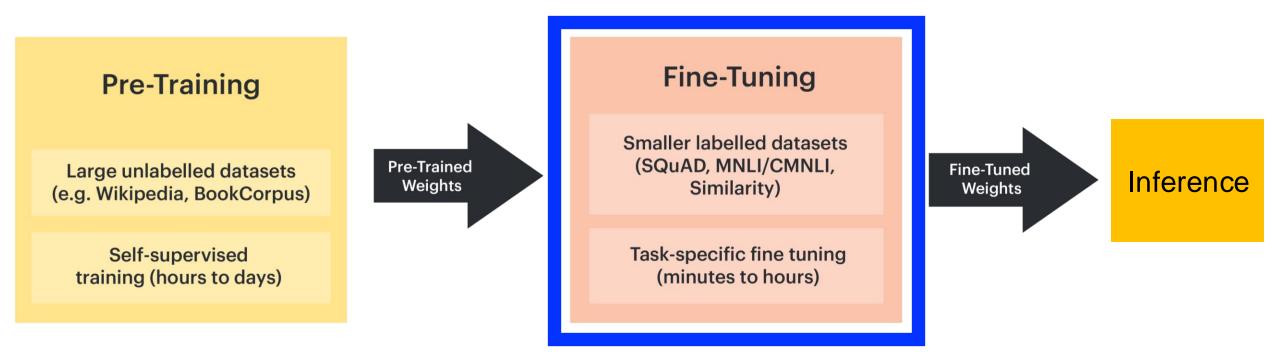
- Dataset: 800M words in BooksCorpus (>7,000 unpublished books) and 2.5B words in English Wikipedia
- Training duration: ~40 epochs, spanning 4 days on 64 TPUs)
- Mini-batch size: 256 sequences (two "sentences") of 128 tokens for 90% of epochs and then 512 tokens
- Regularization: dropout & L2 norm penalty
- Optimizer: Adam



Key Ideas

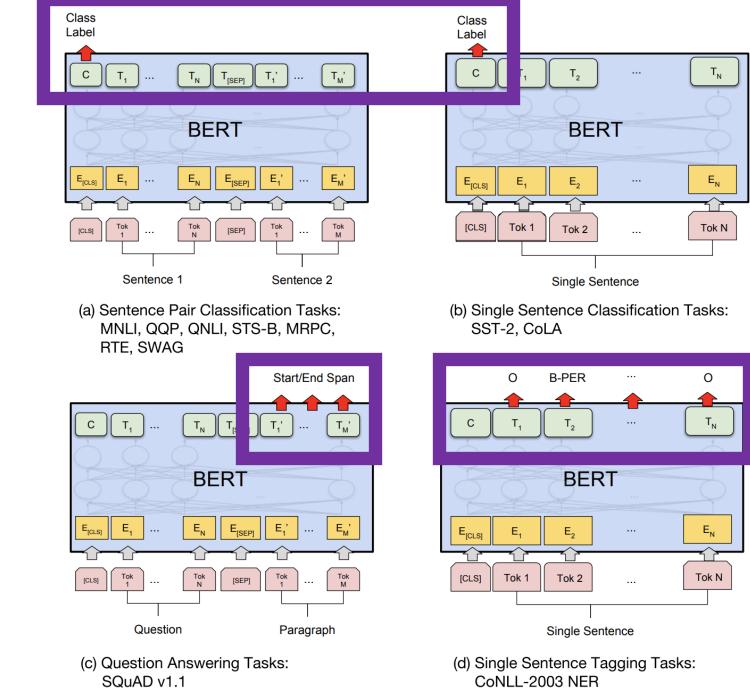
- Support diverse inputs: special tokens and embeddings
- Learn good representations for downstream tasks: pretraining objective functions
- Make learning feasible: self-supervised pre-training
- Fine-tune pretrained models for downstream tasks with little architectural change

