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Review

• Last week:
• Machine learning for sequential data
• Recurrent neural networks (RNNs)
• Problem: learning challenges
• Solution: Gated RNNs
• Programming tutorial

• Assignments (Canvas):
• Lab assignment 1 grades are out

• Review session will be held at 4pm today on Zoom
• Email all regrade requests to our TA, Nick Cooper (a comment in Canvas is not sufficient)

• Problem set 3 due earlier today
• Lab assignment 2 due in a 1.5 weeks

• Questions?



Today’s Topics

• Motivation: numeric representation of natural language

• Tokenization: how to convert text into discrete units

• Neural word embeddings: how to create dense representation

• Programming tutorial
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Origins of Natural Language Processing

Fi
rs

t 
p

ro
gr

am
m

ab
le

 m
ac

h
in

e

2012

M
ac

h
in

e
 le

ar
n

in
g

Tu
ri

n
g 

te
st

 
1945

A
I

1950

Wave 3: rise of 
“deep learning”

Pe
rc

ep
tr

o
n

1847

G
ra

d
ie

n
t 

d
es

ce
n

t

Focused primarily on 
translating languages

Jones. Natural Language Processing: A Historical Review. 1994.



Natural Language

8

Opinion Mining Spam Detection

Language Translation

We will focus today 
only on textual data



Input: String (Collection of Characters)

Opinion Mining Spam Detection

Language Translation



Input: Which “String” Feature Types Apply?

• Categorical data
• Comes from a fixed list (e.g., education level)

• Structured string data
• e.g., addresses, dates, telephone numbers, 

• Text data



How to Feed Computers Text in the Required 
Numeric Format? (Recall RNN Example)

1. Tokenize training data: “hello” -> “h”, “e”, “l”, “l”, “o”

2. Learn vocabulary by identifying all unique tokens: {h, e, l, o}

3. Encode data as vectors; e.g., one hot encoding

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Challenge: Represent 7000+ spoken languages 
including individual nuances in each language?

https://ruder.io/nlp-beyond-english/



Today’s Topics

• Motivation: numeric representation of natural language

• Tokenization: how to convert text into discrete units

• Neural word embeddings: how to create dense representation

• Programming tutorial



Tokenizers: Converting Text to Numeric Value

https://eastgate-software.com/jp/what-is-tokenization-in-nlp-everything-you-need-to-understand/



Tokenizer: Word-Based

• Use whitespace and punctuation to split tokens and then assign id to each token

• e.g., How many tokens should we see for “This is tokenizing.”

• 4: [This] [is] [tokenizing] [.]

• What are limitations of this approach?
• Huge vocabulary: ~1 million words in English alone according to Merriam- Webster 

(https://www.merriam-webster.com/help/faq-how-many-english-words)

• Novel words: information is lost, because we use one token (e.g., “UNK”) for all instances

Token a an at *** bat ball *** zipper zoo ***

Index 1 2 3 *** 527 528 *** 9,842 9,843 ***

https://www.merriam-webster.com/help/faq-how-many-english-words


Pre-processing Ideas to Reduce Vocabulary

• Lower case all letters

• Use each word’s “stem”; e.g., singular vs plural, reconcile different verb forms

• e.g., stemming 

 

 

• e.g., lemmatizing to get intended based word (e.g., caring -> care, not “car”)

• Only use most popular N words, assigning UNK token to the rest

• Stop word removal: discard frequent words

https://dzone.com/articles/using-lucene-grails

https://github.com/topics/stopwords-removal



Tokenizers: Converting Text to Numeric Value

https://eastgate-software.com/jp/what-is-tokenization-in-nlp-everything-you-need-to-understand/

Overcome word-based 
limitations by using characters!



Tokenizer: Character-Based

• Id assigned to each unique character

• e.g., How many tokens should we see for “This is tokenizing.”

• 17: [T] [h] [i] [s] [i] [s] [t] [o] [k] [e] [n] [i] [z] [i] [n] [g] [.]

