
Feedforward Neural Networks
and Objective Functions

Danna Gurari
University of Colorado Boulder

Spring 2025

https://dannagurari.colorado.edu/course/neural-networks-and-deep-learning-spring-2024/

Review

• Last lecture:
• Supervised learning: approach to develop a model

• Artificial neuron model: basic unit of neural networks

• Evaluating classification models

• Assignments (Canvas):
• Problem set 1 due in one week

• Questions?

Today’s Topics

• Motivation for neural networks: need non-linear models

• Neural networks’ basic ingredients: hidden layers and activation units

• Neural networks’ support for diverse problems: output units

• Objective function: what a model should learn

• Programming tutorial

Today’s Topics

• Motivation for neural networks: need non-linear models

• Neural networks’ basic ingredients: hidden layers and activation units

• Neural networks’ support for diverse problems: output units

• Objective function: what a model should learn

• Programming tutorial

Recall: Vision
for Perceptrons

New York Times article, July 8, 1958 :

https://www.nytimes.com/1958/07/08/arc
hives/new-navy-device-learns-by-doing-

psychologist-shows-embryo-of.html

Historical Context: Artificial Neurons’ Downfall
Fi

rs
t

p
ro

gr
am

m
ab

le
 m

ac
h

in
e

M
ac

h
in

e

le
ar

n
in

g

Tu
ri

n
g

te
st

1945

A
I

19501943

First mathematical
model of neuron

Pe
rc

ep
tr

o
n

1969

New book called
“Perceptrons”
exposed its limitations

https://www.wyso.org/2016-08-05/remembering-a-thinker-who-thought-about-thinking

Marvin Minsky
(received 1969 Turing

Award for this line of work)

Seymore Papert

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output:
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

?

?

?

?

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output:
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

?

?

?

?

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output:
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

?

?

?

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output:
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

1

?

?

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output:
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

1

1

?

Fall of Perceptron (Artificial Neuron)

XOR = “Exclusive Or”
- Input: two binary values x1 and x2

- Output:
- 1, when exactly one input equals 1
- 0, otherwise

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

1

1

0

Fall of Perceptron (Artificial Neuron)

x1 x2 x1 XOR x2

0 0

0 1

1 0

1 1

0

1

1

0

A Perceptron is a linear function, and so cannot solve XOR (by separating 1s from 0s):

How can a machine “walk, talk, see, write, reproduce itself and be
conscious of its existence” when it can’t solve the XOR problem?

Today’s Topics

• Motivation for neural networks: need non-linear models

• Neural networks’ basic ingredients: hidden layers and activation units

• Neural networks’ support for diverse problems: output units

• Objective function: what a model should learn

• Programming tutorial

Solution: Solve Non-Linear Problems with
Connected Neurons (i.e., Neural Networks)

Human: ~100,000,000,000 neurons

https://www.britannica.com/sci
ence/human-nervous-system

Nematode worm: 302 neurons

https://en.wikipedia.org/wiki
/Nematode#/media/File:Cele
gansGoldsteinLabUNC.jpg

Biological Neural Network:

Artificial Neural Network:

http://www.rzagabe.com/2014/11/03/an-
introduction-to-artificial-neural-networks.html

https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb

Transforms input into features
that are useful for prediction!

Solution: Solve Non-Linear Problems with
Connected Neurons (i.e., Neural Networks)

http://cs231n.github.io/neural-networks-1/

Neural Network: Hidden Layers

This is a 3-layer neural network
(i.e., count number of hidden
layers plus output layer)

input values

each “hidden layer” uses outputs of
units (i.e., neurons) and provides them
as inputs to other units (i.e., neurons)

prediction

Neural Network: Hidden Layers

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

Recall: bias

Recall: weights

http://cs231n.github.io/neural-networks-1/

Neural Network: Hidden Layers

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network: Hidden Layers

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network: Hidden Layers

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network: Hidden Layers

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network: Hidden Layers

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network: Hidden Layers

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network: Hidden Layers

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network: Hidden Layers

• How does this relate to a perceptron?

