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Review

* Last lecture:
* Motivation: training large capacity, deep models to locate content
* Semantic segmentation: classifying pixels
* Object detection: locating objects with bounding rectangles
* Instance segmentation: demarcating objects with detailed outlines
* Programming tutorial

e Assignments (Canvas):
* Problem set 3 due Thursday

* Assignment updates: class-wide announcements ONLY for assignment issues (missing or incorrect
details); otherwise, please see the following about common student confusions:
1. Canvas assighment page (updates that will affect grading, such as leniency for multiple interpretations)
2.  Piazza (general understanding of course material)
3. TAs: emailing and/or attending their office hours

e Questions?



Today’s Topics

* Deep learning for sequential data
e Recurrent neural networks (RNNs)
* Problem: learning challenges

e Solution: gated RNNs

* Programming tutorial



Today’s Topics

* Deep learning for sequential data



Sequence Definition: Data of Arbitrary Length

e.g., Document
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e.g., sentences, audio samples, brain waves, radio waves, air temperature




P 'O pe rt| es Of Seq uences ? * Elements of a sequence occur in a certain order

* Elements depend on each other

e.g., Document e.g., Images
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e.g., sentences, audio samples, brain waves, radio waves, air temperature



Segquence Sources

* Elements of a sequence occur in a certain order
* Elements depend on each other
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Audio Spectrogram Image pixels documentvectors

https://www.tensorflow.org/tutorials/representation/word2vec



Sequence Applications: One-to-Many

* Input: fixed-size
* Output: sequence

* e.g., image captioning

Features:
Feature Name

Description

Tags

Image Format
Image Dimensions

Clip Art Type

Is Adult Content: False =3 . " &
Categories: people_swimming Tt & v Line Drawing Type

Black & White Image

Value

{ "type": 0, "captions": [ { "text": "a man swimming in a pool of

water", "confidence": 0.7850108693093019 } ] }

[{ "name": "water", "confidence": 0.9996442794799805 }, {
"name": "sport”, "confidence": 0.9504992365837097 }, {
"name": "swimming", “confidence": 0.9062818288803101,
"hint": "sport" }, { "name": “pool", "confidence":
0.8787588477134705 }, { "name": "water sport", "confidence":
0.631849467754364, "hint": "sport" } ]

jpeg

1500 x 1155

0 Non-clipart

0 Non-LineDrawing

False

Captions: https://www.microsoft.com/cognitive-services/en-us/computer-vision-api




Sequence Applications: Many-to-One

* Input: sequence
e Output: fixed-size

* e.g., sentiment analysis
(hate? love?, etc)

B CRITIC REVIEWS FOR STAR WARS: THE LAST JEDI

All Critics (371) | Top Critics (51) | Fresh (336) | Rotten (35)

. What's most interesting to me about The
Last Jedi is Luke's return as the mentor
rather than the student, grappling with his
failure in this new role, and later aspiring
to be the wise and patient teacher.

December 26, 2017 | Rating: 3/4 | Full Review

Fanatics will love it; for the rest of us, it's a
tolerably good time.

December 15, 2017 | Rating: B | Full Review...

N

Leah Pickett
Chicago Reader

w Peter Rainer
F Christian Science Monitor

https://www.rottentomatoes.com/m/star_wars_the_last_jedi




Sequence Applications: Many-to-Many

* Input: sequence
* Output: sequence

* e.g., language translation

English - detected~ & o) & Chinese (Traditional) = [_[] «{)

Today is fun. SKREB& -

Jintian hen yduqu.



Today’s Topics

e Recurrent neural networks (RNNs)
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Recall: Feedforward Neural Networks

N4
AN
cee
S/
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tput layer

input layer input layer
hidden layer 1 hidden layer 2 hidden layer

N
.)f
b

output layer

Problem: many model parameters
Problem: inputs/output sizes are fixed
Problem: no memory of past since weights learned independently

Each layer serves as input to the next layer with no loops

http://cs231n.github.io/neural-networks-1/



Recurrent Neural Networks (RNNs)

 Main idea: use hidden state to capture information about the past

Feedforward Network O

Each layer receives input from
VT

L

the previous layer with no loops

U

0

X

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

0
Recurrent Network O
Each layer receives input
from the previous layer
and the output from the 4 W

previous time step (i.e., T
time-delayed connections) .
UT

X



Recurrent Neural Networks (RNNs)

