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Review

 Last lecture:
* History of Convolutional Neural Networks (CNNs)
* CNNs — Convolutional Layers
* CNNs — Pooling Layers
* Pioneering CNN model: LeNet

* Assignments (Canvas)
e Lab assignment 1 due in 1 week

e Questions?



Today’s Topics

* Key challenge: training large capacity, deep models
* AlexNet: key tricks for going 8 layers deep
* ResNet: key tricks for extending to 152 layers deep

* Programming tutorial



Today’s Topics

* Key challenge: training large capacity, deep models



Motivating Task: Predict Category from 1000 Options

Is this a multi-label or a multi-
class classification problem?

e Dataset: ~1.5 million images of
objects in natural backgrounds

* Source: images scraped from
search engines, such as Flickr,
and labeled by crowdworkers

e Evaluation metric: % correct
(top-1 and top-5 predictions)
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J. Deng, W. Dong, R. Socher, L. Li, K. Liand L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. 2009



Premise: Large Capacity Model Necessary

So much complexity for even
just one object category:

Occlusions Intra-class Viewpoint
appearance

Source: Kristen Grauman



How to Successfully Train Large Capacity Model?
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Today’s Topics

* AlexNet: key tricks for going 8 layers deep



(Model Named After First Author)

(2012, Neurips)

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca | ilyal@cs.utoronto.ca hinton@cs.utoronto.ca




AlexNet Architecture: Similar to LeNet But
With More Convolutional and Pooling Layers
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AlexNet Architecture

Implementation detail:
subtract mean image
from data to center input
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AlexNet Architecture

How many layers have model parameters that need to be learned?
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Al eX N e't ArC h |teCtu @ Altogether, 60 million model parameters must be learned!
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Al eX N et ArC h |teCtu @ Altogether, 60 million model parameters must be learned!

Parameters (M)
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Most parameters come from
the fully connected layers

Few parameters come from the

convolutional layers, with no more than 1%
of model capacity from any of these layers

http://www.philkr.net/cs342/lectures/computer_vision/02.pdf



Key |deas for Training a Large Capacity Model

* Enable learning: use non-saturating activation functions



Issue: Mainstream Activation Functions at
the Time Were Unsuitable for Training

Sigmoid Tanh

‘,,-'l.ljr] ‘.,J.[:]

How are derivatives of these
activation functions inadequate?

Derivative typically less than 1;

e.g., sigmoid range is 0 to 0.25

Masi et al. Journal of the Mechanics and Physics of Solids. 2021



Vanishing Gradient Problem; e.g., sigmoid

* Toy example:

J [——error
* Error Derivative with  derror  derror | doutput | Ohidden2}|, dhiddenl
respect to weight wl: owl Ooutput | Ohidden2 | Ohiddenl owl
Derivative of sigmoid Derivative of sigmoid

activation function: (0 to 1/4] activation function: (0 to 1/4]

Problem: What happens when multiplying many numbers smaller than 17

Gradient becomes smaller... and so weights can barely change at training!
https://ayearofai.com/rohan-4-the-vanishing-gradient-problem-ec68f76ffb9b



Vanishing Gradient Problem

Smaller gradients at earlier layers make them slowest to train, yet later layers depend on those earlier
layers to do something useful; consequently, NNs struggle with garbage in means garbage out

Backpropagation Signal in Neural Networks
<

(gradually diminishes)

https://towardsdatascience.com/batch-normalization-the-greatest-breakthrough-in-deep-learning-77e64909d81d



ldea: Use Different Activation Function

Use activation function with derivative equal to 1: RelLU

- i.e., 1x1x1... means gradient won’t vanish

Alz)

s (0. 1

- Further advantage: fast to compute!