• Unit: computes a weighted sum and
applies an activation function

Python Machine Learning; Raschka & Mirjalili

http://cs231n.github.io/neural-networks-1/

Neural Network: Hidden Layers

• Training goal: learn model parameters

• Layers are called “hidden” because
algorithm decides how to use each
layer to produce its output

http://cs231n.github.io/neural-networks-1/

Neural Network: Hidden Layers

How many weights are in this model?
• Input to Hidden Layer 1:

• 3x4 = 12
• Hidden Layer 1 to Hidden Layer 2:

• 4x4 = 16
• Hidden Layer 2 to Output Layer

• 4x1 = 4
• Total:

• 12 + 16 + 4 = 32

http://cs231n.github.io/neural-networks-1/

Neural Network: Hidden Layers

How many parameters are there to learn?
• Number of weights:

• 32
• Number of biases:

• 4 + 4 + 1 = 9
• Total

• 41

http://cs231n.github.io/neural-networks-1/

Fully Connected, Feedforward Neural Networks

• What does it mean for a model to be fully
connected?
• Each unit provides input to each unit in the next layer

• What does it mean for a model to be feedforward?
• Each layer serves as input to the next layer with no loops

http://cs231n.github.io/neural-networks-1/

Hidden Layers Alone Are NOT Enough to
Model Non-Linear Functions
Key Observation: feedforward networks are just functions chained together

e.g.,

W1

W2

W3

W4

W5

W6

x1

x2

h1

h2

y

• What is function for h1?
• h1 = w1x1 + w3x2 + b1

• What is function for h2?
• h2 = w2x1 + w4x2 + b2

• What is function for y?
• y = h1w5 + h2w6 + b3
• y = (w1x1 + w3x2 + b1)w5 + (w2x1 + w4x2 + b2)w6 + b3

• y = w1w5x1 + w3w5x2 + w5b1 + w2w6 x1 + w4w6x2 + w6b2 + b3

A chain of LINEAR functions at any depth is still a LINEAR function!

Hidden Layers Alone Are NOT Enough to
Model Non-Linear Functions
Key Observation: feedforward networks are just functions chained together

e.g.,

W1

W2

W3

W4

W5

W6

x1

x2

h1

h2

y

• What is function for h1?
• h1 = w1x1 + w3x2 + b1

• What is function for h2?
• h2 = w2x1 + w4x2 + b2

• What is function for y?
• y = h1w5 + h2w6 + b3

A chain of LINEAR functions at any depth is still a LINEAR function!

Constant x linear function = linear function

Key Idea: Use Connected Neurons to Non-linearly
Transform Input into Useful Features for Predictions

Python Machine Learning; Raschka & Mirjalili

Biological Neuron:

Artificial Neurons
(e.g., Perceptron):

Mimic a neuron firing,
by having each unit
apply a non-linear
“activation” function
to the weighted input

Activation
Function

?

Non-Linear Activation Functions

• Each unit applies a non-linear “activation” function to the weighted input to
mimic a neuron firing

http://www.cs.utoronto.ca/~fidler/teaching/2015/slides/CSC411/10_nn1.pdf

Sigmoid Tanh ReLU

Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

Bias = 0

Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

0

0

?

Bias = 0

Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

0

0

0

?

Bias = 0

Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

0

0

0

0

Bias = 0

Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

1

?

?

Bias = 0

Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

1

1

0

Bias = 0

?

Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

0

1

1

0

1

Bias = 0

Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

0

?

?

Bias = 0

Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

0

1

0

Bias = 0

?

Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

0

1

0

1

Bias = 0

Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

?

?

Bias = 0

Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

2

1

Bias = 0

?

Non-Linear Example: Revisiting XOR problem

• Separate 1s from 0s:

Activation function:

Example neural network

1

1

1

1 1

-2

Bias = 0

Bias = -1

1

1

2

1

0

Bias = 0

Non-Linear Example: Revisiting XOR problem

Activation function:

Example neural network

Neural networks
can solve XOR...
and so model non-
linear functions!

1

1

1

1 1

-2

Bias = 0

Bias = -1

Bias = 0

Key Questions When Creating Neural Networks

• How many layers should be used?
• Note: field recoined as “Deep Learning” due to latest trend of adding layers

• How many nodes should be in each layer?

• Which activation function should be used?

Today’s Topics

• Motivation for neural networks: need non-linear models

• Neural networks’ basic ingredients: hidden layers and activation units

• Neural networks’ support for diverse problems: output units

• Objective function: what a model should learn

• Programming tutorial

https://github.com/amueller/introduction_to_ml_with_python/blob/master/02-supervised-learning.ipynb

Recall: Neural Networks

Transforms input into features
that are useful for prediction!

What should the model predict?

Desired Output Driven by Task

Regression
(predict continuous value)

Classification
(predict discrete value)

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron

Linear (No Activation Function)

Python Machine Learning; Raschka & Mirjalili

Desired Output Driven by Task

Regression
(predict continuous value)

Classification
(predict discrete value)

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron

Binary Classification: Sigmoid
(aka, Logistic Regression)

If >= 0.5, output 1; Else, output 0

Why not use z instead of ?
- We want a probability in [0, 1]

What happens to the output as z becomes
more positive?
- e^-z approaches 0 so value approaches 1

What happens to the output as z becomes
more negative?
- e^-z becomes larger so value approaches 0(weighted sum of inputs + bias at final node)

https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Multilabel Classification: Sigmoid Per Class

