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Review

• Last class:
• Model capacity: how it affects learning
• Regularization: learning methods for improving model generalization
• Hyperparameter selection: tuning to improve model performance
• Programming tutorial

• Assignments (Canvas):
• Problem set 1 grades are out

• Review session will be held at 4pm
• All regrade requests must be emailed to our TA, Nick Cooper (a comment in Canvas is not sufficient)

• Problem set 2 due earlier today
• Lab assignment 1 due a week from Thursday (in 9 days)

• Questions?



Today’s Topics

• History of Convolutional Neural Networks (CNNs)

• CNNs – Convolutional Layers

• CNNs – Pooling Layers

• Pioneering CNN model: LeNet
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Inspiration: Neural Networks for Spatial Data

• Data where the order matters; e.g.,

2D 3D

Images Audio (spectrogram) Text (word embeddings)

I
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deep
learning

learning
about

Video



Inspiration: Historical Context
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Neuroscientific experiments 
by Hubel & Weisel to 

understand how mammalian 
vision system works

Nobel Prize in Physiology and 
Medicine to Hubel and Weisel
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Inspiration: How Vision System Works

https://braintour.harvard.edu/archives/portfolio-items/hubel-and-wiesel



Inspiration: How Vision System Works

https://www.esantus.com/blog/2019/1/31/convol
utional-neural-networks-a-quick-guide-for-newbies

Experiment Set-up:

https://www.youtube.com/watch?v=OGxVfKJqX5E&ab_channel=RyanAbbott

Key Finding: neurons respond strongly only 
when light is shown in certain orientations



Inspiration: How Vision System Works

https://www.cns.nyu.edu/~david/courses/
perception/lecturenotes/V1/lgn-V1.html

Experiment Set-up:
Key Finding: neurons respond strongly only 
when light is shown in certain orientations

https://www.esantus.com/blog/2019/1/31/convol
utional-neural-networks-a-quick-guide-for-newbies



Inspiration: How Vision System Works

Key Idea: cells are organized as a hierarchy of feature detectors, with higher 
level features responding to patterns of activation in lower level cells

https://bruceoutdoors.files.wordpress.com/2017/08/hubel.jpg



Inspiration: How Vision System Works

https://neuwritesd.files.wordpress.com/2015/10/visual_stream_small.png



Key Ingredients of CNNs
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(1981) Nobel Prize in Physiology and 
Medicine to Hubel and Weisel

Neocognitron: 
convolutional layers and 

downsampling layers



Neocognitron: Key Ingredients

“In this paper, we discuss how to synthesize a neural 
network model in order to endow it an ability of pattern 
recognition like a human being… the network acquires a 
similar structure to the hierarchy model of the visual 
nervous system proposed by Hubel and Wiesel.”

- Fukushima, Neocognitron: A Self-organizing Neural Network Model for a Mechanism 
of Pattern Recognition Unaffected by Shift in Position. Biological Cybernetics, 1980.

http://personalpage.flsi.or.j
p/fukushima/index-e.html



Neocognitron: Key Ingredients

Fukushima, 1980

Cascade of simple and 
complex cells identified 
by Hubel and Weisel:

Model with alternating 
convolutional layers 
and pooling layers:



Neocognitron: Key Ingredients

Fukushima, 1980

Simple cells use a sliding 
filter to identify local 
features (e.g., orientations):



Neocognitron: Key Ingredients

Fukushima, 1980

Complex cells fire 
when any part of the 
local region is the 
desired pattern



Neocognitron: Key Ingredients

Fukushima, 1980

1. Convolutional layers 

2. Pooling Layers



Today’s Topics

• History of Convolutional Neural Networks (CNNs)

• CNNs – Convolutional Layers

• CNNs – Pooling Layers

• Pioneering CNN model: LeNet



Motivation: Fully-Connected Layers Are Limited

• Assume 3-layer model with 100 nodes, 100 nodes, and then 2 nodes
• e.g., how many weights are in a 640x480 grayscale image?