Masi et al. Journal of the Mechanics and Physics of Solids. 2021



ldea: Use Different Activation Function

Use activation function with derivative equal to 1: RelLU

- i.e., 1x1x1... means gradient won’t vanish

Alz)

Potential issue: many neurons
have no gradient; i.e., “dead”
(analogy: brain damage) _

s (0. 1

i

2 1

How to handle when function is not differentiable (at z=0)?
- hard code value (i.e., 0 or 1)

- When using backpropagation with RelLU, what are the possible values?

Masi et al. Journal of the Mechanics and Physics of Solids. 2021



Motivating Experimental Analysis

 Dataset: CIFAR-10

* Model Architecture: 4-layer
convolutional network

e Evaluation metric: % correct

What is the key finding?

Training error rate

0,75
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RelLU (solid line)
tanh (dashed line)
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(e.g., ReLU is 6x faster in achieving 25% error rate)

Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks. NeurlPS 2012.
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RelLU yields much faster learning than tanh, with the latter unsuitable for learning!



Key |deas for Training a Large Capacity Model

* Prevent overfitting: incorporate regularization methods



Regularization Methods

* Recall: regularization is “any modification we make to a learning algorithm
that is intended to reduce its generalization error.”- Goodfellow book

* Two approaches leveraged by AlexNet: data augmentation & dropout



Data Augmentation: Intuition

Adding training data




Data Augmentation: Approach

 Random patches and their mirror images (2048x more data)

(2) Mirror Image

Mirror Image >

Generally, need to ensure % — ‘D
7 augmentation scheme aligns
227 with target application: d ~ b

* Adjust RGB channels (using PCA-based method)

(1) Random Crops

256

256

https://learnopencv.com/understanding-alexnet/



Dropout

(2012, arXiv)

Improving neural networks by preventing
co-adaptation of feature detectors

G. E. Hinton®, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. Salakhutdinov

Department of Computer Science, University of Toronto,
6 King’s College Rd, Toronto, Ontario M5S 3G4, Canada




Dropout: ldea

A

Use ensemble




Dropout: ldea

* Using ensemble reduces probability for making a wrong prediction

* Suppose:

n classifiers for binary classification task

Each classifier has same error rate €

Classifiers are independent (not true in practice!)
Probability mass function indicates the probability of error from an ensemble:

Number of cIassifiers CIa55|f|er error rate
P(yzk) 1. M Error probability
2"

# ways to choose k subsets from set of si

e e.g.,,n=11, € =0.25; k = 6: probability of error is ~0.034 which is much lower
than probability of error from a single algorithm (0.25)



Dropout: Precursor

Bootstrap Aggregation (1994)

Train algorithm repeatedly on different
random subsets of the training set

Bootstrap
samples

Training set
T] Tm
T/‘ . .
N LSS -
Classificati 3
o
! ' ! |
Predictions P, P, 6 % % P
Voo ! '
Voting
v
Final prediction P;

Raschka & Mirjalili, Python Machine Learning.



Dropout: Precursor

Train algorithm repeatedly on different
random subsets of the training set

Why is bagging a poor approach for
neural networks?

* Finding optimal hyperparameters for
each architecture is time-consuming

* Applying multiple neural networks is
often infeasible since the models
require lots of memory and are
computationally expensive to run

Bootstrap
samples

Tl
\‘
Classification
CJ
models
Predictions P,

Final prediction

Training set
Tm
T . .
AV -
G| ... |¢ =
o
! ! ' i
P Py
' l l
Voting
v
P

Raschka & Mirjalili, Python Machine Learning.



Dropout: Approach

* Approximates bagging with dropout during training so different sub-
models in the network are trained with different training data
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(a) Standard Neural Net (b) After applying dropout.

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research. 2014



Dropout: Approach

* Approximates bagging with dropout during training so different sub-
models in the network are trained with different training data

For training, the forward pass and
backpropagation run only through
the sub-network (with a different
dropout per minibatch).

What might happen to loss curves?
- Bouncier since the underlying
network continuously changes

(b) After applying dropout.

