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Review

• Last week:
• Motivation: machine neural translation for long sentences
• Encoder
• Decoder: attention
• Performance evaluation
• Final project: ways to find a partner

• Assignments (Canvas):
• Lab assignment 2 due Tuesday

• Questions?



Today’s Topics

• Transformer overview

• Self-attention

• Common transformer ingredients

• Pioneering transformer: machine translation 

• Programming tutorial
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Goal: Model Sequential Data (Recall RNN)

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Each hidden state is a function of the previous hidden state



Problem: RNNs Use Sequential Computation

RNNs struggle to carry information through hidden states 
across many time steps and train/testing is slow

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



Idea: Model Sequential Data Without Recurrence

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Replace sequential hidden states for capturing knowledge of other inputs with a new 
representation of each input that shows its relationship to all other inputs (i.e., self-attention)



Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

New representation of each token in a sequence showing its relationship to all tokens; e.g.,



Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Arrow thickness is indicative of attention weight

New representation of each token in a sequence showing its relationship to all tokens; e.g.,



Transformer Key Idea: Self-Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

A large attention score means the other word will 
strongly inform the new representation of the word

New representation of each token in a sequence showing its relationship to all tokens; e.g.,



Transformer Intuition

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

What does bank mean in this sentence?



Transformer Intuition

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

What does bank mean in this sentence?
- new word representation disambiguates meaning by identifying other relevant words 
(e.g., high attention score with “river”)

vs



Transformer vs RNN (Intuition)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Meaning depends on other input words



Transformer vs RNN (Intuition)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Meaning depends on other input words



Transformer: A Suggested Definition

“Any architecture designed to process a connected 
set of units—such as the tokens in a sequence or 
the pixels in an image—where the only interaction 
between units is through self-attention.”

http://peterbloem.nl/blog/transformers



Historical Context: Pioneering Transformer
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Today’s Topics

• Transformer overview

• Self-attention

• Common transformer ingredients

• Pioneering transformer: machine translation 

• Programming tutorial



Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens

https://towardsdatascience.com/self-attention-5b95ea164f61
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Self-Attention: Outcome

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic

And so on for remaining words…



Self-Attention: Disambiguates Word Meanings

A better representation of “she” would 
encode information about “Rashonda”

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

Rashonda accepted a job in deep learning because she loves the topic



Self-Attention: Disambiguates Word Meanings

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html#transformer_intro

Recall: a better representation of “bank” 
would encode information about “river”

New representation of each token in a sequence showing its relationship to all tokens; e.g.,

I arrived at the bank across the river



Self-Attention vs General Attention

Input Target

General attention 
Relates tokens from different sources

Self-attention 
Relates tokens from the same source

t=1



Computing Self-Attention: Similar Approach 
to How We Compute General Attention

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Key difference 1: input for self-attention

Key difference 2: attention 
score multiplied with a value 
derived from the input



Weighted sum of values
New representation of each input token to 
reflect each one’s relationship to all tokens

Input tokens

Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

- How many input tokens are there?
- What is each token’s dimensionality?
- How to support arbitrary length inputs?
        * Input length is a hyperparameter: pad shorter sequences with zeros and truncate longer sequences

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Input Length: Implementation

• [PAD] tokens with attention set to 0 enables variable input length

http://juditacs.github.io/2018/12/27/masked-attention.html



Computing Self-Attention: Example

Three vectors are derived for 
each input by multiplying 
with three weight matrices 
(learned during training): 
query, key, and value

Query 2:Query 1: Query 3:

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

e.g., key weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

x x x

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

e.g., value weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

x x x

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

e.g., query weights

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Query 2:Query 1: Query 3:

How many weight matrices 
are learned in this example?

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Query 2:Query 1: Query 3:

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

What is the purpose of the 
three weight matrices?

For each input, 2 of the 
derived vectors are used to 
compute attention weights 
(query and key) and the 3rd is 
information passed on for the 
new representation (value)

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Let’s compute the new 
representation for the inputs…

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 0

1

1

x = ?

Attention score: dot product of 
query (“what am I looking for”) 
with all keys (“what I have”) to 
identify relevant tokens (higher 
scores are better matches); e.g.,

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 4

4

0

x = ?

