
Transformer Basics

Danna Gurari
University of Colorado Boulder

Spring 2025

https://dannagurari.colorado.edu/course/neural-networks-and-deep-learning-spring-2025/

Review

• Last week:
• Motivation: machine neural translation for long sentences
• Encoder
• Decoder: attention
• Performance evaluation
• Final project: ways to find a partner

• Assignments (Canvas):
• Lab assignment 2 due Tuesday

• Questions?

Today’s Topics

• Transformer overview

• Self-attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

Today’s Topics

• Transformer overview

• Self-attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

Goal: Model Sequential Data (Recall RNN)

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Each hidden state is a function of the previous hidden state

Problem: RNNs Use Sequential Computation

RNNs struggle to carry information through hidden states
across many time steps and train/testing is slow

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Idea: Model Sequential Data Without Recurrence

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Replace sequential hidden states for capturing knowledge of other inputs with a new
representation of each input that shows its relationship to all other inputs (i.e., self-attention)

Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Arrow thickness is indicative of attention weight

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

A large attention score means the other word will
strongly inform the new representation of the word

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Transformer Intuition

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

What does bank mean in this sentence?

Transformer Intuition

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

What does bank mean in this sentence?
- new word representation disambiguates meaning by identifying other relevant words
(e.g., high attention score with “river”)

vs

Transformer vs RNN (Intuition)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Meaning depends on other input words

Transformer vs RNN (Intuition)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Meaning depends on other input words

Transformer: A Suggested Definition

“Any architecture designed to process a connected
set of units—such as the tokens in a sequence or
the pixels in an image—where the only interaction
between units is through self-attention.”

http://peterbloem.nl/blog/transformers

Historical Context: Pioneering Transformer
Fi

rs
t

p
ro

gr
am

m
ab

le
 m

ac
h

in
e

Tu
ri

n
g

te
st

1945
A

I
1950

Pe
rc

ep
tr

o
n

M
ac

h
in

e
 le

ar
n

in
g

Today’s Topics

• Transformer overview

• Self-attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens

https://towardsdatascience.com/self-attention-5b95ea164f61

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

And so on for remaining words…

Self-Attention: Disambiguates Word Meanings

A better representation of “she” would
encode information about “Rashonda”

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

Self-Attention: Disambiguates Word Meanings

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Recall: a better representation of “bank”
would encode information about “river”

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

I arrived at the bank across the river

Self-Attention vs General Attention

Input Target

General attention
Relates tokens from different sources

Self-attention
Relates tokens from the same source

t=1

Computing Self-Attention: Similar Approach
to How We Compute General Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Key difference 1: input for self-attention

Key difference 2: attention
score multiplied with a value
derived from the input

Weighted sum of values
New representation of each input token to
reflect each one’s relationship to all tokens

Input tokens

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

- How many input tokens are there?
- What is each token’s dimensionality?
- How to support arbitrary length inputs?
 * Input length is a hyperparameter: pad shorter sequences with zeros and truncate longer sequences

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Input Length: Implementation

• [PAD] tokens with attention set to 0 enables variable input length

http://juditacs.github.io/2018/12/27/masked-attention.html

Computing Self-Attention: Example

Three vectors are derived for
each input by multiplying
with three weight matrices
(learned during training):
query, key, and value

Query 2:Query 1: Query 3:

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

e.g., key weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

x x x

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

e.g., value weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

x x x

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

e.g., query weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Query 2:Query 1: Query 3:

How many weight matrices
are learned in this example?

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Query 2:Query 1: Query 3:

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

What is the purpose of the
three weight matrices?

For each input, 2 of the
derived vectors are used to
compute attention weights
(query and key) and the 3rd is
information passed on for the
new representation (value)

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Let’s compute the new
representation for the inputs…

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 0

1

1

x = ?

Attention score: dot product of
query (“what am I looking for”)
with all keys (“what I have”) to
identify relevant tokens (higher
scores are better matches); e.g.,

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 4

4

0

x = ?