BERT: Bidirectional Encoder Representation from Transformer

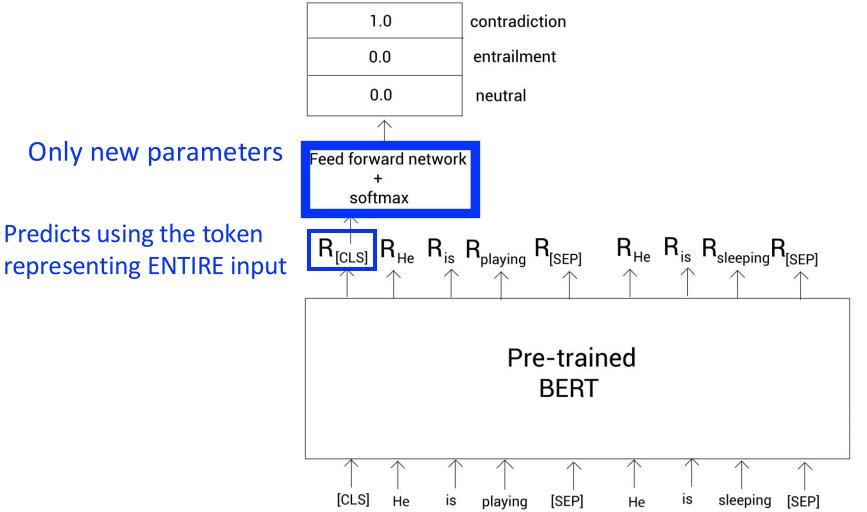


https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

Fine-Tuning to Target Tasks: 3 Types



Fine-Tuning for Classification; e.g., Natural Language Inference



https://static.packt-cdn.com/downloads/9781838821593_ColorImages.pdf

Fine-Tuning for Question Answering Probability of start/end word Dot product **Only new parameters** softmax $R_{what \dots} R_{system} R_{[SEP]}$ $R'_{[SEP]}$ R'_{the} R'immune R'_{tissue} R_[CLS] Predicts indices of start and end words in the input paragraph Pre-trained - dot product of two learned vector BERT representations with each input token [SEP] the immune tissue [SEP] What [CLS] system

https://static.packt-cdn.com/downloads/9781838821593_ColorImages.pdf

paragraph

question

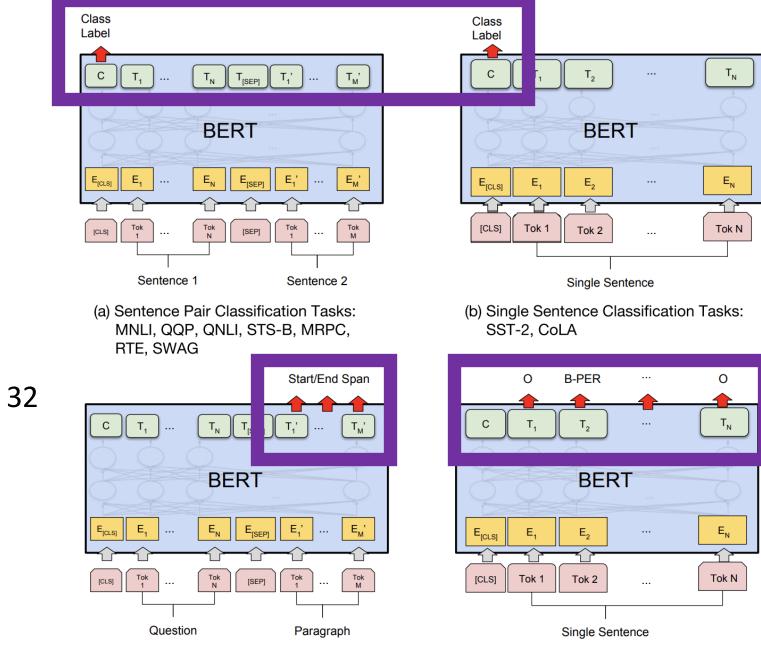
Fine-Tuning for Single Sentence Tagging



https://static.packt-cdn.com/downloads/9781838821593_ColorImages.pdf

Fine-Tuning to Target Tasks: 3 Types

- Task-specific datasets
- Mini-batch size: usually 16 or 32
- Regularization: dropout
- Optimizer: Adam
- Training duration: ~3 epochs (i.e., ~1 hour on 1 TPU)
- All parameters fine-tuned