Outputs 1 when greater than or equal
to threshold (e.g., 0.5) and 0 otherwise

denotes a sigmoid function

Multiclass Classification: Softmax

Converts vector of scores into a probability distribution that sums to 1; e.g.,

node with largest probability
is the class assigned

https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Multiclass Classification: Softmax

Converts vector of scores into a probability distribution that sums to 1; e.g.,

Ideal prediction; 1
hot vector of one 1

and the rest 0s

https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Multiclass Classification: Softmax

Converts vector of scores into a probability distribution that sums to 1

Useful tutorial: https://towardsdatascience.com/exploring-the-softmax-function-578c8b0fb15

Produces probability by dividing each
class score with sum across all classes

(normalization)

Number of classes

i = 1, …, K

Exponentiating ensures positive values by making
negative scores slightly larger than 0 and positive

values grow exponentially; e is a convenient
exponent base for computation during training

Multiclass Classification: Softmax

Converts vector of scores into a probability distribution that sums to 1; e.g.,

https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Multiclass Classification: Softmax

Converts vector of scores into a probability distribution that sums to 1; e.g.,

Multiclass Classification: Softmax

Converts vector of scores into a probability distribution that sums to 1; e.g.,

https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Multiclass Classification: Softmax

Converts vector of scores into a probability distribution that sums to 1; e.g.,

Multiclass Classification: Softmax

Converts vector of scores into a probability distribution that sums to 1; e.g.,

node with largest probability
is the class assigned

https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

Multiclass Classification: Softmax

Converts vector of scores into a probability distribution that sums to 1; e.g.,

Desired Output Driven by Task

Regression
(predict continuous value)

Classification
(predict discrete value)

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron

Desired Output Driven by Task

https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/

Today’s Topics

• Motivation for neural networks: need non-linear models

• Neural networks’ basic ingredients: hidden layers and activation units

• Neural networks’ support for diverse problems: output units

• Objective function: what a model should learn

• Programming tutorial

Have Model Achieve a Specified
(Measurable) Goal: Objective Function

Key question: how do you measure/quantify task success?

Regression
(predict continuous value)

Classification
(predict discrete value)

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron

What is the minimum possible value?

• 0 (i.e., all correct predictions)

Predicted valueTrue value

Mean taken over n instances

e.g., learn weights and biases that yield the smallest
possible squared error (aka, L2 loss, quadratic loss)

W11x1

x2 h2

o1

b1

h1
b3

W22

b2

1

1

1

Have Model Achieve a Specified
(Measurable) Goal: Objective Function

Regression
(predict continuous value)

Classification
(predict discrete value)

Key question: how do you measure/quantify task success?

Have Model Achieve a Specified
(Measurable) Goal: Objective Function

Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurelien Geron

https://towardsdatascience.com/multi-label-image-classification-with-neural-network-keras-ddc1ab1afede

True prediction is 1 hot vector (i.e., one 1 and the rest 0s)

e.g., learn model parameters yielding
the smallest possible distance
between predicted and true class
distributions for the training
examples with cross entropy loss

Have Model Achieve a Specified
(Measurable) Goal: Objective Function

Excellent background: https://web.stanford.edu/~jurafsky/slp3/5.pdf

Number of classes

Probability distribution of true class

Probability distribution of predicted class

Recall, truth is set to 1 for
one class and 0 otherwise

Observed features

Simplifies to the log of the predicted
probability for the correct class

(i.e., negative log likelihood loss)

Have Model Achieve a Specified
(Measurable) Goal: Objective Function

Range of possible values?

• Minimum: 0
• i.e., correct prediction: negative log of 1

• Maximum: Infinity
• i.e., incorrect prediction: negative log of 0

https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

More confidently wrong
predictions lead to greater error

Have Model Achieve a Specified
(Measurable) Goal: Objective Function

MANY objective functions exist, and we
will examine popular ones in this course

Note: “objective function” is often used interchangeably with “loss function” and “cost
function” (more here: https://www.baeldung.com/cs/cost-vs-loss-vs-objective-function)

Key Question: How to Train a Model to
Achieve the Objective (Function)?