Attention score: dot product of
query (“what am I looking for”)
with all keys (“what I have”) to
identify relevant tokens (higher
scores are better matches); e.g.,

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 2

3

1

x = ?

Attention score: dot product of
query (“what am I looking for”)
with all keys (“what I have”) to
identify relevant tokens (higher
scores are better matches); e.g.,

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

Why dot product? Indicates
similarity of two vectors
- Match = 1 (i.e., cos(0))
- Opposites = -1 (i.e., cos(180))

https://towardsdatascience.com/
self-attention-5b95ea164f61

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

Recall: there are many
compatibility measures

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

= softmax([2, 4, 4])

= [0.0, 0.5, 0.5])

Attention weights: softmax
scores for all inputs to quantify
each token’s relevance; e.g.,

0.0 0.5 0.5

To which input(s) is input 1
least related?

To which input(s) is input 1
most related?

Note: 0 from softmax
can arise from rounding

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5

Compute new representation
of input token that reflects
entire input:

1. Attention weights x Values

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5

Compute new representation
of input token that reflects
entire input:

1. Attention weights x Values

2. Sum all weighted vectors

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

2.0 7.0 1.5

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5Attention weights amplify
input representations (values)
that we want to pay attention
to and repress the rest

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

2.0 7.0 1.5

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5Attention weights amplify
input representations (values)
that we want to pay attention
to and repress the rest

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

2.0 7.0 1.5

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Repeat the same process for
each remaining input token

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:

1. Compute attention weights
- Softmax resulting 3 scores

from query x keys

0.0 1.0 0.0

To which input(s) is input 2
most related?

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:

1. Compute attention weights
- Softmax resulting 3 scores

from query x keys

2. Compute weighted sum of
values using attention scores

0.0 1.0 0.0

0.0 0.0 0.0 2.0 8.0 0.0 0.0 0.0 0.0

2.0 8.0 0.0

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Repeat the same process for
each remaining input token

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 3:

1. Compute attention weights
- Softmax resulting 3 scores

from query x keys

0.0 0.9 0.1

To which input(s) is input 3
most related?

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

0.0 0.9 0.1

0.0 0.0 0.0 1.8 7.2 0.0 0.2 0.6 0.3

2.0 7.8 0.3

1. Compute attention weights
- Softmax resulting 3 scores

from query x keys

2. Compute weighted sum of
values using attention scores Query 3:

Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

2.0 7.8 0.32.0 8.0 0.02.0 7.0 1.0

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Hyperparameters

A developer chooses input token
length and number of matrices’
columns (and thus vector sizes)

Dimension of query and key must match
to assess similarity (e.g., dot product).

Dimension of value can differ from that of
query and key and is output dimension.

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

2.0 7.8 0.32.0 8.0 0.02.0 7.0 1.0

Query 2:Query 1: Query 3:

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

http://jalammar.github.io/illustrated-transformer/

Each row is an
input token:

Step 1

Efficient Computation for Self-Attention

Each row is a query

Each row is a key

Each row is a value

Step 2Step 1

Implementation detail: scaling
down the size helps preserve
gradients needed for training; k is
dimensionality of the key vector

Efficient Computation for Self-Attention

http://jalammar.github.io/illustrated-transformer/

Multi-head Attention

• Goal: enable each token to relate
to other tokens in multiple ways

• Key idea: multiple self-attention
mechanisms, each with their own
key, value and query matrices

https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L19_seq2seq_rnn-transformers__slides.pdf

Multi-head Attention

1) Create query, key, and value
vectors for all attentions heads

2) Compute new
input representations

3) Condense all representations
into a single representation by
concatenating z-s and
multiplying by a weight matrix

http://jalammar.github.io/illustrated-transformer/

Trained Multi-head Attention Examples

Figure shows two columns of attention weights
for the first two attention heads

- Darker values signify larger attention scores

What does “it” focus on most in the first
attention head?