(c) Question Answering Tasks: SQuAD v1.1 (d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Experimental Findings

Achieved state-of-the-art performance on 11 tested NLP tasks

Experimental Findings: Importance of Design Decisions?

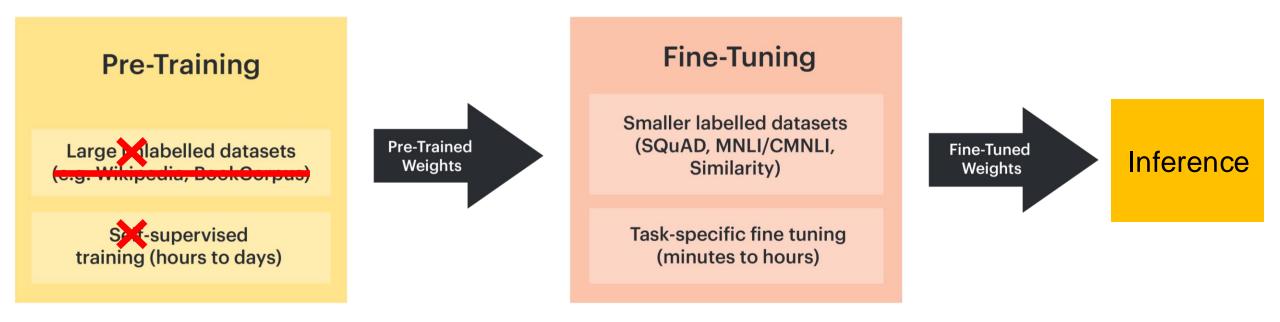
- Does including next sentence prediction in pretraining help?
 - Yes
- Does including masked token prediction in pretraining help? (uses GPT's left-to-right approach instead)
 - Yes; worse results from unidirectional than bidirectional pretraining

	Dev Set				
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)
BERT _{BASE}	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8

