
Training Optimization

Danna Gurari
University of  Colorado Boulder

Spring 2025

https://dannagurari.colorado.edu/course/neural-networks-and-deep-learning-spring-2025/



Review

• Last lecture:
• Gradient descent: how neural networks learn
• Mathematical foundation of gradient descent: derivatives
• Applying gradient descent to train neural networks
• Training example

• Assignments (Canvas):
• Problem set 1 due earlier today
• Problem set 2 due in 1 week

• Questions?



Today’s Topics

• Motivation: effective gradients for learning

• Initializing parameters

• Initializing data

• Following the gradient (optimization)

• Programming tutorial



Today’s Topics

• Motivation: effective gradients for learning

• Initializing parameters

• Initializing data

• Following the gradient (optimization)

• Programming tutorial



Recall: Neural Network Training Approach

• Repeat until stopping criterion met:

1. Forward pass: propagate 
training data through model 
to make predictions

2. Error quantification: 
measure error of the 
model’s predictions on 
training data using a loss 
function

3. Backward pass: calculate 
gradients to determine how 
each model parameter 
contributed to model error

4. Update each parameter 
using calculated gradients

Baydin et al. Automatic Differentiation in Machine Learning: a Survey. 2018

Key challenge: maintaining sufficient gradients for learning



Today’s Scope: “Looking Under the Hood” 
at How to Maintain Good Gradients

https://www.etftrends.com/etfs-the-
importance-of-looking-under-the-hood/

Recall: algorithm learns from 
data on a processor patterns 
for making predictions 

Challenge: sufficient gradients 
(fuel) to learn (drive anywhere)

Today’s scope:



How Can We Arrive at the Global Loss?

x

f(x)

1. Choose good starting point

2. Choose good step sizes for 
following the gradient 

       (or avoid bad step sizes)



Today’s Topics

• Motivation: effective gradients for learning

• Initializing parameters

• Initializing data

• Following the gradient (optimization)

• Programming tutorial



How Can We Arrive at the Global Loss?

x

f(x)

1. Choose good starting point

2. Choose good step sizes for 
following the gradient 

       (or avoid bad step sizes)



Popular Initializations: Historical Context

Fi
rs

t 
p

ro
gr

am
m

ab
le

 m
ac

h
in

e

M
ac

h
in

e
 

le
ar

n
in

g

Tu
ri

n
g 

te
st

 
1945

A
I

1950 1986

Pe
rc

ep
tr

o
n

1847

G
ra

d
ie

n
t 

d
es

ce
n

t

https://pyimagesearch.com/2021/05/06/understanding-weight-initialization-for-neural-networks/



Popular Initializations

Approach: enable suitable gradients for learning
• weights initialized to random, small values, where the scale of “small” is key
• biases set to 0

They avoid:
• weight symmetry, which prevents learning since neurons compute same functions
• large weights; why? 



Idea: Choose Parameters that Facilitate Learning

Sigmoid Tanh

Units with very large or small “z” 
values have slow/no learning; why?

Small derivatives limit amount 
model parameters can change 
with gradient descent

Masi et al. Journal of the Mechanics and Physics of Solids. 2021

Idea: normalize parameters so 
derivative lies in a “good range”, 
where learning can occur



e.g., Xavier/Glorot Initialization 

weight matrix between 
layers j and j+1

fan in: # of neurons 
entering layer j+1

fan out: # of neurons 
leaving layer j+1

uniform distribution in 
interval between two values

It is common for the scale of “small” for weights to be 
determined by many neurons are entering or leaving a layer



e.g., Xavier/Glorot Initialization 

https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aee1a28404

Weights set so 
resulting gradients 

can support learning, 
with similar variance 

across layers



e.g., Xavier/Glorot Initialization 

https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aee1a28404

Weights set so 
resulting gradients 

can support learning, 
with similar variance 

across layersInitial weights 
cause weighted 

sums to have 
similar variance 
across layers in 
range of (1, -1)



Weights set so 
resulting gradients 

can support learning, 
with similar variance 

across layers

e.g., Xavier/Glorot Initialization 

Similar variances across layers in turn result in 
activations across layers that are similar and 

typically don’t saturate (i.e., not too large/small)

https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aee1a28404



Practical Note: Where to Start When Learning?