- The animal (e.g., represents what is “it”)

What does “it” focus on most in the second
attention head?

- tired (e.g., represents how “it” feels); note, a
tokenizer was used that separates “tire” and “d”

http://jalammar.github.io/illustrated-transformer/

Trained Multi-head Attention Examples

Figure shows five columns of attention weights
for five attention heads

- Darker values signify larger attention scores

Attention weights may be hard to interpret

http://jalammar.github.io/illustrated-transformer/

Self-Attention vs RNN: Propagates Information
About Other Inputs Without Recurrent Units

http://www.wildml.com/2015/09/recurrent-neural-
networks-tutorial-part-1-introduction-to-rnns/

https://towardsdatascience.com/self-attention-5b95ea164f61

Today’s Topics

• Transformer overview

• Self-attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

http://peterbloem.nl/blog/transformers

Typical Transformer Block

Architectures often chain together multiple
transformer blocks, like that shown here

Typical Transformer Block

Layer normalization and residual connections
improve training (i.e., faster and better results)

http://peterbloem.nl/blog/transformers

Typical Transformer Block

Feedforward layer per input

http://peterbloem.nl/blog/transformers

Typical Transformer Block

Where are non-linearities introduced in this block?
- self-attention’s softmax, MLP’s activation functions, layer norms

http://peterbloem.nl/blog/transformers

Challenge: Transformers Lack Sensitivity
to the Order of the Input Tokens

Input: a set and so shuffling order of input tokens results
yields same outputs except in the same shuffled order
(i.e. self-attention is permutation equivariant)

http://peterbloem.nl/blog/transformers

Solution: Add Position as Input to Transformer

• Options:
• Position embeddings: created by training with sequences of every length during training

• Position encodings: a function mapping positions to vectors that the network learns to
interpret (enables generalization to lengths not observed during training)

http://jalammar.github.io/illustrated-transformer/

Today’s Topics

• Transformer overview

• Self-attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

Target Application: Machine Translation

http://jalammar.github.io/illustrated-transformer/

Input tokenized into words and then the model learns an
embedding matrix to convert words to the target embedding size

http://jalammar.github.io/illustrated-transformer/

Example: Autoregressive Model

Architecture

• Key Ingredient: Self-Attention
• Used in both the encoder (provides context

 for translation) and decoder (translates)

• Other ingredients
• Positional encoding

• Layer normalization

• Residual connections

• Feed forward layers

• Nx = 6 chained blocks (encoder & decoder)

Vaswani et al. Attention Is All You Need. Neurips 2017

Architecture

Vaswani et al. Attention Is All You Need. Neurips 2017

Decoder can attend to all inputs via cross-attention
(i.e., keys and values come from the encoder and
query comes from the decoder)

Vaswani et al. Attention Is All You Need. Neurips 2017

Masking so decoder ONLY sees earlier predictions
(i.e., masked values set to –infinity so softmax output is 0)

https://stackoverflow.com/question
s/64799622/how-is-the-gpts-
masked-self-attention-is-utilized-
on-fine-tuning-inference

e.g., at start, no previous inputs

Query x Key

e.g., at 3rd step, two previous inputs

Architecture

Training Procedure: 3.5 days on 8 NVIDIA P100s

• Repeat until stopping criterion met:

1. Forward pass: propagate
training data through model
to make predictions

2. Error quantification:
measure error of the
model’s predictions on
training data using a loss
function

3. Backward pass: calculate
gradients to determine how
each model parameter
contributed to model error

4. Update each parameter
using calculated gradients

Baydin et al. Automatic Differentiation in Machine Learning: a Survey. 2018

For two tested datasets, achieved state-of-the-art performance:
(1) English-German, with ~4.5 million sentence pairs (byte-pair encoded)
(2) English-French, with 36M sentences