Today's Topics

- Explosion of transformers
- GPT
- BERT
- ViT
- Programming tutorial

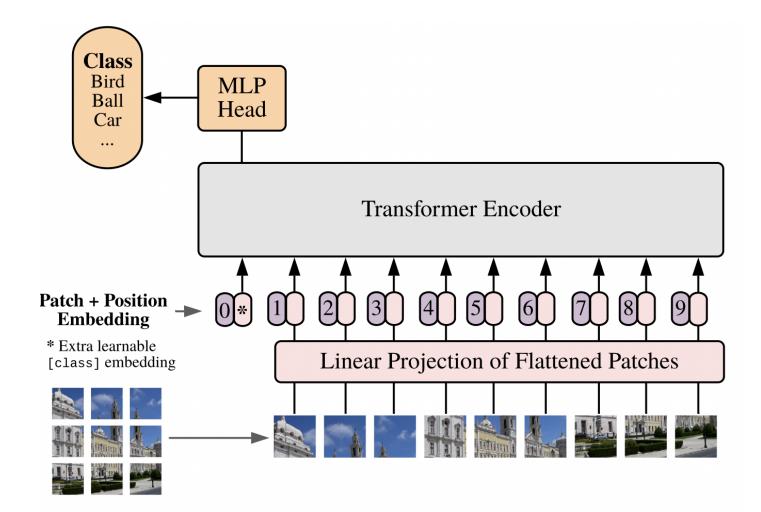
ViT: Vision Transformer



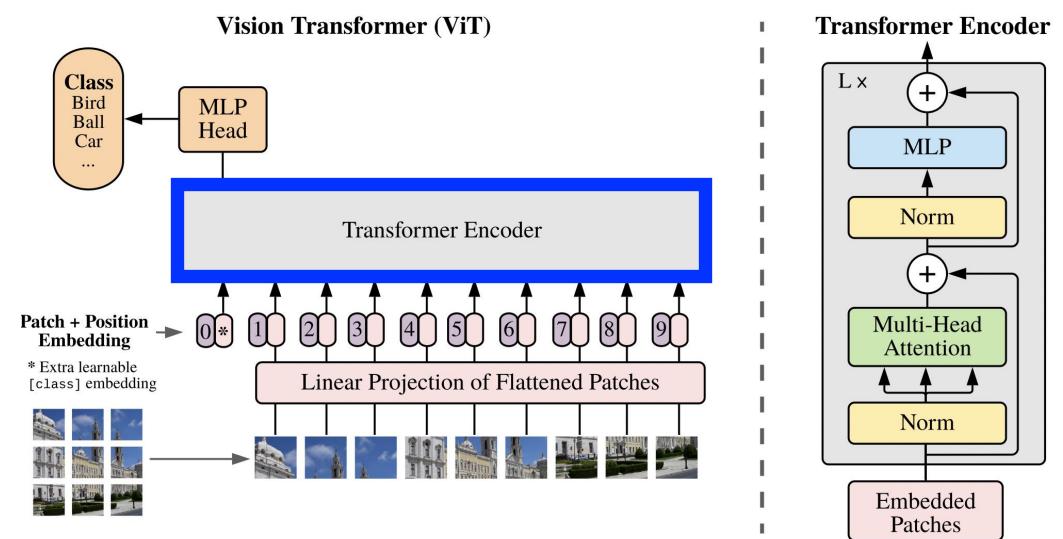
(self-supervised masked prediction deemed inferior to supervised learning)