• Advantages of this approach:
• Smaller vocabulary (e.g., 26 English letters plus punctuation and other symbols) 

• More known tokens (i.e., words are comprised of characters)

• What are limitations of this approach?
• Reduced semantics: greater meaning ambiguity when we only see one character (e.g., “a”)

• Longer input: greater computational expense; e.g., 17 characters vs 4 words for above example

Token a b c *** 0 1 *** ! @ ***

Index 1 2 3 *** 27 28 *** 119 120 ***



Tokenizers: Converting Text to Numeric Value

https://eastgate-software.com/jp/what-is-tokenization-in-nlp-everything-you-need-to-understand/

Middle ground, widely used 
in modern neural networks



Tokenizer: Subword-Based

• Id assigned to common entities with merges/decompositions of rarer entities
• e.g., 5 tokens for decomposition of “This is tokenizing.”: [This] [is] [token] [izing] [.]

• Compared to word-based and character-based tokenizers:
• Middle-sized input

• Middle-sized vocabulary 

• Middling semantics

• Unknown tokens are rare



Popular Example: Byte Pair Encoding

1. Identify all tokens in the training data with their frequency 
2. Define vocabulary size; e.g., 14
3. Add all characters in the tokenized input to the vocabulary; e.g.,

https://static.packt-cdn.com/downloads/9781838821593_ColorImages.pdf
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e.g., What are the 
highest frequency 
symbol pairs?

1. Identify all tokens in the training data with their frequency 
2. Define vocabulary size; e.g., 14
3. Add all characters in the tokenized input to the vocabulary; e.g.,
4. Until vocabulary is filled, add merged highest frequency symbol pairs
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Popular Focus Today: Improving Tokenization

https://tiktokenizer.vercel.app/



Today’s Topics

• Motivation: numeric representation of natural language

• Tokenization: how to convert text into discrete units

• Neural word embeddings: how to create dense representation

• Programming tutorial



Problems with One-Hot Encoding Words?

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019

• Huge memory burden 

• Computationally expensive 

Dimensionality = vocabulary size

e.g., English has ~170,000 words 
with ~10,000 commonly used words



Limitation of One-Hot Encoding Words

• No notion of which words are similar, yet such understanding can improve generalization
• e.g., “walking”, “running”, and “skipping” are all suitable for “He was ____ to school.”

Walking Soap Fire Skipping

The distance between 
all words is equal!



Idea: Represent Each Word Compactly in a Space 
Where Vector Distance Indicates Word Similarity

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019



Potential Use (Of Numerous)

• Convert words into compact vectors as input to neural networks; e.g., RNNs

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Inspiration: Distributional Semantics

“The distributional hypothesis says that the meaning of a 
word is derived from the context in which it is used, and 
words with similar meaning are used in similar contexts.”

- Origins: Harris in 1954 and Firth in 1957
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Inspiration: Distributional Semantics

• What is the meaning of berimbau based on context?

• Idea: context makes it easier to understand a word’s meaning

Background music from a berimbau offers a beautiful escape.

Many people danced around the berimbau player.

I practiced for many years to learn how to play the berimbau.

https://capoeirasongbook.wordpress.com/instruments/berimbau/[Adapted from slides by Lena Voita]
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• What other words could fit into these contexts?

Inspiration: Distributional Semantics

[Adapted from slides by Lena Voita]

1. Background music from a _______ offers a beautiful escape.

2. Many people danced around the _______ player.

3. I practiced for many years to learn how to play the _______.

1     1     1

0     0     0

0     0     0

1     1     1

Berimbau

Soap

Fire

Guitar

1 if a word can appear in the context
0 otherwise

1.    2.    3. Contexts

Hypothesis is that 
words with similar 
row values have 
similar meanings



Inspiration: Distributional Semantics

“The distributional hypothesis says that the meaning of a 
word is derived from the context in which it is used, and 
words with similar meaning are used in similar contexts.”
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Approach

• Learn a dense (lower-dimensional) vector for each word by characterizing its 
context, which inherently will reflect similarity/differences to other words

Berimbau and guitar are the closest word pair
Berimbau Soap Fire Guitar

The distance between 
each pair of words differs!

