
Recurrent Neural Networks

Danna Gurari
University of Colorado Boulder

Spring 2025

https://dannagurari.colorado.edu/course/neural-networks-and-deep-learning-spring-2025/

Review

• Last lecture:
• Motivation: training large capacity, deep models to locate content
• Semantic segmentation: classifying pixels
• Object detection: locating objects with bounding rectangles
• Instance segmentation: demarcating objects with detailed outlines
• Programming tutorial

• Assignments (Canvas):
• Problem set 3 due Thursday
• Assignment updates: class-wide announcements ONLY for assignment issues (missing or incorrect

details); otherwise, please see the following about common student confusions:
1. Canvas assignment page (updates that will affect grading, such as leniency for multiple interpretations)
2. Piazza (general understanding of course material)
3. TAs: emailing and/or attending their office hours

• Questions?

Today’s Topics

• Deep learning for sequential data

• Recurrent neural networks (RNNs)

• Problem: learning challenges

• Solution: gated RNNs

• Programming tutorial

Today’s Topics

• Deep learning for sequential data

• Recurrent neural networks (RNNs)

• Problem: learning challenges

• Solution: gated RNNs

• Programming tutorial

Sequence Definition: Data of Arbitrary Length
e.g., Document e.g., Images

e.g., Time-Series Data

e.g., sentences, audio samples, brain waves, radio waves, air temperature

Properties of Sequences?
e.g., Document e.g., Images

e.g., Time-Series Data

e.g., sentences, audio samples, brain waves, radio waves, air temperature

* Elements of a sequence occur in a certain order
* Elements depend on each other

Sequence Sources

https://www.tensorflow.org/tutorials/representation/word2vec

* Elements of a sequence occur in a certain order
* Elements depend on each other

Sequence Applications: One-to-Many

• Input: fixed-size

• Output: sequence

• e.g., image captioning

Captions: https://www.microsoft.com/cognitive-services/en-us/computer-vision-api

Sequence Applications: Many-to-One

• Input: sequence

• Output: fixed-size

• e.g., sentiment analysis
(hate? love?, etc)

https://www.rottentomatoes.com/m/star_wars_the_last_jedi

Sequence Applications: Many-to-Many

• Input: sequence

• Output: sequence

• e.g., language translation

Today’s Topics

• Deep learning for sequential data

• Recurrent neural networks (RNNs)

• Problem: learning challenges

• Solution: gated RNNs

• Programming tutorial

Historical Context

Fi
rs

t
p

ro
gr

am
m

ab
le

 m
ac

h
in

e

Tu
ri

n
g

te
st

1945

A
I

1950

Pe
rc

ep
tr

o
n

1847

G
ra

d
ie

n
t

d
es

ce
n

t

M
ac

h
in

e
 le

ar
n

in
g

Recall: Feedforward Neural Networks

Each layer serves as input to the next layer with no loops

Problem: many model parameters
Problem: inputs/output sizes are fixed

Problem: no memory of past since weights learned independently

http://cs231n.github.io/neural-networks-1/

Recurrent Neural Networks (RNNs)

Feedforward Network
Each layer receives input from
the previous layer with no loops

Recurrent Network
Each layer receives input
from the previous layer
and the output from the
previous time step (i.e.,
time-delayed connections)

• Main idea: use hidden state to capture information about the past

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Recurrent Neural Networks (RNNs)

Recurrent Network
Each layer receives input
from the previous layer
and the output from the
previous time step (i.e.,
time-delayed connections)

• Main idea: use hidden state to capture information about the past

Recurrent: same function is
applied to previous result

st = fm(st-1, xt)

New
state

Old
state

Input at
time step

Model parameters

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

RNN: Time Step 1

• Main idea: use hidden state to capture information about the past

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

RNN: Time Step 1

• Main idea: use hidden state to capture information about the past

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

RNN: Time Step 2

• Main idea: use hidden state to capture information about the past

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

RNN: Time Step 3

• Main idea: use hidden state to capture information about the past

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

RNN: And So On…

• Main idea: use hidden state to capture information about the past

…

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

RNN: Model Parameters and Inputs

• Main idea: use hidden state to capture information about the past

Recurrence formula applied
at every time step:

st = fm(st-1, xt)

New
state

Old
state

Input at
time step

Model parameters

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Recurrence formula applied
at every time step:

st = fm(st-1, xt)

RNN: Model Parameters and Inputs

• Main idea: use hidden state to capture information about the past

New
state

Old
state

Input at
time step

Model parameters

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

RNN: Model Parameters and Inputs

• All layers share the same model parameters (U, V, W)
• What is different between the layers?

…

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

RNN: Model Parameters and Inputs

• When unfolded, a RNN is a deep feedforward network with shared weights!