 Main idea: use hidden state to capture information about the past

Recurrent: same function is Recurrent Network 6
applied to previous result Each layer receives input
Model parameters from the previous layer 1
and the output from the

previous time step (i.e., .

time-delayed connections)
Old Input at

state state time step

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Time Step 1

* Main idea: use hidden state to capture information about the past

0

O

v
SOZ)".V
U

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Time Step 1

* Main idea: use hidden state to capture information about the past

0

O O i

4 W S
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X

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Time Step 2

* Main idea: use hidden state to capture information about the past

0
O 0, , 0,
1% Vv Vv
S e 4% -1 5
d » —H»—0=->0
Unfold T
U U U
X x JC

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Time Step 3

* Main idea: use hidden state to capture information about the past

0
O UF—T ﬂ [}HI
R N
SOQ > W dr ] dr OSHI
Unfold T w W
U U U U
X x x xf+1

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: And So On...

* Main idea: use hidden state to capture information about the past

0

O UF—T ﬂ [}HI
g " /|
S 4% t-1 t Svl

o, 0L 50— 0% ..

Unfold 2 T W w W

U U U U

X x x xf+1

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Model Parameters and Inputs

* Main idea: use hidden state to capture information about the past

Recurrence formula applied
at every time step:

Model parameters

ofeeaf %

New Old Input at
state state time step

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Model Parameters and Inputs

* Main idea: use hidden state to capture information about the past

Recurrence formula applied
at every time step:

Model parameters

ofeeaf %

New Old Input at
state state time step

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Model Parameters and Inputs

 All layers share the same model parameters (U, V, W)
* What is different between the layers?

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Model Parameters and Inputs

* When unfolded, a RNN is a deep feedforward network with shared weights!

0

O e
’ 3 i A
SOZ) Unfold > l _r

<

-

J'{:z"+ 1

X

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Advantages

* Overcomes problem that weights of each layer are learned independently by using previous hidden state

e Overcomes problem that model has many parameters by sharing the same weights for all input sizes

0

O [}HI

of i v
Oi) Unfold> l h_r ht

X X

SHI

I+1

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Advantages

* Retains information about past inputs for an amount of time that depends on the model’s weights
and input data rather than a fixed duration selected a priori

O
v
w
UOO Unfold > -

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Advantages

* Retains information about past inputs for an amount of time that depends on the model’s weights
and input data rather than a fixed duration selected a priori

O
v
w
UOO Unfold > -

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Advantages

* Can theoretically handle any input size by unfolding less/more time steps

0

O DI—I ﬂl‘ [}H-j
g J VTS ;
S W f—1 t St+1

o, 20450 0% ...

Unfold 2 W w W

U U U U

X

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN Example: Predict Sequence of Characters

e Goal: predict next character in text (i.e., automatic text completion)

* Training Data: sequence of characters represented as one-hot vectors



RNN Example: Predict Sequence of Characters;
e.g., To Write a Wikipedia Page

Training Input

-

74
[
- o N

\‘f l_k!l_'i ::|.-',\

Y L

Predicted Output

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(PJ5)[http://www.humah.yahoo.com/guardian.

cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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RNN Example: Predict Sequence of Characters;
e.g., To Write Like Shakespeare

Training Input (All Works of Shakespeare)
*H E

"TEMPEST.

o cusprimus, Scena prima.

¢ J:cnipéﬂubw woife of Thunder and Lightamg beard: En-
ter a Ship-mafler, arnd & Botefwaine.

Maﬂ'er.

B 2‘ Ote-{waine,
. ', Bote[. Beere Mafter : What cheere ?
: ,jt_—, Maff. Good : Spesketo th'Mariners : fall

Lo G0

- ’too’t, yarely , orweiun our{cluesaground,
beftirre, beftirre. Eaxit.
Enter CMariners.
Botef. Heigh my hearts, cheerely, cheerely my hares :
| yare, yare : Takein thetoppe-fale : Tend to th’Mafters
: whiﬂhe:Blow tillthouburlt thy winde , if roome ¢ -
nough, f
Enter Alonfo, Sebaflian, Anthonio, Ferdinando,
Gonzalo,and others,
Alon. Good Botefwaine haue care: where's the Ma-
fter ? Play the men.
Boref. | praynow keepe below,
Anth. Where is the Mafier, Bofon ?
Bore[.Doyounot heare him? you marre our labour,
Keepe your Cabines : you do afsift the forme,
Gorz. Nay, sood be patient, By
Boref. When the Sea is: hence, what cares thefe roa-
rers for the name of King ? to Cabine; filence : trouble
vsnot. o iy 3

i vpon thishowling: they are lowder thenthe weather,

or our office: yet againe ? What do you heere? Shal we
giue ore and drowne,have you aminde to finke ?