https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

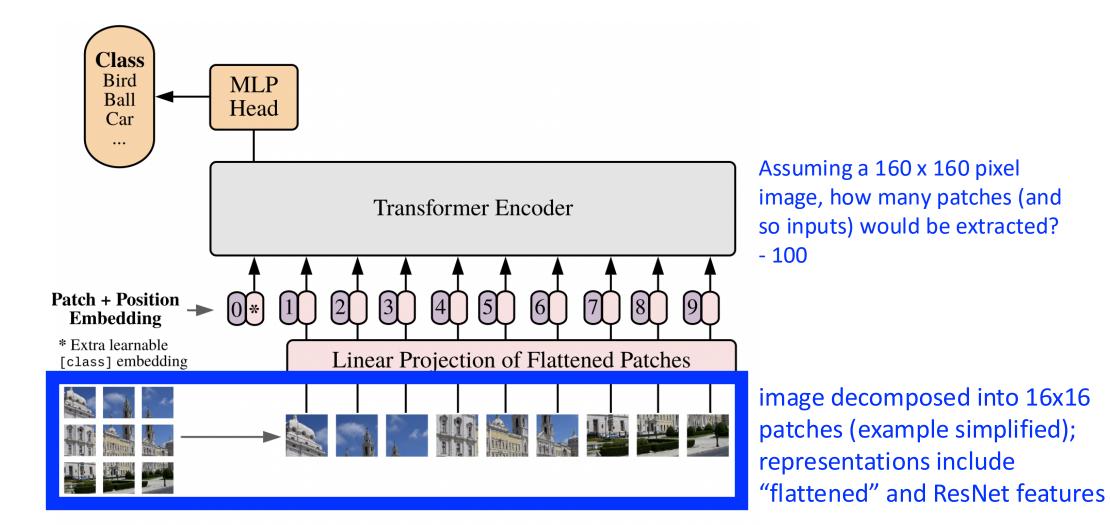
Architecture



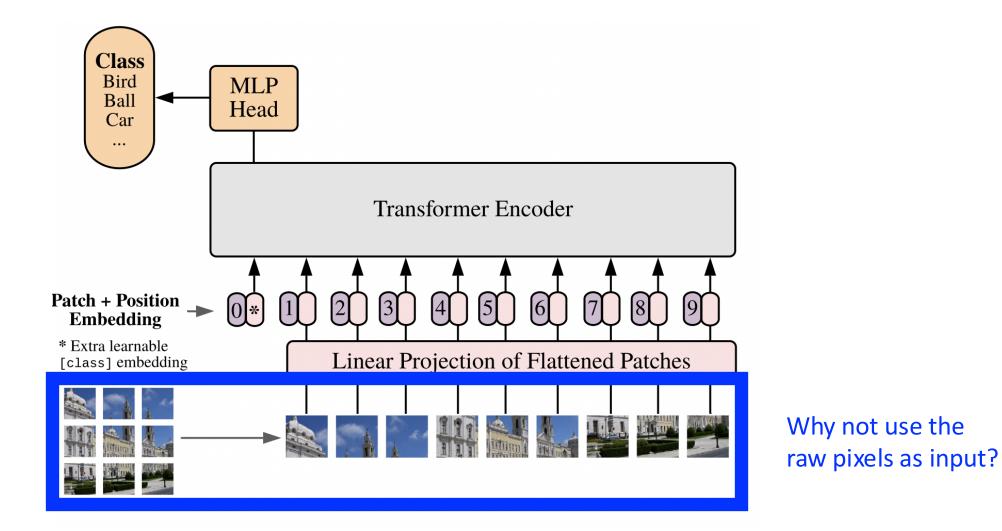
Architecture: BERT



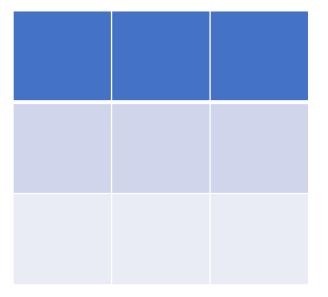
Architecture: Input (Patches Instead of Pixels)



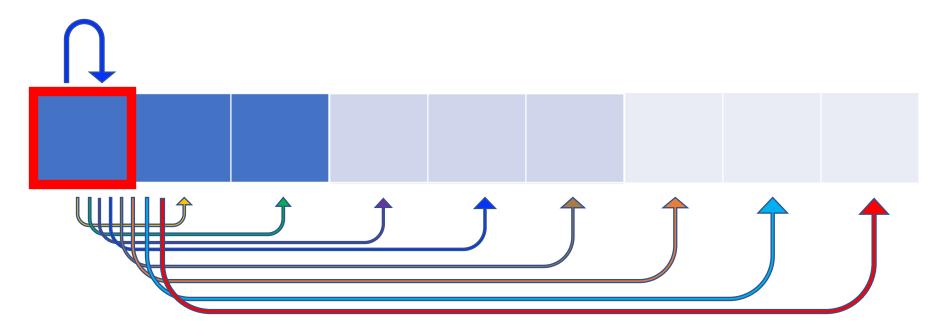
Architecture: Input (Patches Instead of Pixels)



New representation of each pixel showing its relationship to all pixels; e.g., assume this 3x3 image

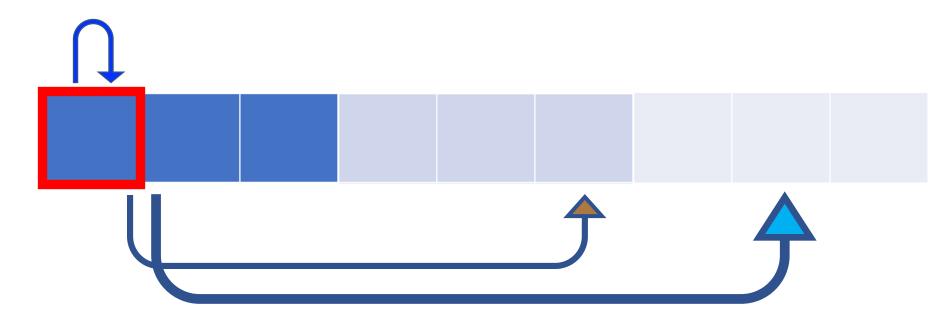


New representation of each pixel showing its relationship to all pixels; e.g., assume this 3x3 image