May need to repeat initialization to arrive closer to the target 
solution to accelerate learning and improve final performance

x

f(x)

1

2

3



Today’s Topics

• Motivation: effective gradients for learning

• Initializing parameters

• Initializing data

• Following the gradient (optimization)

• Programming tutorial



How Can We Arrive at the Global Loss?

x

f(x)

1. Choose good starting point

2. Choose good step sizes for 
following the gradient 

       (or avoid bad step sizes)



In Parallel, Data Typically Initialized So Features 
Have the Same Scales to Accelerate Learning

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739

e.g., 2D loss function:
Inefficient bouncing can occur during learning when larger updates are 
needed for some weights to minimize the loss during gradient descent  



Learning simplified by standardizing input data so mean is 0 and standard deviation 1

Original data: Standardized data:

https://github.com/amueller/introduction_to_ml_with_python/blob/master/03-unsupervised-learning.ipynb

In Parallel, Data Typically Initialized So Features 
Have the Same Scales to Accelerate Learning



Standardization changes loss function so 
that the gradient descent can more 
smoothly arrive at the minimum!

In Parallel, Data Typically Initialized So Features 
Have the Same Scales to Accelerate Learning

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739



Today’s Topics

• Motivation: effective gradients for learning

• Initializing parameters

• Initializing data

• Following the gradient (optimization)

• Programming tutorial



How Can We Arrive at the Global Loss?

x

f(x)

1. Choose good starting point

2. Choose good step sizes for 
following the gradient 

       (or avoid bad step sizes)



How Can We Arrive at the Global Loss?

Li et al. Visualizing the Loss Landscape of Neural Nets. Neurips 2018.

Example loss/error surface (vertical axis 
values) based on all possible weight pairs 
(two weights in horizontal plane)

What could go wrong when driving down 
the error surface?
- get stuck in a ditch (local optimum)
- zig-zag on a ravine (little gradient)
- arrive at a flat plateau (no gradient)

Many ways for trying to avoid these issues!



How Can We Arrive at the Global Loss?

Example loss/error surface (vertical axis 
values) based on all possible weight pairs 
(horizontal plane with two weights)

What could go wrong when driving down 
the error surface?
- get stuck in a ditch (local optimum)
- zig-zag on a ravine (little gradient)
- arrive at a flat plateau (no gradient)

Many ways for trying to avoid these issues!



Popular Optimization Methods

http://cs231n.github.io/neural-networks-3/#update

Trajectory of methods on 
contours of a loss surface:



Vanilla Approach (Already Examined)

http://cs231n.github.io/neural-networks-3/#update
https://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/

Inefficient since 
steps get smaller as 
gradient gets smaller

GradientParameters



Momentum Optimization

• Analogy: roll a ball down a hill and it will pick up momentum

• What are advantages and disadvantages? 
• Can roll past local minima ☺

• It may roll past optimum and oscillate around it 

• Need to choose a mu value 

http://cs231n.github.io/neural-networks-3/#update

Like friction; values range 
from 0 to 1 with larger 
being greater friction

Gradient not used for speed 
but instead acceleration

Velocity vector captures cumulative 
direction of previous gradients; 
initialized to 0



Other Optimization Methods

• Step decay: 
• Reduce the learning rate by some factor every few epochs

• Exponential decay

• 1/t decay

• Adapt learning rate per-parameter 
• e.g., AdaGrad, RMSprop, and Adam (i.e., adaptive momentum – very popular)

http://cs231n.github.io/neural-networks-3/#update



How Often to Update?

• Use mean gradients over all training examples (Batch gradient descent)
• Less bouncing but can be slow or infeasible when dataset is large

• Use gradient from one training example (Stochastic gradient descent)
• Fast to compute and can train using huge datasets (stores one instance in memory at each 

iteration) but updates are expected to bounce a lot

• Use mean gradients over subset of training examples (Mini-batch gradient descent) 
• Bounces less erratically than SGD and can train using huge datasets (store some instances in 

memory at each iteration) but can be slow or infeasible when dataset is large

• Often mini-batch gradient descent is used with maximum # of examples that fit in memory 



Practical Note: Need Patience

Algorithm training can take hours, 
days, weeks, months, or more!



During Training, You Should Ask Yourself: 
What Does the Observed Loss Behavior Mean?

https://cs231n.github.io/neural-networks-3/#update



During Training, You Should Ask Yourself: 
What Does the Observed Loss Behavior Mean?