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research. 2014



Dropout: Approach

* Approximates bagging with dropout during training so different sub-
models in the network are trained with different training data

Ensemble is emulated at test time by
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How to handle network’s expectation
for a smaller activation signal than
observed at test time (e.g., input from
2 versus 5 neurons)?

- Multiply each unit’s outgoing weights
by probability of dropping at training (b) After applying dropout.
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Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research. 2014



Dropout: Dropout vs Bagging

* Dropout approximates bagging
with many models inexpensively

* Trains algorithm repeatedly on
random subsets of the training set
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* Dropout differences are that
subnetworks are not:

* Trained to convergence (instead,
trained for one step)

* Independent (instead, they all
share parameters)
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(b) After applying dropout.

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research. 2014



Dropout: Motivation

“Similarly, each hidden
unit in a neural network
trained with dropout
must learn to work with a
randomly chosen sample
of other units. This
should make each hidden
unit more robust and
drive it towards creating
useful features on its
own without relying on
other hidden units to
correct its mistakes.”

This approach was motivated by the
role of sex in evolution: “... the role of
sexual reproduction is not just to
allow useful new genes to spread
throughout the population, but also to
facilitate this process by reducing
complex co-adaptations that would
reduce the chance of a new gene
improving the fitness of an individual.”

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research. 2014



Dropout: Motivation

Units in the network learn to be useful with many different subsets of other units
rather than in conjunction with other units; e.g., mitigates very large positive
weights canceling similarly large negative weights (a sign of overfitting)

(b) After applying dropout.
https://towardsdatascience.com/techniques-for-handling-underfitting-and-overfitting-in-machine-learning-348daa2380b9
Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research. 2014



Dropout: Alternative Approach

A generalization of zeroing units is to instead multiply units by noise
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Relevant articles:
*https://towardsdatascience.com/dropout-on-
convolutional-layers-is-weird-5c6ab14f19b2

*Wu and Gu. “Towards dropout training for
convolutional neural networks.” Neural Networks, 2015.
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(b) After applying dropout.

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research. 2014



Dropout: Implementation

* Only used in fully connected layers

 Why not use it in convolutional layers?
* Parameter tying already reduces parameter count and so offers enough regularization
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Key |deas for Training a Large Capacity Model

* Make training feasible: speed it up with better hardware



Onset of Era for Very Time-Consuming Training

a Boss: What did you do last month?

You: Trained the model for one epoch. |/

qg Boss: Umm, fine, what is your plan for next month?

You: Train... train the model for one more epoch? |,

[ Nis

https://hanlab.mit.edu/files/course/slides/MIT-TinyML-Lec13-Distributed-Training-I.pdf




Training: 90 Epochs took 5-6 Days on 2 GPUSs

Repeat until stopping criterion met:

(a) Forward pass

1.

|

Cross entropy loss H 2.

(b) Backward pass

Forward pass: propagate
training data through model
to make predictions

Error quantification:
measure error of the
model’s predictions on
training data using a loss
function

Backward pass: calculate
gradients to determine how
each model parameter
contributed to model error

Account for weight sharing
by using average of all
connections for a parameter

Update each parameter
using calculated gradients

Baydin et al. Automatic Differentiation in Machine Learning: a Survey. 2018



Training Settings

e Batch size: 128 examples

* Initialization: weight values drawn from zero-mean Gaussian
distribution with standard deviation 0.01 and biases setto O and 1

* Momentum optimization: manually adjusted learning rate 3 times
from initial value of 0.01, dividing it by 10 each time validation error
stopped falling



AlexNet: Inspecting What It Learned
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AlexNet: Inspecting What It Learned (96 Filters)

Learned model filters select based on frequency, orientation, and color!
(aligns with Hubel & Weisel’s findings for how vision systems work)

Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks. NeurlPS 2012.