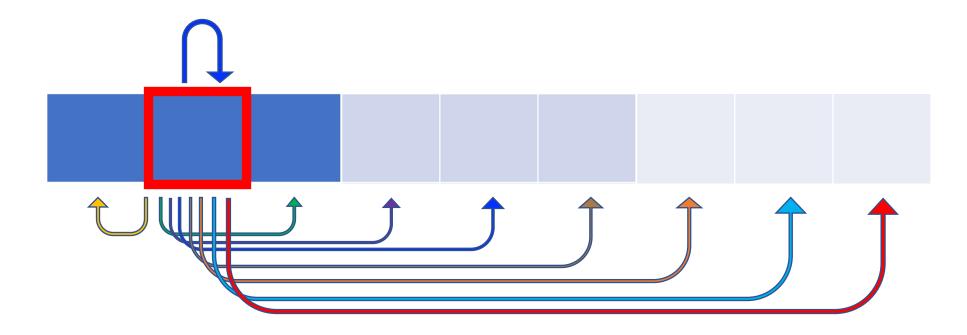
Learned new representation indicates which global information clarifies a pixel's meaning (e.g., include in the representation of a pixel of an eye context of what animal it belongs to)

New representation of each pixel showing its relationship to all pixels; e.g., assume this 3x3 image



Learned new representation indicates which global information clarifies a pixel's meaning (e.g., include for representation of an eye pixel context of what animal it belongs to)

New representation of each pixel showing its relationship to all pixels; e.g., assume this 3x3 image



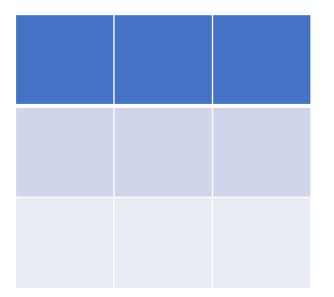
New representation of each pixel showing its relationship to all pixels; e.g., assume this 3x3 image

And so on for remaining image pixels...

Rationale for Patches: Computational Cost of Self-Attention

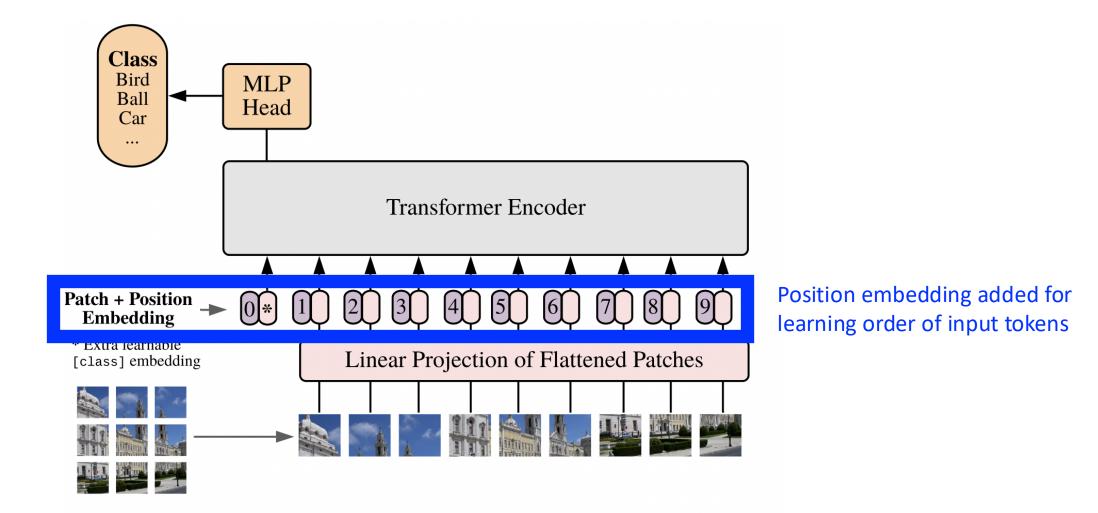
e.g., instead of using 3x3 image, what if a 1920 x 1080 image was used? How many selfattention computations would be needed?