Note: many ways to measure 
distance (e.g., cosine distance)



Approach

• Learn a dense (lower-dimensional) vector for each word by characterizing its 
context, which inherently will reflect similarity/differences to other words

We embed words in a shared space so they can 
be compared with a few features

What features would discriminate these words?

Berimbau Soap Fire Guitar



Approach

• Learn a dense (lower-dimensional) vector for each word by characterizing its 
context, which inherently will reflect similarity/differences to other words

Berimbau Soap Fire Guitar

Wooden

Commodity

Cleaner

Food

Temperature

Noisy

Weapon

Potential, interpretable features



Approach: Learn Word Embedding Space

• An embedding space represents a finite number of words, decided in training

• A word embedding is represented as a vector indicating its context

• The dimensionality of all word embeddings in an embedding space match
• What is the word embedding dimensionality for the shown example?

…



Approach: Learn Word Embedding Space

• An embedding space represents a finite number of words, defined in training

• A word embedding is represented as a vector indicating its context

• The dimensionality of all word embeddings in an embedding space match

?

?

?

?

?

?

?

In practice, the learned discriminating 
features are hard to interpret



Embedding Matrix

• The embedding matrix converts an input word into a dense vector 

Size of vocabulary

Berimbau Soap Fire Guitar …

Target dimensionality
 (e.g., 5)

One hot encoding dictates 
the word embedding to use

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019



Embedding Matrix

• It converts an input word into a dense vector 

Size of vocabulary

Berimbau Soap Fire Guitar …

Target dimensionality
 (e.g., 5)

A word’s embedding can be efficiently 
extracted when we know the word’s index

Kamath, Liu, and Whitaker. Deep Learning for NLP and Speech Recognition. 2019



Word Embedding Analogous to a CNN 
Pretrained Feature
• e.g., FC6 layer of AlexNet

https://www.learnopencv.com/wp-content/uploads/2018/05/AlexNet-1.png



Popular Word Embeddings

• Bengio method

• Word2vec (skip-gram model)

• And more…



Historical Context
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Popular Word Embeddings

• Bengio method

• Word2vec (skip-gram model)

• And more…



Idea: Learn Word Embeddings That Help 
Predict Viable Next Words

e.g.,

1. Background music from a _______

2. Many people danced around the _______

3. I practiced for many years to learn how to play the _______

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.



Task: Predict Next Word 
Given Previous Ones

e.g.,

1. Background music from a _______

2. Many people danced around the _______

3. I practiced for many years to learn how to play the _______



Task: Predict Next Word 
Given Previous Ones

e.g., a vocabulary size of 17,000 
was used in experiments

What is the dimensionality of 
the output layer?
- 17,000 (each indexed position 
indicates probability of a word)

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.



Architecture

Embedding matrix:

Word embeddings:

Note: the goal is to learn an embedding matrix and, after 
training, the rest of the neural network can be discarded

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.



Architecture

e.g., a vocabulary size of 17,000 
was used with embedding sizes of 
30, 60, and 100 in experiments

Assume a 30-d word embedding
 - what are the dimensions of the 
embedding matrix C?
 
 30 x 17,000 (i.e., 510,000 weights)

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.



Architecture

e.g., a vocabulary size of 17,000 
was used with embedding sizes of 
30, 60, and 100 in experiments

Assume a 30-d word embedding
 - what are the dimensions of each 
word embedding?

1 x 30

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.



Architecture

Projection layer followed by a 
hidden layer with non-linearity

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.



Training

Input: tried 1, 3, 5, and 8 input words 
and used 2 datasets with ~1 million and 
~34 million words respectively 

Use sliding window on input data; e.g., 3 words

Background music from a berimbau offers a 
beautiful escape…

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.
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Training

Input: tried 1, 3, 5, and 8 input words 
and used 2 datasets with ~1 million and 
~34 million words respectively 

Cost function: 
minimize cross 
entropy loss plus 
regularization (i.e., 
L2 norm penalty)

Word embedding iteratively updated

Bengio et al. A Neural Probabilistic Language Model. JMLR 2003.



