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Review

• Last lecture:
• Motivation: training large capacity, deep models to locate content
• Semantic segmentation: classifying pixels
• Object detection: locating objects with bounding rectangles
• Instance segmentation: demarcating objects with detailed outlines
• Programming tutorial

• Assignments (Canvas):
• Problem set 3 due Thursday
• Assignment updates: class-wide announcements ONLY for assignment issues (missing or incorrect 

details); otherwise, please see the following about common student confusions:
1. Canvas assignment page (updates that will affect grading, such as leniency for multiple interpretations)
2. Piazza (general understanding of course material)
3. TAs: emailing and/or attending their office hours

• Questions?



Today’s Topics

• Deep learning for sequential data

• Recurrent neural networks (RNNs)

• Problem: learning challenges

• Solution: gated RNNs

• Programming tutorial
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Sequence Definition: Data of Arbitrary Length
e.g., Document e.g., Images

e.g., Time-Series Data

e.g., sentences, audio samples, brain waves, radio waves, air temperature



Properties of Sequences?
e.g., Document e.g., Images

e.g., Time-Series Data

e.g., sentences, audio samples, brain waves, radio waves, air temperature

* Elements of a sequence occur in a certain order
* Elements depend on each other



Sequence Sources

https://www.tensorflow.org/tutorials/representation/word2vec

* Elements of a sequence occur in a certain order
* Elements depend on each other



Sequence Applications: One-to-Many

• Input: fixed-size

• Output: sequence

• e.g., image captioning

 

Captions: https://www.microsoft.com/cognitive-services/en-us/computer-vision-api



Sequence Applications: Many-to-One

• Input: sequence

• Output: fixed-size

• e.g., sentiment analysis 
(hate? love?, etc)

https://www.rottentomatoes.com/m/star_wars_the_last_jedi



Sequence Applications: Many-to-Many

• Input: sequence

• Output: sequence

• e.g., language translation

 



Today’s Topics

• Deep learning for sequential data

• Recurrent neural networks (RNNs)

• Problem: learning challenges

• Solution: gated RNNs

• Programming tutorial



Historical Context
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Recall: Feedforward Neural Networks

Each layer serves as input to the next layer with no loops

Problem: many model parameters
Problem: inputs/output sizes are fixed

Problem: no memory of past since weights learned independently 

http://cs231n.github.io/neural-networks-1/



Recurrent Neural Networks (RNNs)

Feedforward Network
Each layer receives input from 
the previous layer with no loops

Recurrent Network
Each layer receives input 
from the previous layer 
and the output from the 
previous time step (i.e., 
time-delayed connections)

• Main idea: use hidden state to capture information about the past

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



Recurrent Neural Networks (RNNs)

Recurrent Network
Each layer receives input 
from the previous layer 
and the output from the 
previous time step (i.e., 
time-delayed connections)

• Main idea: use hidden state to capture information about the past

Recurrent: same function is 
applied to previous result

st = fm(st-1, xt)

New 
state

Old 
state

Input at 
time step

Model parameters

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Time Step 1

• Main idea: use hidden state to capture information about the past

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
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RNN: Time Step 2

• Main idea: use hidden state to capture information about the past

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Time Step 3

• Main idea: use hidden state to capture information about the past

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: And So On…

• Main idea: use hidden state to capture information about the past

…

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Model Parameters and Inputs

• Main idea: use hidden state to capture information about the past

Recurrence formula applied 
at every time step:

st = fm(st-1, xt)

New 
state

Old 
state

Input at 
time step

Model parameters

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



Recurrence formula applied 
at every time step:

st = fm(st-1, xt)

RNN: Model Parameters and Inputs

• Main idea: use hidden state to capture information about the past

New 
state

Old 
state

Input at 
time step

Model parameters
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RNN: Model Parameters and Inputs

• All layers share the same model parameters (U, V, W)
• What is different between the layers?

…

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Model Parameters and Inputs

• When unfolded, a RNN is a deep feedforward network with shared weights!

…

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Advantages

…

• Overcomes problem that weights of each layer are learned independently by using previous hidden state

• Overcomes problem that model has many parameters by sharing the same weights for all input sizes

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Advantages

…

• Retains information about past inputs for an amount of time that depends on the model’s weights 
and input data rather than a fixed duration selected a priori 

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Advantages

…

• Retains information about past inputs for an amount of time that depends on the model’s weights 
and input data rather than a fixed duration selected a priori 

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN: Advantages

…

• Can theoretically handle any input size by unfolding less/more time steps

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/



RNN Example: Predict Sequence of Characters

• Goal: predict next character in text (i.e., automatic text completion)

• Training Data: sequence of characters represented as one-hot vectors



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Training Input Predicted Output

RNN Example: Predict Sequence of Characters;
e.g., To Write a Wikipedia Page



Training Input (All Works of Shakespeare) Predicted Output

RNN Example: Predict Sequence of Characters;
e.g., To Write Like Shakespeare

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://github.com/martin-gorner/tensorflow-rnn-shakespeare



RNN Example: Predict Sequence of Characters;
e.g., To Write Code

Training Input (C code on GitHub) Predicted Output

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://github.com/martin-gorner/tensorflow-rnn-shakespeare



https://hjweide.github.io/char-rnn

Training Input Predicted Output

Facebook messages from…

RNN Example: Predict Sequence of Characters;
e.g., To Write Facebook Messages



• Goal: predict next character in text

• Prediction: feed training sequence of one-hot encoded characters; e.g., “hello”
• For simplicity, assume the following vocabulary (i.e., character set): {h, e, l, o}

• What is our input at time step 1?