Sebaf. A poxc o'yeur throat,you bawling, blafphe-
mous incharitable Dog.

Botef. Worke you then.

<nth. Hang cur,hang,you whorefon infolent Noyfe-

maker,we are Jeffe afraid to be drownde,chen thou are.

Gosz. Tle warranthim for drowning, though the
Ship were no fironger then a Nuts-{hicl, snd as leaky as
an vnftanched wench,

Bote/. Lay herahold,ahold , fet hertwo courfes off
to Sea againe,lay her off,

Enter Mariners wet,
Mari. All loft,to prayers,to prayers;all loft,
Botef. What muft ourmouths be cold ?
Gonz.The King,and Prince,at prayers;let’s affift them,
for our cafe is as theirs. .
Sebaf. I'am out of patience.
An, We are meerly cheated of our lines by drunkards,

| This wide-chopt-rafcall,would thon mightft lye drow-
' ning thewathing of ten Tides.

Gonz,Hee'l be hang’d yer, -
Though cuery drop of water fweare againftie, '~
And gape acwidft to elurhim. 4 confuled novfawithin.

Predicted Output

PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never £«
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://github.com/martin-gorner/tensorflow-rnn-shakespeare



RNN Example: Predict Sequence of Characters;
e.g., To Write Code

Training Input (C code on GitHub) Predicted Output

/% * Increment the size file of the new incorrect UI_FILTER group information
# Bad block management * of the size generatively.

*/f
* static int indicate policy(void)
% — Heavily based on MD badblocks code from MNeil Brown {
* int error;
* Copyright (c) 2015, Intel Corporation. de et

/’i—
* * The kernel blank will coeld it to userspace.
% This program is free software; you can redistribute it and/or modify it */
% under the terms and conditions of the GNU General Public License, if (ss->segment < mem_total)
* version 2, as published by the Free Software Foundation. e1zszOCk-graph-and-SEt-blOCkEd"’
E ret = 1;
% This program is distributed in the hope it will be useful, but WITHOUT goto bail;
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or }
) . segaddr = in_SB(in.addr);

% FITNESS FOR A PARTICULAR PURPOSE. ©See the GNU General Public License for .

selector = seg / 16;
#* more details. setup_works = true;
*/ for (i = 0; i < blocks; i++) {

seq = buf[i++];

bpf = bd->bd.next + 1 * search;
#include =linux/badblocks.h= if (£d) {
#include <linux/seqglock.h= current = blocked;
#include <linux/device.h> }

, . }
#include <linux/kernel.h> rw->name = "Getjbbregs";

#include <linux/module.h= bprm self clearl(&iv->version);
#include <linux/stddef.h> regs->new = blocks[ (BPF_STATS << info->historidac)] | PFMR CLOBATHINC SECONDS << 12;

ble;
#include <linux/types.h= retumm segtable

#include <linux/slab.h=

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://github.com/martin-gorner/tensorflow-rnn-shakespeare



RNN Example: Predict Sequence of Characters;
e.g., To Write Facebook Messages

Training Input Predicted Output

1. The meaning of life is to find them? Oh, | don’t know if | would be able to
publish a paper on that be climbing today, but it will definitely know what that
Facebook messages from... makes sense. I'm sure they wanted to socialis that | am bringing or

2. What a cruel twist of fate, that we should be persuate that & And cook :D | will

e
Hend]_']k J. think that's mean | think | need to go to the phoebe? That's awesome though

Haha, sorry, | don't know if it was more time to clas for it’s badass though | jus

Weideman

3. The fact of the matter is just the world to invite your stuff? | don’t know how to
right it wouldn't be as offriving for anything, so that would be awesome, thanks
3 | have no idea... She would get to worry about it :P And |

4. At the very least, you should remember that as a house of a perfect problems &
Yeah :D | wonder how perfect for this trank though So it's probably foltower
before the bathers will be fine and haven't want to make it worse Thanks for

one of
https://hjweide.github.io/char-rnn



Example: Predict Sequence of Characters

* Goal: predict next character in text

* Prediction: feed training sequence of one-hot encoded characters; e.g., “hello”
* For simplicity, assume the following vocabulary (i.e., character set): {h, e, |, o}

 What isourinput at time step 1?
 What is our input at time step 2?