Attention score: dot product of 
query (“what am I looking for”) 
with all keys (“what I have”) to 
identify relevant tokens (higher 
scores are better matches); e.g.,

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

1 0 2 2

3

1

x = ?

Attention score: dot product of 
query (“what am I looking for”) 
with all keys (“what I have”) to 
identify relevant tokens (higher 
scores are better matches); e.g.,

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

Why dot product? Indicates 
similarity of two vectors
- Match = 1 (i.e., cos(0))
- Opposites = -1 (i.e., cos(180))

https://towardsdatascience.com/
self-attention-5b95ea164f61

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

Recall: there are many 
compatibility measures

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

= softmax([2, 4, 4])

= [0.0, 0.5, 0.5])

Attention weights: softmax 
scores for all inputs to quantify 
each token’s relevance; e.g.,

0.0 0.5 0.5

To which input(s) is input 1 
least related?

To which input(s) is input 1 
most related?

Note: 0 from softmax 
can arise from rounding

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5

Compute new representation 
of input token that reflects 
entire input: 

1. Attention weights x Values 

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5

Compute new representation 
of input token that reflects 
entire input: 

1. Attention weights x Values 

2. Sum all weighted vectors

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

2.0 7.0 1.5

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5Attention weights amplify 
input representations (values) 
that we want to pay attention 
to and repress the rest

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

2.0 7.0 1.5

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 1:

0.0 0.5 0.5Attention weights amplify 
input representations (values) 
that we want to pay attention 
to and repress the rest

0.0 0.0 0.0 1.0 4.0 0.0 1.0 3.0 1.5

2.0 7.0 1.5

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Repeat the same process for 
each remaining input token

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:

1. Compute attention weights
- Softmax resulting 3 scores 

from query x keys

0.0 1.0 0.0

To which input(s) is input 2 
most related?

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:

1. Compute attention weights
- Softmax resulting 3 scores 

from query x keys

2. Compute weighted sum of 
values using attention scores

0.0 1.0 0.0

0.0 0.0 0.0 2.0 8.0 0.0 0.0 0.0 0.0

2.0 8.0 0.0

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

Repeat the same process for 
each remaining input token

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 3:

1. Compute attention weights
- Softmax resulting 3 scores 

from query x keys

0.0 0.9 0.1

To which input(s) is input 3 
most related?

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Computing Self-Attention: Example

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

0.0 0.9 0.1

0.0 0.0 0.0 1.8 7.2 0.0 0.2 0.6 0.3

2.0 7.8 0.3

1. Compute attention weights
- Softmax resulting 3 scores 

from query x keys

2. Compute weighted sum of 
values using attention scores Query 3:



Computing Self-Attention: Example

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

Query 2:Query 1: Query 3:

2.0 7.8 0.32.0 8.0 0.02.0 7.0 1.0

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



Hyperparameters

A developer chooses input token 
length and number of matrices’ 
columns (and thus vector sizes)

Dimension of query and key must match 
to assess similarity (e.g., dot product). 

Dimension of value can differ from that of 
query and key and is output dimension.

Key 1: Value 1: Key 2: Value 2: Key 3: Value 3:

2.0 7.8 0.32.0 8.0 0.02.0 7.0 1.0

Query 2:Query 1: Query 3:

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



http://jalammar.github.io/illustrated-transformer/

Each row is an 
input token:

Step 1

Efficient Computation for Self-Attention

Each row is a query

Each row is a key

Each row is a value



Step 2Step 1

Implementation detail: scaling 
down the size helps preserve 
gradients needed for training; k is 
dimensionality of the key vector

Efficient Computation for Self-Attention

http://jalammar.github.io/illustrated-transformer/



Multi-head Attention

• Goal: enable each token to relate 
to other tokens in multiple ways

• Key idea: multiple self-attention 
mechanisms, each with their own 
key, value and query matrices

https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L19_seq2seq_rnn-transformers__slides.pdf



Multi-head Attention

1) Create query, key, and value 
vectors for all attentions heads

2) Compute new 
input representations

3) Condense all representations 
into a single representation by 
concatenating z-s and 
multiplying by a weight matrix

http://jalammar.github.io/illustrated-transformer/



Trained Multi-head Attention Examples

Figure shows two columns of attention weights 
for the first two attention heads

- Darker values signify larger attention scores

What does “it” focus on most in the first 
attention head?

