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Review

• Last lecture:
• Supervised learning: approach to develop a model

• Artificial neuron model: basic unit of neural networks

• Evaluating classification models

• Assignments (Canvas):
• Problem set 1 due in one week

• Questions?



Today’s Topics

• Motivation for neural networks: need non-linear models

• Neural networks’ basic ingredients: hidden layers and activation units

• Neural networks’ support for diverse problems: output units

• Objective function: what a model should learn

• Programming tutorial
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Recall: Vision 
for Perceptrons

New York Times article, July 8, 1958 :
 

https://www.nytimes.com/1958/07/08/arc
hives/new-navy-device-learns-by-doing-

psychologist-shows-embryo-of.html



Historical Context: Artificial Neurons’ Downfall
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New book called 
“Perceptrons” 
exposed its limitations

https://www.wyso.org/2016-08-05/remembering-a-thinker-who-thought-about-thinking

Marvin Minsky
(received 1969 Turing 

Award for this line of work)

Seymore Papert



Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output: 
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1  XOR  x2

0 0

0 1

1 0

1 1

?

?

?

?
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Fall of Perceptron (Artificial Neuron)

x1 x2 x1  XOR  x2

0 0

0 1

1 0

1 1

0

1

1

0

A Perceptron is a linear function, and so cannot solve XOR (by separating 1s from 0s):

How can a machine “walk, talk, see, write, reproduce itself and be 
conscious of its existence” when it can’t solve the XOR problem?



Today’s Topics

• Motivation for neural networks: need non-linear models

• Neural networks’ basic ingredients: hidden layers and activation units

• Neural networks’ support for diverse problems: output units

• Objective function: what a model should learn

• Programming tutorial



Solution: Solve Non-Linear Problems with 
Connected Neurons (i.e., Neural Networks)

Human: ~100,000,000,000 neurons

https://www.britannica.com/sci
ence/human-nervous-system

Nematode worm: 302 neurons

https://en.wikipedia.org/wiki
/Nematode#/media/File:Cele
gansGoldsteinLabUNC.jpg



Biological Neural Network:

Artificial Neural Network:

http://www.rzagabe.com/2014/11/03/an-
introduction-to-artificial-neural-networks.html

https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb

Transforms input into features 
that are useful for prediction!

Solution: Solve Non-Linear Problems with 
Connected Neurons (i.e., Neural Networks)



http://cs231n.github.io/neural-networks-1/

Neural Network: Hidden Layers

This is a 3-layer neural network 
(i.e., count number of hidden 
layers plus output layer)

input values

each “hidden layer” uses outputs of 
units (i.e., neurons) and provides them 
as inputs to other units (i.e., neurons)

prediction



Neural Network: Hidden Layers

• How does this relate to a perceptron?

• Unit: computes a weighted sum and 
applies an activation function

Python Machine Learning; Raschka & Mirjalili

Recall: bias

Recall: weights

http://cs231n.github.io/neural-networks-1/
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Neural Network: Hidden Layers

• How does this relate to a perceptron?

• Unit: computes a weighted sum and 
applies an activation function
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Neural Network: Hidden Layers

• Training goal: learn model parameters

• Layers are called “hidden” because 
algorithm decides how to use each 
layer to produce its output

http://cs231n.github.io/neural-networks-1/



Neural Network: Hidden Layers

How many weights are in this model?
• Input to Hidden Layer 1:

• 3x4 = 12
• Hidden Layer 1 to Hidden Layer 2:

• 4x4 = 16
• Hidden Layer 2 to Output Layer

• 4x1 = 4
• Total: 

• 12 + 16 + 4 = 32

http://cs231n.github.io/neural-networks-1/



Neural Network: Hidden Layers

How many parameters are there to learn?
• Number of weights:

• 32
• Number of biases:

• 4 + 4 + 1 = 9
• Total

• 41

http://cs231n.github.io/neural-networks-1/



Fully Connected, Feedforward Neural Networks

• What does it mean for a model to be fully 
connected?
• Each unit provides input to each unit in the next layer

• What does it mean for a model to be feedforward?
• Each layer serves as input to the next layer with no loops

http://cs231n.github.io/neural-networks-1/



Hidden Layers Alone Are NOT Enough to 
Model Non-Linear Functions
Key Observation: feedforward networks are just functions chained together

e.g., 

W1

W2

W3

W4

W5

W6

x1

x2

h1

h2

y

• What is function for h1?
• h1 = w1x1 + w3x2 + b1

• What is function for h2?
• h2 = w2x1 + w4x2 + b2

• What is function for y?
• y = h1w5 + h2w6 + b3 
• y = (w1x1 + w3x2 + b1 )w5 + (w2x1 + w4x2 + b2)w6 + b3

• y = w1w5x1 + w3w5x2 + w5b1 + w2w6 x1 + w4w6x2 + w6b2 + b3

A chain of LINEAR functions at any depth is still a LINEAR function!
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Constant x linear function = linear function



Key Idea: Use Connected Neurons to Non-linearly 
Transform Input into Useful Features for Predictions

Python Machine Learning; Raschka & Mirjalili

Biological Neuron:

Artificial Neurons 
(e.g., Perceptron):

Mimic a neuron firing, 
by having each unit 
apply a non-linear 
“activation” function 
to the weighted input

Activation 
Function

?