AlexNet: Example Activation Maps
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AlexNet: Example Activation Maps
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Frequencies, orientations, and colors are detected

Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks. NeurlPS 2012.




AlexNet Analysis

8 examples of predictions,
correct and incorrect

When/why might it succeed?

- Single well-defined object
(even if off-centered)

When/why might it fail?
- Ambiguity

- Similar categories

Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks. NeurlPS 2012.
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AlexNet Analysis

* Achieved unexpected, unprecedented improvements on ImageNet
* 9.6 percentage point drop in top-5 error to 16.4% compared to 2011’s best model

e Signified deeper models help, as removing any convolutional layer led to
inferior performance

* Open challenge for going deeper: GPUs’ limited amount of memory and
the excessive training time



AlexNet: Catalyst for Deep Learning Revolution

, Deep-learning paper percentage in vision

Inspired, many more researchers

3 in the computer vision community

focused on neural networks for
many more vision problems!

9
CVPR2013 ICCWV2013 CVPR2014 CVPR2015

https://www.slideshare.net/xavigiro/saliency-prediction-using-deep-learning-techniques



Recap: Ideas for Training a Large Capacity Model

* Enable learning: use non-saturating activation functions (RelLUs)

* Prevent overfitting: incorporate regularization methods (data
augmentation and dropout)

* Make training feasible: speed it up with better hardware (GPUs)



Today’s Topics

* ResNet: key tricks for extending to 152 layers deep



(Model Named After Method)

(2016, CVPR)

Deepdual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoging Ren Jian Sun
Microsoft Research



ResNet Architecture: Shown is Subset of Layers

(34 of 152 Layers)
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Output: 1000 class probabilities (sums to 1)

Input: RGB image resized to fixed input size

He et al. Deep Residual Learning for Image Recognition. CVPR 2016.



Key |deas for Training a Large Capacity Model

* Remove vanishing gradient problem (when using ReLUs):
use He initialization and batch normalization



Z-values

Activations

ldea 1: Better Initialization Method

Activation: tanh - Initializer: Glorot Normal - Epoch 0

Weights

Z-values
hl h2 h3
Layers
Activations
0.02
0.01
8
@
5 0.00 + +
o
)
-0.01
h2 h3 hl h2 h3 hd h5
Layers Layers

Recall: want weights
that lead to
gradients that can
support learning

Xavier/Glorot
method is a poor
match for RelLU, due
to its non-linearity

https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aeel1a28404



Idea 1: He/Kaiming/MSRA Initialization

(2015, ICCV)

Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun

Microsoft Research

Samples weight values from a zero-mean Gaussian with this standard deviation (biases set to 0):

o=,/2.0/n;
\/ / "M =~ fan in: # of neurons entering the layer



ldea 2: Batch Normalization

(2015, ICML)

Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift

Sergey loffe SIOFFE @ GOOGLE.COM
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Google, 1600 Amphitheatre Pkwy, Mountain View, CA 94043
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ldea 2: Batch Normalization
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During training, shift
values at each layer
so resulting gradients
support learning

https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aeel1a28404



ldea 2: Batch Normalization

Simplifies learning by standardizing output of each hidden before passing them to the next
layer data so mean and standard deviation accelerate learning (similar to data initialization)

-

Feature standardization changes
the loss function so gradient

descent can more smoothly
@D — arrive at the minimum!

®

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739



ldea 2: Batch Normalization

Intuitively, smoothing a loss function’s
error surface removes:

- flat regions, which cause vanishing
gradients

- sharp local minima, which cause
“exploding” gradients

Removing dangers in the surface means
larger learning rates are more feasible,
and so training can also be sped up

Li et al. Visualizing the Loss Landscape of Neural Nets. Neurips 2018.



|dea 2: Batch Normalization (Inference Time)
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https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739




|dea 2: Batch Normalization (Inference Time)
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https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739

These 4 values would be learned during training



|dea 2: Batch Normalization (Inference Time)

A uniqgue BN module is applied to activation values for every layer!
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ldea 2: Batch Normalization (Training Time)
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Input: mini-batch

- e.g., assume a fully connected layer, each row represents a unique example and
each column represents all outputs (features) from one of the layer’s neurons

- How many examples are in the toy example’s mini-batch?
- How many neurons are leaving the toy example’s layer?