- The animal (e.g., represents what is “it”)

What does “it” focus on most in the second 
attention head?

- tired (e.g., represents how “it” feels); note, a 
tokenizer was used that separates “tire” and “d”

http://jalammar.github.io/illustrated-transformer/



Trained Multi-head Attention Examples

Figure shows five columns of attention weights 
for five attention heads

- Darker values signify larger attention scores

Attention weights may be hard to interpret

http://jalammar.github.io/illustrated-transformer/



Self-Attention vs RNN: Propagates Information 
About Other Inputs Without Recurrent Units

http://www.wildml.com/2015/09/recurrent-neural-
networks-tutorial-part-1-introduction-to-rnns/

https://towardsdatascience.com/self-attention-5b95ea164f61



Today’s Topics

• Transformer overview

• Self-attention

• Common transformer ingredients

• Pioneering transformer: machine translation 

• Programming tutorial



http://peterbloem.nl/blog/transformers

Typical Transformer Block

Architectures often chain together multiple 
transformer blocks, like that shown here



Typical Transformer Block

Layer normalization and residual connections 
improve training (i.e., faster and better results)

http://peterbloem.nl/blog/transformers



Typical Transformer Block

Feedforward layer per input

http://peterbloem.nl/blog/transformers



Typical Transformer Block

Where are non-linearities introduced in this block?
- self-attention’s softmax, MLP’s activation functions, layer norms

http://peterbloem.nl/blog/transformers



Challenge: Transformers Lack Sensitivity 
to the Order of the Input Tokens

Input: a set and so shuffling order of input tokens results 
yields same outputs except in the same shuffled order 
(i.e. self-attention is permutation equivariant)

http://peterbloem.nl/blog/transformers



Solution: Add Position as Input to Transformer

• Options:
• Position embeddings: created by training with sequences of every length during training

• Position encodings: a function mapping positions to vectors that the network learns to 
interpret (enables generalization to lengths not observed during training)

http://jalammar.github.io/illustrated-transformer/



Today’s Topics

• Transformer overview
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• Common transformer ingredients

• Pioneering transformer: machine translation 

• Programming tutorial





Target Application: Machine Translation

http://jalammar.github.io/illustrated-transformer/

Input tokenized into words and then the model learns an 
embedding matrix to convert words to the target embedding size



http://jalammar.github.io/illustrated-transformer/

Example: Autoregressive Model



Architecture

• Key Ingredient: Self-Attention 
• Used in both the encoder (provides context 

   for translation) and decoder (translates)

• Other ingredients
• Positional encoding

• Layer normalization 

• Residual connections

• Feed forward layers

• Nx = 6 chained blocks (encoder & decoder)

Vaswani et al. Attention Is All You Need. Neurips 2017



Architecture

Vaswani et al. Attention Is All You Need. Neurips 2017

Decoder can attend to all inputs via cross-attention
(i.e., keys and values come from the encoder and 
query comes from the decoder)



Vaswani et al. Attention Is All You Need. Neurips 2017

Masking so decoder ONLY sees earlier predictions 
(i.e., masked values set to –infinity so softmax output is 0) 

https://stackoverflow.com/question
s/64799622/how-is-the-gpts-
masked-self-attention-is-utilized-
on-fine-tuning-inference

e.g., at start, no previous inputs

Query x Key

e.g., at 3rd step, two previous inputs

Architecture



Training Procedure: 3.5 days on 8 NVIDIA P100s

• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make predictions

2. Error quantification: 
measure error of the 
model’s predictions on 
training data using a loss 
function

3. Backward pass: calculate 
gradients to determine how 
each model parameter 
contributed to model error

4. Update each parameter 
using calculated gradients

Baydin et al. Automatic Differentiation in Machine Learning: a Survey. 2018

For two tested datasets, achieved state-of-the-art performance: 
(1) English-German, with ~4.5 million sentence pairs (byte-pair encoded)
(2) English-French, with 36M sentences
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