Non-Linear Activation Functions

• Each unit applies a non-linear “activation” function to the weighted input to 
mimic a neuron firing

http://www.cs.utoronto.ca/~fidler/teaching/2015/slides/CSC411/10_nn1.pdf

Sigmoid Tanh ReLU



Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

Bias = 0
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Non-Linear Example: Revisiting XOR problem

Activation function:

Example neural network

Neural networks 
can solve XOR... 
and so model non-
linear functions!

1

1

1

1 1

-2

Bias = 0

Bias = -1

Bias = 0



Key Questions When Creating Neural Networks

• How many layers should be used?
• Note: field recoined as “Deep Learning” due to latest trend of adding layers

• How many nodes should be in each layer?

• Which activation function should be used?



Today’s Topics

• Motivation for neural networks: need non-linear models

• Neural networks’ basic ingredients: hidden layers and activation units

• Neural networks’ support for diverse problems: output units

• Objective function: what a model should learn

• Programming tutorial



https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb

Recall: Neural Networks

Transforms input into features 
that are useful for prediction!

What should the model predict?



Desired Output Driven by Task

Regression
(predict continuous value)

Classification
(predict discrete value)

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron



Linear (No Activation Function)

Python Machine Learning; Raschka & Mirjalili



Desired Output Driven by Task

Regression
(predict continuous value)

Classification
(predict discrete value)

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron



Binary Classification: Sigmoid 
(aka, Logistic Regression)

If           >= 0.5, output 1; Else, output 0

Why not use z instead of          ?
- We want a probability in [0, 1]

What happens to the output as z becomes 
more positive?
- e^-z approaches 0 so value approaches 1

What happens to the output as z becomes 
more negative?
- e^-z becomes larger so value approaches 0(weighted sum of inputs + bias at final node)



https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Multilabel Classification: Sigmoid Per Class

Outputs 1 when greater than or equal 
to threshold (e.g., 0.5) and 0 otherwise

denotes a sigmoid function



Multiclass Classification: Softmax

Converts vector of scores into a probability distribution that sums to 1; e.g.,

node with largest probability 
is the class assigned

https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede



Multiclass Classification: Softmax

Converts vector of scores into a probability distribution that sums to 1; e.g.,

Ideal prediction; 1 
hot vector of one 1 

and the rest 0s

https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede



Multiclass Classification: Softmax

Converts vector of scores into a probability distribution that sums to 1

Useful tutorial: https://towardsdatascience.com/exploring-the-softmax-function-578c8b0fb15

Produces probability by dividing each 
class score with sum across all classes 

(normalization)

Number of classes

i = 1, …, K

Exponentiating ensures positive values by making 
negative scores slightly larger than 0 and positive 

values grow exponentially; e is a convenient 
exponent base for computation during training
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Desired Output Driven by Task

https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/



Today’s Topics

• Motivation for neural networks: need non-linear models

• Neural networks’ basic ingredients: hidden layers and activation units

• Neural networks’ support for diverse problems: output units

• Objective function: what a model should learn

• Programming tutorial



Have Model Achieve a Specified 
(Measurable) Goal: Objective Function

Key question: how do you measure/quantify task success?

Regression
(predict continuous value)

Classification
(predict discrete value)

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron



What is the minimum possible value?

• 0 (i.e., all correct predictions)

Predicted valueTrue value

Mean taken over n instances

e.g., learn weights and biases that yield the smallest 
possible squared error (aka, L2 loss, quadratic loss)

W11x1

x2 h2

o1

b1

h1
b3

W22

b2

1

1

1

Have Model Achieve a Specified 
(Measurable) Goal: Objective Function



Regression
(predict continuous value)

Classification
(predict discrete value)

Key question: how do you measure/quantify task success?

Have Model Achieve a Specified 
(Measurable) Goal: Objective Function

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron



https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

True prediction is 1 hot vector (i.e., one 1 and the rest 0s)

e.g., learn model parameters yielding 
the smallest possible distance 
between predicted and true class 
distributions for the training 
examples with cross entropy loss

Have Model Achieve a Specified 
(Measurable) Goal: Objective Function



Excellent background: https://web.stanford.edu/~jurafsky/slp3/5.pdf

Number of classes

Probability distribution of true class

Probability distribution of predicted class

Recall, truth is set to 1 for 
one class and 0 otherwise

Observed features

Simplifies to the log of the predicted 
probability for the correct class 

(i.e., negative log likelihood loss) 

Have Model Achieve a Specified 
(Measurable) Goal: Objective Function



Range of possible values?

• Minimum: 0 
• i.e., correct prediction: negative log of 1

• Maximum: Infinity 
• i.e., incorrect prediction: negative log of 0

https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

More confidently wrong 
predictions lead to greater error

Have Model Achieve a Specified 
(Measurable) Goal: Objective Function



MANY objective functions exist, and we 
will examine popular ones in this course

Note: “objective function” is often used interchangeably with “loss function” and “cost 
function” (more here: https://www.baeldung.com/cs/cost-vs-loss-vs-objective-function)



Key Question: How to Train a Model to 
Achieve the Objective (Function)?

Stay tuned for the 
next three lectures…
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