Stay tuned for the
next three lectures…

Today’s Topics

• Motivation for neural networks: need non-linear models

• Neural networks’ basic ingredients: hidden layers and activation units

• Neural networks’ support for diverse problems: output units

• Objective function: what a model should learn

• Programming tutorial

Today’s Topics

• Motivation for neural networks: need non-linear models

• Neural networks’ basic ingredients: hidden layers and activation units

• Neural networks’ support for diverse problems: output units

• Objective function: what a model should learn

• Programming tutorial

	Slide 1: Feedforward Neural Networks and Objective Functions
	Slide 4: Review
	Slide 5: Today’s Topics
	Slide 6: Today’s Topics
	Slide 7: Recall: Vision for Perceptrons
	Slide 8: Historical Context: Artificial Neurons’ Downfall
	Slide 9: Fall of Perceptron (Artificial Neuron)
	Slide 10: Fall of Perceptron (Artificial Neuron)
	Slide 11: Fall of Perceptron (Artificial Neuron)
	Slide 12: Fall of Perceptron (Artificial Neuron)
	Slide 13: Fall of Perceptron (Artificial Neuron)
	Slide 14: Fall of Perceptron (Artificial Neuron)
	Slide 15: Fall of Perceptron (Artificial Neuron)
	Slide 16: Today’s Topics
	Slide 17: Solution: Solve Non-Linear Problems with Connected Neurons (i.e., Neural Networks)
	Slide 18: Solution: Solve Non-Linear Problems with Connected Neurons (i.e., Neural Networks)
	Slide 19: Neural Network: Hidden Layers
	Slide 20: Neural Network: Hidden Layers
	Slide 21: Neural Network: Hidden Layers
	Slide 22: Neural Network: Hidden Layers
	Slide 23: Neural Network: Hidden Layers
	Slide 24: Neural Network: Hidden Layers
	Slide 25: Neural Network: Hidden Layers
	Slide 26: Neural Network: Hidden Layers
	Slide 27: Neural Network: Hidden Layers
	Slide 28: Neural Network: Hidden Layers
	Slide 29: Neural Network: Hidden Layers
	Slide 30: Neural Network: Hidden Layers
	Slide 31: Neural Network: Hidden Layers
	Slide 32: Fully Connected, Feedforward Neural Networks
	Slide 33: Hidden Layers Alone Are NOT Enough to Model Non-Linear Functions
	Slide 34: Hidden Layers Alone Are NOT Enough to Model Non-Linear Functions
	Slide 35: Key Idea: Use Connected Neurons to Non-linearly Transform Input into Useful Features for Predictions
	Slide 36: Non-Linear Activation Functions
	Slide 37: Non-Linear Example: Revisiting XOR problem
	Slide 38: Non-Linear Example: Revisiting XOR problem
	Slide 39: Non-Linear Example: Revisiting XOR problem
	Slide 40: Non-Linear Example: Revisiting XOR problem
	Slide 41: Non-Linear Example: Revisiting XOR problem
	Slide 42: Non-Linear Example: Revisiting XOR problem
	Slide 43: Non-Linear Example: Revisiting XOR problem
	Slide 44: Non-Linear Example: Revisiting XOR problem
	Slide 45: Non-Linear Example: Revisiting XOR problem
	Slide 46: Non-Linear Example: Revisiting XOR problem
	Slide 47: Non-Linear Example: Revisiting XOR problem
	Slide 48: Non-Linear Example: Revisiting XOR problem
	Slide 49: Non-Linear Example: Revisiting XOR problem
	Slide 50: Non-Linear Example: Revisiting XOR problem
	Slide 51: Key Questions When Creating Neural Networks
	Slide 52: Today’s Topics
	Slide 53: Recall: Neural Networks
	Slide 54: Desired Output Driven by Task
	Slide 55: Linear (No Activation Function)
	Slide 56: Desired Output Driven by Task
	Slide 57: Binary Classification: Sigmoid (aka, Logistic Regression)
	Slide 58
	Slide 59: Multiclass Classification: Softmax
	Slide 60: Multiclass Classification: Softmax
	Slide 61: Multiclass Classification: Softmax
	Slide 62: Multiclass Classification: Softmax
	Slide 63: Multiclass Classification: Softmax
	Slide 64: Multiclass Classification: Softmax
	Slide 65: Multiclass Classification: Softmax
	Slide 66: Multiclass Classification: Softmax
	Slide 67: Multiclass Classification: Softmax
	Slide 68: Desired Output Driven by Task
	Slide 69: Desired Output Driven by Task
	Slide 70: Today’s Topics
	Slide 71: Have Model Achieve a Specified (Measurable) Goal: Objective Function
	Slide 72: Have Model Achieve a Specified (Measurable) Goal: Objective Function
	Slide 73: Have Model Achieve a Specified (Measurable) Goal: Objective Function
	Slide 74: Have Model Achieve a Specified (Measurable) Goal: Objective Function
	Slide 75: Have Model Achieve a Specified (Measurable) Goal: Objective Function
	Slide 76: Have Model Achieve a Specified (Measurable) Goal: Objective Function
	Slide 77
	Slide 78: Key Question: How to Train a Model to Achieve the Objective (Function)?
	Slide 79: Today’s Topics
	Slide 80: Today’s Topics
	Slide 81