- (1920 x 1080)² = 4,299,816,960,000 (i.e., ~4.3 trillion)

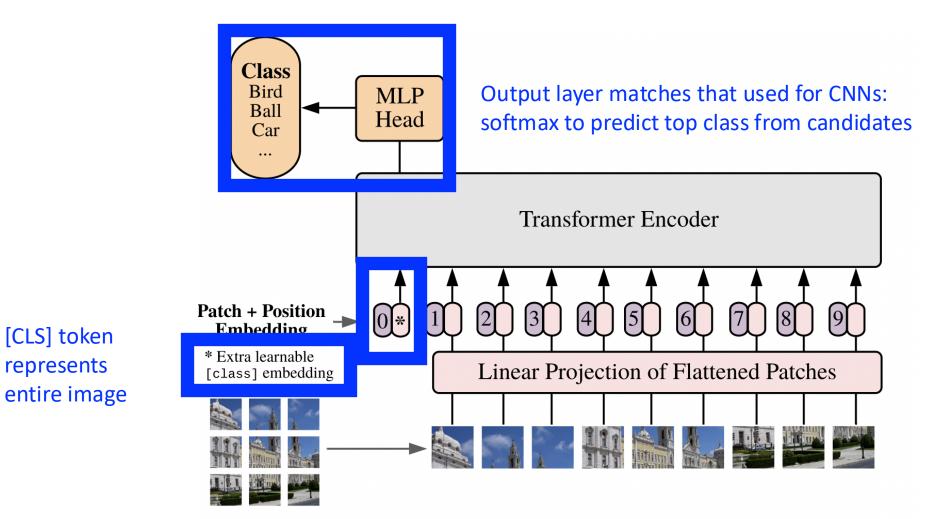


Quadratic cost of self-attention is often impractical for pixels!