• 640x480x100 + 100x100 + 100x2 = 30,730,200

• e.g., how many weights are in a 3.1 Megapixel grayscale image (2048X1536)?
• 2048x1536x100 + 100x100 + 100x2 = 314,583,000

Each node provides input to 
each node in the next layer



Motivation: Fully-Connected Layers Are Limited

Concern: many model parameters…
- increases chance of overfitting
- increases memory/storage requirements
- increases computational expense



Idea: Convolutional Layers

Rather than have each node provide 
input to each node in the next layer… 

each node receives input only from a 
small neighborhood in previous layer 
(and there is parameter sharing)

https://qph.fs.quoracdn.net/main-qimg-2e1f0071ca9878f7719ed0ea8aeb386d

Fully-connected:

Convolutional:



Fully-Connected vs Convolutional Layers

Fully-connected:

Convolutional:

Convolutional layers dramatically 
reduce number of model parameters!

https://qph.fs.quoracdn.net/main-qimg-2e1f0071ca9878f7719ed0ea8aeb386d



Key Ingredient 1: Convolutional Layers

INPUT

* =

FILTER

ReLU + b



Recall: Image Representation (8-bit Grayscale)

https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html



Key Ingredient 1: Convolutional Layers

INPUT

* =

FILTER

ReLU + b



Convolution: Applies Linear Filter (e.g., 2D)

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

Input Filter 
(aka – Kernel)

Feature 
Map

Way to Interpret 
Neural Network

• Compute a function of local neighborhood for each location in matrix

• A filter specifies the function for how to combine neighbors’ values



2D Filtering

https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf

Matrix:

Slides filter over the matrix and computes matrix multiplication

Filtered 
Result:



2D Filtering

Matrix:

Filtered 
Result:

Slides filter over the matrix and computes matrix multiplication

https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf



2D Filtering

Matrix:

Filtered 
Result:

Slides filter over the matrix and computes matrix multiplication

https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf



2D Filtering

Matrix:

Filtered 
Result:

Slides filter over the matrix and computes matrix multiplication

https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf



2D Filtering: Toy Example

? ? ?

? ? ?

? ? ?

Input Feature MapFilter
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0 1 0

1 0 1

Product = 1*1 + 1*0 + 1*1 + 0*0 + 1*1 + 1*0 + 0*1 + 0*1 + 0*0 + 0*0 + 1*1

Product = 4
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Convolutional Layer

Input Filter 
(aka – Kernel)

Feature 
Map

• Many neural network libraries use “convolution” interchangeably with 
“cross correlation”; these are technically different

• Examples in these slides show the “cross-correlation” function

Way to Interpret 
Neural Network

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/



Convolutional Layer: Parameters to Learn

Input Filter 
(aka – Kernel)

Feature 
Map

Way to Interpret 
Neural Network

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/



Convolutional Layer: Parameters to Learn

• For shown example, how many weights must be 
learned?
• 4 (red, blue, yellow, and green values)

• If we instead used a fully connected layer, how 
many  weights would need to be learned?
• 36 (9 turquoise nodes x 4 magenta nodes)

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/



Neocognitron hard-coded filter values... 
filter values are learned for CNNs

Convolutional Layer: Parameters to Learn

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/



Convolutional Layer: What Can Filters Do? 

Input Filter 
(aka – Kernel)

Feature 
Map

Way to Interpret 
Neural Network

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/



Convolutional Layer: What Can Filters Do? 

Filter



Convolutional Layer: What Can Filters Do? 

• e.g.,

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

Filter Visualization of Filter



Convolutional Layer: What Can Filters Do? 

• e.g.,
Filter Overlaid on Image

Image Filter

Weighted Sum = ?

Weighted Sum = (50x30) + (20x30) +
 (50x30) + (50x3) + (50x30)

Weighted Sum = 6600 (Large Number!!)

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



Convolutional Layer: What Can Filters Do? 

• e.g.,
Filter Overlaid on Image

Weighted Sum = ?

Weighted Sum = 0 (Small Number!!)

Image Filter

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



Convolutional Layer: What Can Filters Do? 

• e.g.,

Filter Overlaid on Image (Small Response!)Filter Overlaid on Image (Big Response!)

This Filter is a Curve Detector!

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



Convolutional Layer: What Can Filters Do? 
Filter Feature Map Filter Feature Map

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/



Convolutional Layer: What Can Filters Do? 

Demo: http://beej.us/blog/data/convolution-image-processing/



Key Ingredient 1: Convolutional Layers

INPUT

* =

FILTER

ReLU + b

Can choose filters of any size to support feature learning! 