…

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

RNN: Advantages

…

• Overcomes problem that weights of each layer are learned independently by using previous hidden state

• Overcomes problem that model has many parameters by sharing the same weights for all input sizes

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

RNN: Advantages

…

• Retains information about past inputs for an amount of time that depends on the model’s weights
and input data rather than a fixed duration selected a priori

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

RNN: Advantages

…

• Retains information about past inputs for an amount of time that depends on the model’s weights
and input data rather than a fixed duration selected a priori

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

RNN: Advantages

…

• Can theoretically handle any input size by unfolding less/more time steps

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

RNN Example: Predict Sequence of Characters

• Goal: predict next character in text (i.e., automatic text completion)

• Training Data: sequence of characters represented as one-hot vectors

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Training Input Predicted Output

RNN Example: Predict Sequence of Characters;
e.g., To Write a Wikipedia Page

Training Input (All Works of Shakespeare) Predicted Output

RNN Example: Predict Sequence of Characters;
e.g., To Write Like Shakespeare

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://github.com/martin-gorner/tensorflow-rnn-shakespeare

RNN Example: Predict Sequence of Characters;
e.g., To Write Code

Training Input (C code on GitHub) Predicted Output

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://github.com/martin-gorner/tensorflow-rnn-shakespeare

https://hjweide.github.io/char-rnn

Training Input Predicted Output

Facebook messages from…

RNN Example: Predict Sequence of Characters;
e.g., To Write Facebook Messages

• Goal: predict next character in text

• Prediction: feed training sequence of one-hot encoded characters; e.g., “hello”
• For simplicity, assume the following vocabulary (i.e., character set): {h, e, l, o}

• What is our input at time step 1?

• What is our input at time step 2?

• What is our input at time step 3?

• What is our input at time step 4?

• And so on…

• Activation function: tanh

Example: Predict Sequence of Characters

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

Training Approach

• Repeat until stopping criterion met:

1. Forward pass: propagate
training data through
unfolded network

2. Error quantification:
measure error of the
model’s predictions on
training data using a loss
function

3. Backward pass: calculate
gradients for each model
parameter; weight sharing
accounted for by summing
gradients for all time steps

4. Update each parameter
using calculated gradients

Baydin et al. Automatic Differentiation in Machine Learning: a Survey. 2018

+ bias)

Example: Forward Pass

The number of rows is a hyperparameter; Why use three rows
instead of 1 row for the weight matrix?

- more model parameters can represent a more complex function

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

+ bias)

Input at next time step

Initialize to 0

Initialize to random value: 0.567001

Example: Forward Pass

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

+ bias)
Output at previous time step

Recall: Initialized to random value: 0.567001Initialize to random value: 0.427043

Example: Forward Pass

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

Example: Forward Pass
(What Character Follows “he”?)

Applying softmax,
to compute letter
probabilities:

(assume bias term is 0 for this example)

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

Example: Forward Pass

Applying softmax,
to compute letter
probabilities:

Given our vocabulary
is {h, e, l, o}, what
letter is predicted?

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

Training Approach

• Repeat until stopping criterion met:

1. Forward pass: propagate
training data through
unfolded network

2. Error quantification:
measure error of the
model’s predictions on
training data using a loss
function

3. Backward pass: calculate
gradients for each model
parameter; weight sharing
accounted for by summing
gradients for all time steps

4. Update each parameter
using calculated gradients

Called back-propagation through time
(BPTT), it is the same generalized gradient

derivation process we already have covered

Training Approach; e.g., Using Cross
Entropy Loss for Many-to-Many Loss

Goodfellow, Bengio, and Courville, Deep Learning.

Test Time: Predict Sequence of Characters

Feed previous prediction
as input for next time step

…

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

Test Time: Predict Sequence of Characters

Feed previous prediction
as input for next time step

…

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

RNN Variants: Variable Input/Output Lengths

Breakout discussion questions:
1. Which variant(s) would you use for text classification and why?
2. When and why choose the first variant of “many to many” versus the second?

http://cs231n.stanford.edu/slides/2016/winter1516_lecture10.pdf

RNN Variants: Variable Input/Output Lengths

Example: using latter variant
of “many to many” vs former
- named entity recognition

https://en.wikipedia.org/wiki/Named-entity_recognition
http://cs231n.stanford.edu/slides/2016/winter1516_lecture10.pdf

RNN Variants: Different Number of Hidden
Layers and Number of Nodes Per Layer

Captures information about past, via hidden
states, with more complex representations

Experimental evidence suggests deeper
models can perform better:

- Graves et al.; Speech Recognition with
Deep Recurrent Neural Networks; 2013.

- Pascanu et al.; How to Construct Deep
Recurrent Neural Networks; 2014.

http://cs231n.stanford.edu/slides/2016/winter1516_lecture10.pdf

Today’s Topics

• Deep learning for sequential data

• Recurrent neural networks (RNNs)

• Problem: learning challenges

• Solution: gated RNNs

• Programming tutorial

RNN Challenge: Learn Long-Term Dependencies

• e.g., language: “In 2004, I started college” vs “I started college in 2004”

• e.g.,
• Vanishing gradient: a product of numbers less than 1 shrinks to zero

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

Resolving RNN Vanishing Gradient

• Unlike feedforward networks and CNNs, RNNs have repeated
multiplication of the same weights (after unrolling from recurrence).