• What is our input at time step 2?

• What is our input at time step 3?

• What is our input at time step 4?

• And so on…

• Activation function: tanh

Example: Predict Sequence of Characters

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Training Approach

• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through 
unfolded network

2. Error quantification: 
measure error of the 
model’s predictions on 
training data using a loss 
function

3. Backward pass: calculate 
gradients for each model 
parameter; weight sharing 
accounted for by summing 
gradients for all time steps

4. Update each parameter 
using calculated gradients

Baydin et al. Automatic Differentiation in Machine Learning: a Survey. 2018



+ bias )

Example: Forward Pass

The number of rows is a hyperparameter; Why use three rows 
instead of 1 row for the weight matrix?  

- more model parameters can represent a more complex function

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



+ bias )

Input at next time step

Initialize to 0

Initialize to random value: 0.567001

Example: Forward Pass

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



+ bias )
Output at previous time step

Recall: Initialized to random value: 0.567001Initialize to random value: 0.427043

Example: Forward Pass

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Forward Pass 
(What Character Follows “he”?)

Applying softmax, 
to compute letter 
probabilities:

(assume bias term is 0 for this example)

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Example: Forward Pass

Applying softmax, 
to compute letter 
probabilities:

Given our vocabulary 
is {h, e, l, o}, what 
letter is predicted?

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Training Approach

• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through 
unfolded network

2. Error quantification: 
measure error of the 
model’s predictions on 
training data using a loss 
function

3. Backward pass: calculate 
gradients for each model 
parameter; weight sharing 
accounted for by summing 
gradients for all time steps

4. Update each parameter 
using calculated gradients

Called back-propagation through time 
(BPTT), it is the same generalized gradient 

derivation process we already have covered



Training Approach; e.g., Using Cross 
Entropy Loss for Many-to-Many Loss 

Goodfellow, Bengio, and Courville, Deep Learning.



Test Time: Predict Sequence of Characters

Feed previous prediction 
as input for next time step

…

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Test Time: Predict Sequence of Characters

Feed previous prediction 
as input for next time step

…

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



RNN Variants: Variable Input/Output Lengths

Breakout discussion questions: 
1. Which variant(s) would you use for text classification and why?
2. When and why choose the first variant of “many to many” versus the second?

http://cs231n.stanford.edu/slides/2016/winter1516_lecture10.pdf



RNN Variants: Variable Input/Output Lengths

Example: using latter variant 
of “many to many” vs former
- named entity recognition

https://en.wikipedia.org/wiki/Named-entity_recognition
http://cs231n.stanford.edu/slides/2016/winter1516_lecture10.pdf



RNN Variants: Different Number of Hidden 
Layers and Number of Nodes Per Layer

Captures information about past, via hidden 
states, with more complex representations

Experimental evidence suggests deeper 
models can perform better: 

- Graves et al.; Speech Recognition with 
Deep Recurrent Neural Networks; 2013.

- Pascanu et al.; How to Construct Deep 
Recurrent Neural Networks; 2014.

http://cs231n.stanford.edu/slides/2016/winter1516_lecture10.pdf



Today’s Topics

• Deep learning for sequential data

• Recurrent neural networks (RNNs)

• Problem: learning challenges

• Solution: gated RNNs

• Programming tutorial



RNN Challenge: Learn Long-Term Dependencies

• e.g., language: “In 2004, I started college” vs “I started college in 2004”

• e.g.,
• Vanishing gradient: a product of numbers less than 1  shrinks to zero 

https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/



Resolving RNN Vanishing Gradient

• Unlike feedforward networks and CNNs, RNNs have repeated 
multiplication of the same weights (after unrolling from recurrence). 

• Gradients can consequently vanish (dying neurons with 0 gradient) or 
explode (large gradients), especially with ReLU activation functions

• Popular solution: tanh activation function with gates (next section)
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Historical Context
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Popular RNN Variant #1: LSTM

Both the previous hidden state and cell state are passed to next time steps

http://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/



Popular RNN Variant #1: LSTM

Cell state: can retain memory of the past for a long duration

http://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/



Popular RNN Variant #1: LSTM

Cell state: can retain memory of the past for a long duration, based on the forget gate

g i f
The addition enables 
the cell state to flow 
back through time 
for long durations

http://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/



Popular RNN Variant #1: LSTM

Cell state: can retain memory of the past for a long duration, based on the forget gate

g i f
Forget gate range: 0 to 1
• What happens if 0?

• Past discarded
• What happens if 1?

• Past retained

http://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/



Popular RNN Variant #1: LSTM

Cell state: can retain memory of the past for a long duration, based on the forget gate

Called gate because 
sigmoid function mimics 
open (1) and closed (0)

http://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/



Popular RNN Variant #1: Gated Recurrent Unit

Simplifies LSTM: single gate controls (1) forgetting factor and (2) updating hidden units

https://en.wikipedia.org/wiki/Gated_recurrent_unit
K. Chou et al; Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation; 2014
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