• Loss curves signal how well training is going 

• Can address potential concerns by debugging the training process for 
each hypothesized issue one-by-one: e.g., 
• learning rate too high 

• learning rate too low 

• too small of mini-batch size 

• too many dead neurons resulting from poor weight initialization



What is a Good Loss Value?

• 0… no error ☺

• In practice, a value better than the expected one for the loss function
• e.g., What would be expected for the cross entropy loss?

• For a single example, loss from random guessing (equal probability per class) is:

• Assuming the dataset has a uniform true class distribution, we also get this value

Number of classes

Probability distribution 
of true class

Probability distribution 
of predicted class

Loss = - log (1/K) = log (K)



Analysis: Why Might There Be Oscillations 
in the Learning Curve for the Training Loss?

https://cs231n.github.io/neural-networks-3/#update



Discussion: From These Learning Curves, What Do 
You Think Is Happening and What Might Be a Fix?



Feeling Bewildered By Your Learning Curves?

You may feel better when looking at this link: 

https://lossfunctions.tumblr.com/



Today’s Topics

• Motivation: effective gradients for learning

• Initializing parameters

• Initializing data

• Following the gradient (optimization)

• Programming tutorial



Rise of “Deep Learning” Open Source Platforms

2011 2012 2014 2015

(Paszke et al.)

2013

(Jia et al.)(Bastien et al.) (Abadi et al.)

2016 2017

(Collobert et al.)

Popular Options Today



Rise of “Deep Learning” Open Source Platforms

2011 2012 2014 2015

(Paszke et al.)

2013

(Jia et al.)(Bastien et al.) (Abadi et al.)

2016 2017

(Collobert et al.)

Course focus for 
programming tutorials



Today’s Programming Tutorial



Today’s Topics

• Motivation: effective gradients for learning

• Initializing parameters

• Initializing data

• Following the gradient (optimization)

• Programming tutorial




	Slide 1: Training Optimization  
	Slide 4: Review
	Slide 5: Today’s Topics
	Slide 6: Today’s Topics
	Slide 7: Recall: Neural Network Training Approach
	Slide 8: Today’s Scope: “Looking Under the Hood” at How to Maintain Good Gradients
	Slide 9: How Can We Arrive at the Global Loss?
	Slide 10: Today’s Topics
	Slide 11: How Can We Arrive at the Global Loss?
	Slide 12: Popular Initializations: Historical Context
	Slide 13: Popular Initializations
	Slide 14: Idea: Choose Parameters that Facilitate Learning
	Slide 15: e.g., Xavier/Glorot Initialization 
	Slide 16: e.g., Xavier/Glorot Initialization 
	Slide 17: e.g., Xavier/Glorot Initialization 
	Slide 18: e.g., Xavier/Glorot Initialization 
	Slide 19: Practical Note: Where to Start When Learning?
	Slide 20: Today’s Topics
	Slide 21: How Can We Arrive at the Global Loss?
	Slide 22: In Parallel, Data Typically Initialized So Features Have the Same Scales to Accelerate Learning
	Slide 23: In Parallel, Data Typically Initialized So Features Have the Same Scales to Accelerate Learning
	Slide 24: In Parallel, Data Typically Initialized So Features Have the Same Scales to Accelerate Learning
	Slide 25: Today’s Topics
	Slide 26: How Can We Arrive at the Global Loss?
	Slide 27: How Can We Arrive at the Global Loss?
	Slide 28: How Can We Arrive at the Global Loss?
	Slide 29: Popular Optimization Methods
	Slide 30: Vanilla Approach (Already Examined)
	Slide 31: Momentum Optimization
	Slide 32: Other Optimization Methods
	Slide 33: How Often to Update?
	Slide 34: Practical Note: Need Patience
	Slide 35: During Training, You Should Ask Yourself:  What Does the Observed Loss Behavior Mean?
	Slide 36: During Training, You Should Ask Yourself:  What Does the Observed Loss Behavior Mean?
	Slide 37: What is a Good Loss Value?
	Slide 39: Analysis: Why Might There Be Oscillations in the Learning Curve for the Training Loss?
	Slide 40: Discussion: From These Learning Curves, What Do You Think Is Happening and What Might Be a Fix?
	Slide 41: Feeling Bewildered By Your Learning Curves?
	Slide 42: Today’s Topics
	Slide 43: Rise of “Deep Learning” Open Source Platforms
	Slide 44: Rise of “Deep Learning” Open Source Platforms
	Slide 45: Today’s Programming Tutorial
	Slide 46: Today’s Topics
	Slide 47