Summary: Word Embeddings Learn Context of 
Previous Words Needed to Predict Next Word

e.g.,

1. Background music from a _______

2. Many people danced around the _______

3. I practiced for many years to learn how to play the _______



Popular Word Embeddings

• Bengio method

• Word2vec (skip-gram model)

• And more…



Idea: Learn Word Embeddings That Know 
What Are Viable Surrounding Words

e.g.,

1. ___  ___  ___  ___ berimbau ___  ___  ___  ___ 

2. ___ berimbau ___

Mikolov et al. Efficient Estimation of Word Representations in Vector Space. arXiv 2013.



Task: Given Word, Predict 
a Nearby Word

e.g.,

1. ___  ___  ___  ___ berimbau ___  ___  ___  ___ 

2. ___ berimbau ___



Task: Given Word, Predict 
a Nearby Word

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b



Architecture

Embedding 
matrix

Word 
embeddings

Recall: the goal is to learn an embedding 
matrix and, after training, the rest of the 
neural network can be discarded

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b



Architecture

Embedding 
matrix

e.g., a vocabulary size of 10,000 is 
used with embedding sizes of 300

What are the dimensions of the 
embedding matrix?
 
300 x 10,000 (i.e., 3,000,000 weights)

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b



Architecture

e.g., a vocabulary size of 10,000 is 
used with embedding sizes of 300

What are the dimensions of each 
word embedding?
 
1 x 300

Word 
embeddings

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b



Architecture

A shallower, simpler architecture 
than the Bengio approach (i.e., 
lacks a non-linear hidden layer)!

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b



Training

Sliding window run over input 
to sample neighbors of each 
target word

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b



Hyperparameters: What Works Well?

• Word embedding dimensionality?
• Dimensionality set between 100 and 1,000

• Context window size?
• ~10

Mikolov et al. Efficient Estimation of Word Representations in Vector Space. arXiv 2013.



Very Exciting/Surprising Finding

• Vector arithmetic with word embeddings can solves many analogies

 (Full test list: http://download.tensorflow.org/data/questions-words.txt)

• Semantic relationships (meaning of words in a sentence):

• Italy + (Paris - France) = Rome

• Syntactic relationships (rules for words in a sentence)

• smallest + (big – small) = biggest

• think + (read – reading) = thinking 

• mouse + (dollars – dollar) = mice

Mikolov et al. Efficient Estimation of Word Representations in Vector Space. arXiv 2013.

http://download.tensorflow.org/data/questions-words.txt


Summary: Word Embeddings Are Learned that 
Support Predicting Viable Surrounding Words!

e.g.,

1. ___  ___  ___  ___ berimbau ___  ___  ___  ___ 

2. ___ berimbau ___



Popular Word Embeddings

• Bengio method

• Word2vec (skip-gram model)

• And more…



Variants for Learning Embeddings

• Capture global context rather than just local context of previous or 
surrounding words; e.g., 
• GloVe for Global Vectors (Pennington et al., 2014)

• Capture that the same word can have different meanings under 
different contexts; e.g., The bat… …swung? …flew?
• Elmo was a pioneer for language models (Peters et al., arXiv 2018)

• Support multiple languages; e.g.,
• Fast-text (Bojanowski et al., 2016)



Word Embedding Limitations/Challenges

• Distinguish antonyms from synonyms
• Antonyms are often close in embeddings space since they often occur in 

similar contexts: “I hate math” vs “I love math” or “Turn right” vs “Turn left”

• Gender bias:



Word Embedding Limitations/Challenges

• Distinguish antonyms from synonyms
• Antonyms are often close in embeddings space since they often occur in 

similar contexts: “I hate math” vs “I love math” or “Turn right” vs “Turn left”

• Gender bias:

Bolukbasi et al. Neurips 2016.



Word Embedding Limitations/Challenges

• Distinguish antonyms from synonyms
• Antonyms are often close in embeddings space since they often occur in 

similar contexts: “I hate math” vs “I love math” or “Turn right” vs “Turn left”

• Gender bias

• What additional language biases do you think could be learned?

• Still not as compact as phrase-level or sentence-level embeddings



Today’s Topics

• Motivation: numeric representation of natural language

• Tokenization: how to convert text into discrete units

• Neural word embeddings: how to create dense representation

• Programming tutorial
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