Key Ingredient 1: Convolutional Layers

INPUT

* =

FILTER

ReLU + b

Filtered results are passed, with a bias term, through an 
activation function to create activation/feature maps



Key Ingredient 1: Convolutional Layers

INPUT

*

=

FILTER

ReLU + b

= ReLU + b

Can have multiple filters (with a unique bias parameter per filter)



=

FILTER

ReLU + b

= ReLU + b

Key Ingredient 1: Convolutional Layer Summary

INPUT

*

Neural networks learn values for all filters and biases in all layers



How Filters Are Applied to Multi-Channel Inputs

https://www.geeksforgeeks.org/matlab-rgb-image-representation/

e.g., RGB images



How Filters Are Applied to Multi-Channel Inputs

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

Number of channels in a filter matches that of the input



Convolutional Layers Stacked

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf

Can then stack a sequence of convolution layers; e.g.,



Convolutional Layers Stacked

Can then stack a sequence of convolution layers, which leads to identifying patterns in 
increasingly larger regions of the input (e.g., pixel) space:

https://www.deeplearningbook.org/contents/convnets.html



Convolutional Layers Stacked

https://bruceoutdoors.files.wordpress.com/2017/08/hubel.jpg

Higher level features are 
constructed by combining 

lower level features

Can then stack a sequence of convolution layers, which leads to identifying patterns in 
increasingly larger regions of the input (e.g., pixel) space and mimicking vision system:



Problem #1: Input Shrinks

Why do the dimensions shrink with each convolutional layer?

Information is lost around boundary of the input!

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf



Solution: Control Output Size with Padding

• Padding: add values at the boundaries

https://software.intel.com/en-us/node/586159



Problem #2: Computation Expensive

Matrix:

Many computations to slide filter over every point in the matrix and compute multiplications

Filtered 
Result:

https://people.eecs.berkeley.edu/~jrs/189/lec/cnn.pdf



Idea: Reduce Computations with Stride

• Stride: how many steps taken spatially before applying a filter
• e.g., 2x2

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

Image Filter Feature Map

4 4

2 4



Convolutional Layer Summary

• Hyperparameters:
• Number of convolutional layers

• For each layer, number of filters and their dimensions, padding type, & stride

• Model will learn values for:
• Weights 

• Biases



Today’s Topics

• History of Convolutional Neural Networks (CNNs)

• CNNs – Convolutional Layers

• CNNs – Pooling Layers

• Pioneering CNN model: LeNet



Pooling Layer: Summarizes Neighborhood

• Max-pooling: partitions input into a set of non-overlapping rectangles 
and outputs the maximum value for each chunk

http://cs231n.github.io/convolutional-networks/#pool

? ?

? ?



Pooling Layer: Summarizes Neighborhood

• Max-pooling: partitions input into a set of non-overlapping rectangles 
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http://cs231n.github.io/convolutional-networks/#pool



Pooling Layer: Summarizes Neighborhood

• Max-pooling: partitions input into a set of non-overlapping rectangles 
and outputs the maximum value for each chunk

http://cs231n.github.io/convolutional-networks/#pool



Pooling Layer: Summarizes Neighborhood

• Max-pooling: partitions input into a set of non-overlapping rectangles 
and outputs the maximum value for each chunk

• Average-pooling: partitions input into a set of non-overlapping 
rectangles and outputs the average value for each chunk

? ?

? ?

Avg

http://cs231n.github.io/convolutional-networks/#pool



Pooling Layer: Summarizes Neighborhood

• Max-pooling: partitions input into a set of non-overlapping rectangles 
and outputs the maximum value for each chunk

• Average-pooling: partitions input into a set of non-overlapping 
rectangles and outputs the average value for each chunk

3.25 5.25

2 2

Avg

http://cs231n.github.io/convolutional-networks/#pool



Pooling Layer: Summarizes Neighborhood

• Max-pooling: partitions input into a set of non-overlapping rectangles 
and outputs the maximum value for each chunk

• Average-pooling: partitions input into a set of non-overlapping 
rectangles and outputs the average value for each chunk

• And many more pooling options
• e.g., listed here https://pytorch.org/docs/stable/nn.html#pooling-layers



Pooling for Multi-Channel Input

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

Pooling is applied to each input channel separately



Pooling Layer: Benefits

• Reduces memory requirements

• Reduces computational requirements



Today’s Topics

• History of Convolutional Neural Networks (CNNs)

• CNNs – Convolutional Layers

• CNNs – Pooling Layers

• Pioneering CNN model: LeNet



Historical Context: Inspiration

Fi
rs

t 
p

ro
gr

am
m

ab
le

 m
ac

h
in

e

Tu
ri

n
g 

te
st

 
1945

A
I

1950

Pe
rc

ep
tr

o
n

1847

G
ra

d
ie

n
t 

d
es

ce
n

t

M
ac

h
in

e
 le

ar
n

in
g

https://yann.lecun.com/exdb/lenet/index.html



By end of 1990s, LeNet read over 10% of checks 
in North America with millions every month