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739



ldea 2: Batch Normalization (Training Time)
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For each feature, compute mean and standard
deviation values for all examples and then use those
values to modify the features to target distributions

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739



ldea 2: Batch Normalization (Training Time)
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During backpropagation,
further modify distribution
to improve performance

(because we add bias here, we exclude it in earlier layers)

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739



ldea 2: Batch Normalization (Training Time)
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ldea 2: Batch Normalization Implementation

ResNet adopts BN before activations are computed; however,
it is also common to apply BN after computing activations
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Key |deas for Training a Large Capacity Model

* Resolve performance degradation problem (not overfitting):
add shortcut connections and then learn residual functions



Motivating Observation

A deeper network should perform at least as good as a shallower network since
it can learn the shallower function alongside “identity” functions for later layers

Neural Net #1

Hidden Hidden

Neural Net #2

Hidden Hidden , , .
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 However, experimentally, adding more layers led to WORSE results!

https://medium.com/@realmichaelye/intuition-for-resnet-deep-residual-learning-for-image-recognition-39d24d173e78



What is the Problem for Learning?

* Vanishing gradients? Unlikely; desired gradients observed when training with both
aforementioned tricks (He initialization and BN)

* Overfitting? No

Training error is larger with more layers
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* Degradation problem! Accuracy saturates before declining rapidly from more layers
* Hypothesis: difficult to learn identity mappings

He et al. Deep Residual Learning for Image Recognition. CVPR 2016.



Problem: Difficult to Perform ldentity Mapping

e.g.,

[,
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weight layer
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He et al. Deep Residual Learning for Image Recognition. CVPR 2016.



l[dea: Add Skip Connections to
Enable Learning Identity Mapping

Hypotheses: (1) easier to learn

parameters close to O than a function
that performs identity mapping and
(2) creating shorter paths with skip

connections will simplify learning

X
identity

Paper explores when number of
layers between skip connections
(i.e., residual block) is 2 or 3

weight layer

lrelu

weight layer

Residual function
to be learned

Forces model to learn the identity function when minimizing the loss

(Recall: derivative for an addition operation means there is no change
to the gradient flow, as incoming gradients are multiplied by one)

He et al. Deep Residual Learning for Image Recognition. CVPR 2016.



l[dea: Add Skip Connections to
Enable Learning Identity Mapping

How many model parameters need to be
learned when adding a skip connection?
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Figure 2. Residual learning: a building block.

He et al. Deep Residual Learning for Image Recognition. CVPR 2016.



Training Setting: Slight Change from AlexNet

e Batch size: 256 examples (double amount for AlexNet)
* |nitialization: He method

* Momentum optimization: manually adjusted learning rate from initial
0.1 (vs 0.01 for AlexNet), dividing by 10 when validation error plateaued

* No dropout used in order to isolate analysis on overcoming
optimization issues with skip connections and residual learning



ResNet Performance: Exceeded Humans!

Progress of models on ImageNet (Top 5 Error)

25,0
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Measured with human annotations for
15,0 — a random sample of 1500 test images

[Russakovsky et al. 1JCV 2015]
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(GoogleNet)

https://www.edge-ai-vision.com/2018/07/deep-learning-in-five-and-a-half-minutes/



Recap: Ideas for Training a Large Capacity Model

* Remove vanishing gradient problem (when using ReLUs):
use He initialization and batch normalization

* Resolve performance degradation problem (not overfitting):
add shortcut connections and then learn residual functions



Today’s Topics

* Programming tutorial



Today’s Topics
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