 Whatis ourinput at time step 3?

s B T s R
= T S o T -

 Whatis ourinput at time step 4?

- 0 O O =
n  Q Q = O

e And so on...

e Activation function: tanh

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Training Approach

(a) Forward pass * Repeat until stopping criterion met:
Forward pass: propagate

training data through
unfolded network

2. Error quantification:
measure error of the
model’s predictions on

training data using a loss
function

Backward pass: calculate
gradients for each model
parameter; weight sharing
accounted for by summing
gradients for all time steps

Update each parameter
using calculated gradients

Baydin et al. Automatic Differentiation in Machine Learning: a Survey. 2018



ht = tanh (Whhh.1+ bias )

Example: Forward Pass

wxh

0.287027

0.84606

0.572392

0.486813

0.902874

0.871522

0.691079

0.18598

0.537524

0.09224

0.558159

0.451528

T

»®

0.287027

0.902874
0.537524

The number of rows is a hyperparameter; Why use three rows
instead of 1 row for the weight matrix?

- more model parameters can represent a more complex function

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Forward Pass

Initialize to random value: 0.567001

ht = tanh (W ht_ll-

wxh
0.287027| 0.84606| 0.572392| 0.486813 x 0.287027
\ 74
0.902874| 0.871522| 0.691073| 0.18998 E:{;im
0.537524| 0.09224| 0.558159| 0.491528 '
f
0.287027359 0.567001
. 744 567
Ht = TANH 0.9028 25 0.567001
0.537523791 0.567001
-_— 0.693168
L 0.899554
0.802118

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Forward Pass

Initialize to random value: 0.427043

he = tanh [Wiifhe s H{Wanx:

Recall: Initialized to random value: 0.567001

wxh
0.287027| 0.84606| 0.572392| 0.486813
0.902874| 0.871522| 0.691079| 0.18998
0.537524| 0.09224| 0.558159| 0.491528
h h (&
' .\!_ll ¢ 0.567001
— —_— : :
TANH 0.427043 0.567001
. [ose] . ossron
Wxh
0.93653372
T
L s . 0.94910403
-1 ! 0.76234056

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Forward Pass

(What Character Follows “he”?)

why
W 0.37168| 0.9/4825459
0.39141| 0.282585823
0.64985 0.09821557
0.91266| 0.32581642

yt

@ 1.90607732
= 1.13779113
0.95666016
— O S— 1.27422602

(assume bias term is O for this example)

f
0.419748
Wxh Wxh |
T T Applying softmax, | o, o-
to compute letter
" * probabilities: 0.162429
. | 0.223141

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Forward Pass

Why
: h
—>0O0—>0
f
Tth Wxh
xt—l xt

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

Given our vocabulary
is {h, e, |, o}, what
letter is predicted?

0.419748
0.194682

Applying softmax,
to compute letter

probabilities: 0.162429

0.223141




Training Approach

* Repeat until stopping criterion met:

1. Forward pass: propagate
training data through
unfolded network

2. Error quantification:
measure error of the
model’s predictions on
training data using a loss
function

Backward pass: calculate
gradients for each model

Called back-propagation through time
(BPTT), it is the same generalized gradient parameter; weight sharing

derivation process we already have covered accounted for by summing
gradients for all time steps

4. Update each parameter
using calculated gradients




Training Approacnh; e.g., Using Cross
Entropy Loss for Many-to-Many Loss

00 ¢
@) () @)

7T N w w L w /"\

I pt) = ol pG) )

\ / \ /

\_, \_/
U U U

s¥ols

Goodfellow, Bengio, and Courville, Deep Learning.