MNIST Dataset Challenge

• Goal: classify digit as 0, 1, …, or 9

• Source: images collected by NIST from 
a total of 500 Census Bureau 
employees and high school students

• Dataset: 60,000 training and 10,000 
test examples, pre-processed to be 
centered and same dimension; writers 
were different in the two sets

• Evaluation metric: accuracy (% correct)

https://commons.wikimedia.org/w/index.php?curid=64810040



LeNet: Architecture (like Neocognitron, has 
alternating convolutional layers and pooling layers)

Lecun, Bottou, Bengio, and Haffner. Gradient-based learning applied to document recognition. 1998

Multi-layer neural networktanh is used as the activation function



LeNet: Architecture (like Neocognitron, has 
alternating convolutional layers and pooling layers)

Multi-layer neural network

How many possible output values 
does this network predict?

Lecun, Bottou, Bengio, and Haffner. Gradient-based learning applied to document recognition. 1998



LeNet: Architecture (like Neocognitron, has 
alternating convolutional layers and pooling layers)

How many filters are between 
the input and hidden layer 1?

Lecun, Bottou, Bengio, and Haffner. Gradient-based learning applied to document recognition. 1998



LeNet: Architecture (like Neocognitron, has 
alternating convolutional layers and pooling layers)

What size of a neighborhood 
is used for this pooling layer?

Lecun, Bottou, Bengio, and Haffner. Gradient-based learning applied to document recognition. 1998



Training Procedure
Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make predictions

2. Error quantification: 
measure error of the 
model’s predictions on 
training data using a loss 
function

3. Backward pass: calculate 
gradients to determine how 
each model parameter 
contributed to model error

4. Account for weight sharing 
by using average of all 
connections for a parameter

5. Update each parameter 
using calculated gradients

Baydin et al. Automatic Differentiation in Machine Learning: a Survey. 2018



Training Procedure

Still descend an error surface, E, 
based on the chosen objective 
function (cross entropy loss)

Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make predictions

2. Error quantification: 
measure error of the 
model’s predictions on 
training data using a loss 
function

3. Backward pass: calculate 
gradients to determine how 
each model parameter 
contributed to model error

4. Account for weight sharing 
by using average of all 
connections for a parameter

5. Update each parameter 
using calculated gradients



Training Procedure

Gradient computed for all values in all 
convolutional filters (i.e., model 
weights) as well as all bias terms

(covered in Section 6.3 of Kamath book and 
https://www.jefkine.com/general/2016/09/05/bac
kpropagation-in-convolutional-neural-networks/)

Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make predictions

2. Error quantification: 
measure error of the 
model’s predictions on 
training data using a loss 
function

3. Backward pass: calculate 
gradients to determine how 
each model parameter 
contributed to model error

4. Account for weight sharing 
by using average of all 
connections for a parameter

5. Update each parameter 
using calculated gradients

Yann Lecun. Generalization and network design strategies. Technical Report, 1989



Training Procedure (Key Novelty)

Input Filter 
(aka – Kernel)

Feature 
Map

Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make predictions

2. Error quantification: 
measure error of the 
model’s predictions on 
training data using a loss 
function

3. Backward pass: calculate 
gradients to determine how 
each model parameter 
contributed to model error

4. Account for weight sharing 
by using average of all 
connections for a parameter

5. Update each parameter 
using calculated gradients

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/



LeNet Analysis

Y. Lecun ; L. Bottou ; Y. Bengio ; P. Haffner; Gradient-based learning applied to document recognition; 1998

How many epochs are needed 
for training to converge?

Why might overfitting not 
arise with more training? 

- Learning rate too large for the 
model to settle in a local minimum 
(instead oscillated randomly)



LeNet Analysis

All 82 mislabeled examples 
(correct answer on left, 
predicted answer on right):

Why might the model be 
making mistakes?

- Insufficient representation 
in the training data

- Ambiguity

Y. Lecun ; L. Bottou ; Y. Bengio ; P. Haffner; Gradient-based learning applied to document recognition; 1998



Today’s Topics

• History of Convolutional Neural Networks (CNNs)

• CNNs – Convolutional Layers

• CNNs – Pooling Layers

• Pioneering CNN model: LeNet
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