• Gradients can consequently vanish (dying neurons with 0 gradient) or
explode (large gradients), especially with ReLU activation functions

• Popular solution: tanh activation function with gates (next section)

Today’s Topics

• Deep learning for sequential data

• Recurrent neural networks (RNNs)

• Problem: learning challenges

• Solution: gated RNNs

• Programming tutorial

Historical Context

Fi
rs

t
p

ro
gr

am
m

ab
le

 m
ac

h
in

e

Tu
ri

n
g

te
st

1945

A
I

1950

Pe
rc

ep
tr

o
n

1847

G
ra

d
ie

n
t

d
es

ce
n

t

M
ac

h
in

e
 le

ar
n

in
g

Popular RNN Variant #1: LSTM

Both the previous hidden state and cell state are passed to next time steps

http://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

Popular RNN Variant #1: LSTM

Cell state: can retain memory of the past for a long duration

http://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

Popular RNN Variant #1: LSTM

Cell state: can retain memory of the past for a long duration, based on the forget gate

g i f
The addition enables
the cell state to flow
back through time
for long durations

http://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

Popular RNN Variant #1: LSTM

Cell state: can retain memory of the past for a long duration, based on the forget gate

g i f
Forget gate range: 0 to 1
• What happens if 0?

• Past discarded
• What happens if 1?

• Past retained

http://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

Popular RNN Variant #1: LSTM

Cell state: can retain memory of the past for a long duration, based on the forget gate

Called gate because
sigmoid function mimics
open (1) and closed (0)

http://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

Popular RNN Variant #1: Gated Recurrent Unit

Simplifies LSTM: single gate controls (1) forgetting factor and (2) updating hidden units

https://en.wikipedia.org/wiki/Gated_recurrent_unit
K. Chou et al; Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation; 2014

Today’s Topics

• Deep learning for sequential data

• Recurrent neural networks (RNNs)

• Problem: learning challenges

• Solution: gated RNNs

• Programming tutorial

Today’s Topics

• Deep learning for sequential data

• Recurrent neural networks (RNNs)

• Problem: learning challenges

• Solution: gated RNNs

• Programming tutorial

	Slide 1: Recurrent Neural Networks
	Slide 3: Review
	Slide 5: Today’s Topics
	Slide 6: Today’s Topics
	Slide 7: Sequence Definition: Data of Arbitrary Length
	Slide 8: Properties of Sequences?
	Slide 9: Sequence Sources
	Slide 10: Sequence Applications: One-to-Many
	Slide 11: Sequence Applications: Many-to-One
	Slide 12: Sequence Applications: Many-to-Many
	Slide 13: Today’s Topics
	Slide 14: Historical Context
	Slide 15: Recall: Feedforward Neural Networks
	Slide 16: Recurrent Neural Networks (RNNs)
	Slide 17: Recurrent Neural Networks (RNNs)
	Slide 18: RNN: Time Step 1
	Slide 19: RNN: Time Step 1
	Slide 20: RNN: Time Step 2
	Slide 21: RNN: Time Step 3
	Slide 22: RNN: And So On…
	Slide 23: RNN: Model Parameters and Inputs
	Slide 24: RNN: Model Parameters and Inputs
	Slide 25: RNN: Model Parameters and Inputs
	Slide 26: RNN: Model Parameters and Inputs
	Slide 27: RNN: Advantages
	Slide 28: RNN: Advantages
	Slide 29: RNN: Advantages
	Slide 30: RNN: Advantages
	Slide 31: RNN Example: Predict Sequence of Characters
	Slide 32
	Slide 33
	Slide 34: RNN Example: Predict Sequence of Characters; e.g., To Write Code
	Slide 35
	Slide 36
	Slide 37: Training Approach
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Example: Forward Pass (What Character Follows “he”?)
	Slide 42: Example: Forward Pass
	Slide 43: Training Approach
	Slide 44: Training Approach; e.g., Using Cross Entropy Loss for Many-to-Many Loss
	Slide 45: Test Time: Predict Sequence of Characters
	Slide 46: Test Time: Predict Sequence of Characters
	Slide 47: RNN Variants: Variable Input/Output Lengths
	Slide 48: RNN Variants: Variable Input/Output Lengths
	Slide 49: RNN Variants: Different Number of Hidden Layers and Number of Nodes Per Layer
	Slide 50: Today’s Topics
	Slide 51: RNN Challenge: Learn Long-Term Dependencies
	Slide 53: Resolving RNN Vanishing Gradient
	Slide 54: Today’s Topics
	Slide 55: Historical Context
	Slide 56: Popular RNN Variant #1: LSTM
	Slide 57: Popular RNN Variant #1: LSTM
	Slide 58: Popular RNN Variant #1: LSTM
	Slide 59: Popular RNN Variant #1: LSTM
	Slide 60: Popular RNN Variant #1: LSTM
	Slide 61: Popular RNN Variant #1: Gated Recurrent Unit
	Slide 62: Today’s Topics
	Slide 64: Today’s Topics
	Slide 65