Test Time: Predict Sequence of Characters

Feed previous prediction
as input for next time step

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Test Time: Predict Sequence of Characters

Feed previous prediction
as input for next time step

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



RNN Variants: Variable Input/Output Lengths

one to one one to many many to one many to many many to many
i Pt i 4 a Pt
! ! k&, 1 bt Pt

Breakout discussion questions:
1. Which variant(s) would you use for text classification and why?
2. When and why choose the first variant of “many to many” versus the second?

http://cs231n.stanford.edu/slides/2016/winter1516_lecture10.pdf



RNN Variants: Variable Input/Output Lengths

many to many many to many

Example: using latter variant £ 4 ¢ ¥ 4
of “many to many” vs former
- named entity recognition

[Jim]person bOught 300 shares of [Acme Corp.]organization iN [2006]1ime.

https://en.wikipedia.org/wiki/Named-entity_recognition
http://cs231n.stanford.edu/slides/2016/winter1516_lecture10.pdf



RNN Variants: Different Number of Hidden
ayers and Number of Nodes Per Layer

A

Captures information about past, via hidden
states, with more complex representations

Experimental evidence suggests deeper

= ™™t models can perform better:
;S S B I R S - Graves et al.; Speech Recognition with
I I I L O Deep Recurrent Neural Networks; 2013.
¥ F F F §F F 3 - Pascanu et al.; How to Construct Deep
depth Recurrent Neural Networks; 2014.
time -

http://cs231n.stanford.edu/slides/2016/winter1516_lecture10.pdf



Today’s Topics

* Problem: learning challenges



RNN Challenge: Learn Long-Term Dependencies

* e.g., language: “In 2004, | started college” vs “I started college in 2004”

@ O O 0O C
Hidden
Layer

O O O O O C
Time 1 2 < 4 5 6 7
* e.g,
* Vanishing gradient: a product of numbers less than 1 shrinks to zero

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Resolving RNN Vanishing Gradient

* Unlike feedforward networks and CNNs, RNNs have repeated
multiplication of the same weights (after unrolling from recurrence).

* Gradients can consequently vanish (dying neurons with 0 gradient) or
explode (large gradients), especially with ReLU activation functions

e Popular solution: tanh activation function with gates (next section)



Today’s Topics

e Solution: gated RNNs



Historical Context
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Popular RNN Variant #1: LSTM

Both the previous hidden state and cell state are passed to next time steps

http://adventuresinmachinelearning.com/recurrent-neural-networks-Istm-tutorial-tensorflow/



Popular RNN Variant #1: LSTM

Cell state: can retain memory of the past for a long duration

hy.q \
inputl l input l forget 1 output
gate gate gate
X, tanh o o o
S - n
X) () (X) >
N %
> > tanh

http://adventuresinmachinelearning.com/recurrent-neural-networks-Istm-tutorial-tensorflow/



Popular RNN Variant #1: LSTM

Cell state: can retain memory of the past for a long duration, based on the forget gate

M1 \ S;=8p1°f +gel
inputl l input l forget 1 output
gate gate gate
X, tanh o o o
| i |
o s m o h The addition enables
>.< | % % > the cell state to flow
\ T back through time
) fans for long durations

http://adventuresinmachinelearning.com/recurrent-neural-networks-Istm-tutorial-tensorflow/



Popular RNN Variant #1: LSTM

Cell state: can retain memory of the past for a long duration, based on the forget gate

% > « What happens if 0?
T * Pastdiscarded
* > tanh * What happensif1?
* Pastretained

o o
° Lli \ f>l< | m l hy Forget gaterange:0to 1
\ l

http://adventuresinmachinelearning.com/recurrent-neural-networks-Istm-tutorial-tensorflow/



Popular RNN Variant #1: LSTM

Cell state: can retain memory of the past for a long duration, based on the forget gate

1= P

hy.4 j . I /

o |
I , l . an B l h; Called gate because
X) X X) > sigmoid function mimics
\ l T open (1) and closed (0)
Sy
>

http://adventuresinmachinelearning.com/recurrent-neural-networks-Istm-tutorial-tensorflow/




Popular RNN Variant

1: Gated Recurrent Unit

Simplifies LSTM: single gate controls (1) forgetting factor and (2) updating hidden units

~

y[t]

—L h[t]

/

-
h[t-1] > % +
I r[t] 1\
e\ z[t]rﬁ ¢ hit]
g )= )- tanh
_J ) J
\_ ‘
A
X[t]

https://en.wikipedia.org/wiki/Gated_recurrent_unit
K. Chou et al; Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation; 2014



Today’s Topics

* Programming tutorial



Today’s Topics
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