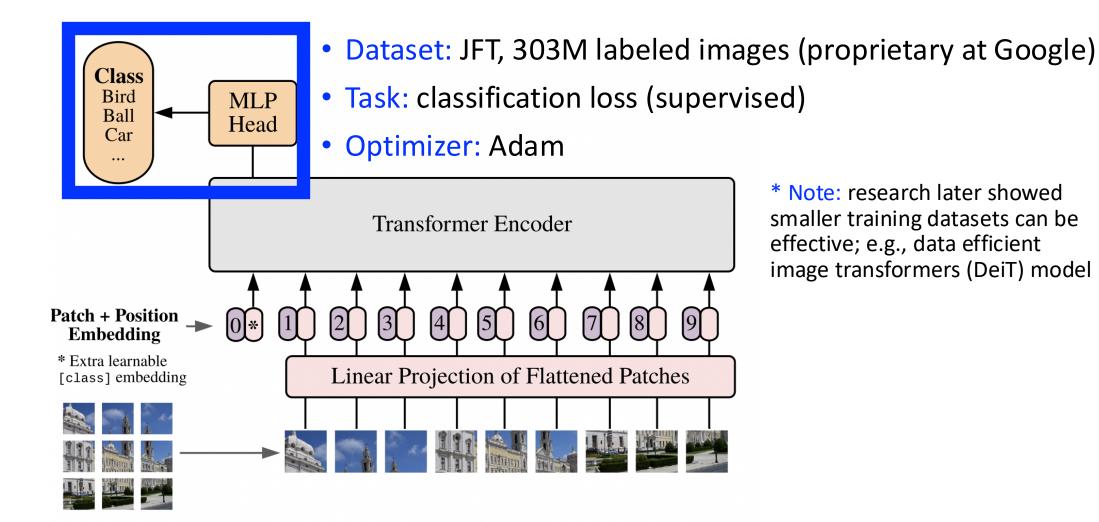
Architecture: Input Position Embedding



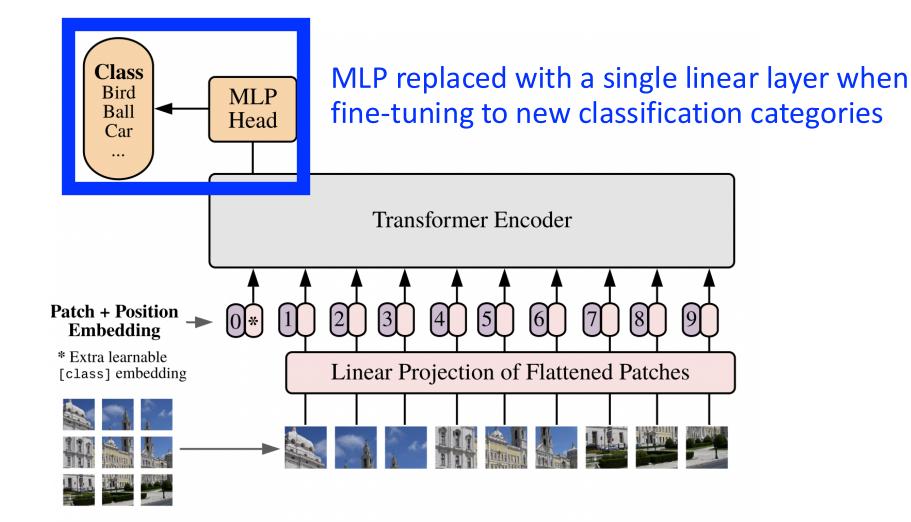
Architecture: Classification with CLS Token



Pre-Training



Fine-Tuning for Other Image Classification Tasks

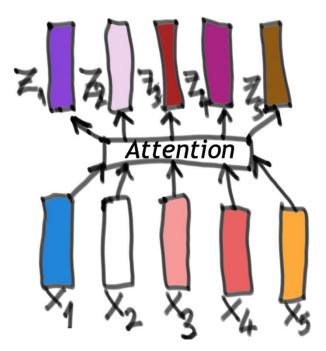


Experimental Findings

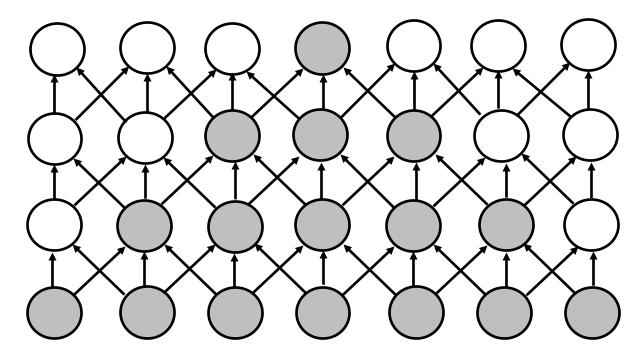
Achieved strong results on five image classification datasets

Transformers vs CNNs

Self-attention: each layer has a global receptive field



https://towardsdatascience.com /self-attention-5b95ea164f61 Convolutional layers: deeper layers have increasingly more global receptive fields



https://www.deeplearningbook. org/contents/convnets.html

Today's Topics

- Explosion of transformers
- GPT
- BERT
- ViT
- Programming tutorial

Today's Topics

- Explosion of transformers
- GPT
- BERT
- ViT
- Programming tutorial