Today’s Topics

• Transformer overview

• Self-attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

Today’s Topics

• Transformer overview

• Self-attention

• Common transformer ingredients

• Pioneering transformer: machine translation

• Programming tutorial

	Slide 1: Transformer Basics
	Slide 2: Review
	Slide 4: Today’s Topics
	Slide 5: Today’s Topics
	Slide 6: Goal: Model Sequential Data (Recall RNN)
	Slide 7: Problem: RNNs Use Sequential Computation
	Slide 8: Idea: Model Sequential Data Without Recurrence
	Slide 9: Transformer Key Idea: Self-Attention
	Slide 10: Transformer Key Idea: Self-Attention
	Slide 11: Transformer Key Idea: Self-Attention
	Slide 12: Transformer Intuition
	Slide 13: Transformer Intuition
	Slide 14: Transformer vs RNN (Intuition)
	Slide 15: Transformer vs RNN (Intuition)
	Slide 16: Transformer: A Suggested Definition
	Slide 17: Historical Context: Pioneering Transformer
	Slide 18: Today’s Topics
	Slide 19: Self-Attention: Outcome
	Slide 20: Self-Attention: Outcome
	Slide 21: Self-Attention: Outcome
	Slide 22: Self-Attention: Outcome
	Slide 23: Self-Attention: Disambiguates Word Meanings
	Slide 24: Self-Attention: Disambiguates Word Meanings
	Slide 25: Self-Attention vs General Attention
	Slide 26: Computing Self-Attention: Similar Approach to How We Compute General Attention
	Slide 27: Computing Self-Attention: Example
	Slide 28: Computing Self-Attention: Example
	Slide 29: Input Length: Implementation
	Slide 30: Computing Self-Attention: Example
	Slide 31: Computing Self-Attention: Example
	Slide 32: Computing Self-Attention: Example
	Slide 33: Computing Self-Attention: Example
	Slide 34: Computing Self-Attention: Example
	Slide 35: Computing Self-Attention: Example
	Slide 36: Computing Self-Attention: Example
	Slide 37: Computing Self-Attention: Example
	Slide 38: Computing Self-Attention: Example
	Slide 39: Computing Self-Attention: Example
	Slide 40: Computing Self-Attention: Example
	Slide 41: Computing Self-Attention: Example
	Slide 42: Computing Self-Attention: Example
	Slide 43: Computing Self-Attention: Example
	Slide 44: Computing Self-Attention: Example
	Slide 45: Computing Self-Attention: Example
	Slide 46: Computing Self-Attention: Example
	Slide 47: Computing Self-Attention: Example
	Slide 48: Computing Self-Attention: Example
	Slide 49: Computing Self-Attention: Example
	Slide 50: Computing Self-Attention: Example
	Slide 51: Computing Self-Attention: Example
	Slide 52: Computing Self-Attention: Example
	Slide 53: Computing Self-Attention: Example
	Slide 54: Hyperparameters
	Slide 55: Efficient Computation for Self-Attention
	Slide 56: Efficient Computation for Self-Attention
	Slide 57: Multi-head Attention
	Slide 58: Multi-head Attention
	Slide 59: Trained Multi-head Attention Examples
	Slide 60: Trained Multi-head Attention Examples
	Slide 61: Self-Attention vs RNN: Propagates Information About Other Inputs Without Recurrent Units
	Slide 62: Today’s Topics
	Slide 63: Typical Transformer Block
	Slide 64: Typical Transformer Block
	Slide 65: Typical Transformer Block
	Slide 66: Typical Transformer Block
	Slide 67: Challenge: Transformers Lack Sensitivity to the Order of the Input Tokens
	Slide 68: Solution: Add Position as Input to Transformer
	Slide 69: Today’s Topics
	Slide 70
	Slide 71: Target Application: Machine Translation
	Slide 72: Example: Autoregressive Model
	Slide 73: Architecture
	Slide 74: Architecture
	Slide 75: Architecture
	Slide 76: Training Procedure: 3.5 days on 8 NVIDIA P100s
	Slide 77: Today’s Topics
	Slide 78: Today’s Topics
	Slide 79

