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Review

• Last lecture:
• Deep learning applications

• History of neural networks and deep learning

• How does a machine learn?

• Course logistics

• Please keep up with assigned readings posted to course website

• Questions?



Today’s Topics

• Supervised learning: approach to develop a model

• Artificial neuron model: basic unit of neural networks

• Evaluating classification models
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Goal: Design Models that Generalize Well to 
New, Previously Unseen Examples

Example:

Label: Hairy Hairy Not Hairy Hairy



Goal: Design Models that Generalize Well to 
New, Previously Unseen Examples

Training Data Test Data

1. Split data into a “training set” and “test set ”

Example:

Label: Hairy Hairy Not Hairy Hairy



Goal: Design Models that Generalize Well to 
New, Previously Unseen Examples

Training Data

2. Train model on “training set” to try to minimize prediction error on it

Example:

Label: Hairy Hairy Not Hairy



Goal: Design Models that Generalize Well to 
New, Previously Unseen Examples

3. Apply trained model on “test set” to measure generalization error

Example:

Label:

Test Data

Prediction Model

Predicted Label: ?

Hairy
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Goal: Design Models that Generalize Well to 
New, Previously Unseen Examples

3. Apply trained model on “test set” to measure generalization error

Test Data

Prediction Model

Example:

Label:

Predicted Label: Not Hairy

Hairy



Unsupervised Learning
(identify patterns in 
unstructured data)

Supervised Learning Mimics One of the 
Ways that Humans Can Learn; e.g., 

Supervised Learning
(identify patterns from structured 
data with labels of target outputs)



Today’s Topics

• Supervised learning: approach to develop a model

• Artificial neuron model: basic unit of neural networks

• Evaluating classification models



Vision

New York Times article, July 8, 1958 :
 

https://www.nytimes.com/1958/07/08/arc
hives/new-navy-device-learns-by-doing-

psychologist-shows-embryo-of.html



Idea: Mimic Human Machinery

Neuron: basic computing machinery that enables human behavior!
- receives, processes, and transmits information, including:

“hot”

https://www.clipart.email/clipart/don
t-touch-hot-stove-clipart-73647.html

“loud”

https://kisselpaso.com/if-the-sun-city-
music-fest-gets-too-loud-there-is-a-
phone-number-you-can-call-to-complain/

“spicy”

https://www.babycenter.com/404_when-
can-my-baby-eat-spicy-
foods_1368539.bc



Idea: Mimic Human Machinery

https://www.youtube.com/watch?v=oa6rvUJlg7o



Idea: Mimic Human Machinery

https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653

• When the input signals exceed a certain threshold within a short period of time, a neuron “fires”

• Neuron “firing” is an “all-or-none” process, where either a signal is sent or nothing happens

Sidenote: It Remains An Open Research Problem 
to Understand How Individual Neurons Work



Historical Context: Artificial Neurons

First programmable 
machine
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First mathematical 
model of neuron

Walter Pitts 
(Mathematician)

https://en.wikipedia.o
rg/wiki/Walter_Pitts

Warren McCulloch
(Neurophysiologist)

http://web.csulb.edu/~cwallis/ar
tificialn/warren_mcculloch.html

Emerged from 
interdisciplinary 

collaboration

Warren McCulloch and Walter Pitts, A Logical Calculus of Ideas Immanent in Nervous Activity, 1943



Biological Neuron:

Artificial Neurons 
(e.g., Perceptron):

Artificial Neuron: McCulloch-Pitts Neuron
“Input signals”

“Output signals”

Python Machine Learning; Raschka & Mirjalili
https://becominghuman.ai/introduction-to-neural-networks-bd042ebf2653



Artificial Neuron: McCulloch-Pitts Neuron

- inputs (x) and weights (w) can be 0 or 1
- weights (w) and threshold values are fixed

- outputs 1 or 0 (mimics neurons 
by “firing” only when aggregate 
value exceeds threshold)

Python Machine Learning; Raschka & Mirjalili



Artificial Neuron: McCulloch-Pitts Neuron

- inputs (x) and weights (w) can be 0 or 1
- weights (w) and threshold values are fixed

- outputs 1 or 0 (mimics neurons 
by “firing” only when aggregate 
value exceeds threshold)

Proposed for computation on a “Turing machine”

Python Machine Learning; Raschka & Mirjalili



Perceptron: Model Mimicking Human Machinery

First programmable 
machine
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First mathematical 
model of neuron

Pe
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Frank Rosenblatt
(Psychologist)

https://news.cornell.edu/stories/2019/09/profes
sors-perceptron-paved-way-ai-60-years-too-soon

Frank Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957



Perceptron: Architecture (Linear Threshold Unit)

Extends McCulloch-Pitts neuron as follows:
- inputs and weights can be any value
- weights (W) are learned

Python Machine Learning; Raschka & Mirjalili



Perceptron: Architecture (Linear Threshold Unit)

1Bias

• Function deciding output value (“fire” or not):

  

• Rewriting function:

 
 

• Where:

* Note: Kamath textbook offers two 
common conventions for Perceptrons of 
using two possible output values of {-1, 1} 
and {0, 1}, in Chapters 2.5 and 4.  The 
output choice dictates whether the 
threshold should be set to 0.5 or 0.



Perceptron: Architecture (Linear Threshold Unit)

Graphical representation 
when there are two features:

Python Machine Learning; Raschka & Mirjalili



Perceptron: Architecture (Linear Threshold Unit)

What is the motivation for weights? 
e.g., predicting if you will like a movie?

Python Machine Learning; Raschka & Mirjalili



Perceptron: Architecture (Linear Threshold Unit)

What is the motivation for bias?

Python Machine Learning; Raschka & Mirjalili



Perceptron: Architecture (Linear Threshold Unit)

1Bias

Kamath et al. Deep Learning for NLP and Speech Recognition. 2019.

Binary classification problems 
(separate blue and orange points):

The model (in 2D, a line) must go 
through the origin without a bias:

Model 
Errors

Feature 1

Fe
at

u
re

 2



Perceptron: Architecture (Linear Threshold Unit)

1Bias

Kamath et al. Deep Learning for NLP and Speech Recognition. 2019.

Binary classification problems 
(separate blue and orange points):

The model (in 2D, a line) doesn’t have 
to pass through the origin with bias:

Feature 1

Fe
at

u
re

 2



Perceptron: Learning Algorithm

Learns weights and bias values

Python Machine Learning; Raschka & Mirjalili



Perceptron: Learning Algorithm

https://en.wikipedia.org/wiki/Perceptron

Process: iteratively update 
boundary with observation 
of each additional example:



Perceptron: Learning Algorithm

Process: iteratively update 
boundary with observation 
of each additional example:

https://en.wikipedia.org/wiki/Perceptron



Perceptron: Learning Algorithm

1. Initialize weights/bias to 0 or small random numbers

2. Repeat until stopping criterion met:

1. Compute predicted value (i.e., {-1, 1}): 

2. Update parameters based on prediction success: 

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html

True Class Label Predicted Class Label
Learning Rate

(set a priori and 
held constant)

(for i-th training example)



Perceptron: Learning Algorithm

1. Initialize weights/bias to 0 or small random numbers

2. Repeat until stopping criterion met:

1. Compute predicted value (i.e., {-1, 1}): 

2. Update parameters based on prediction success: 

What happens to the parameters when 
the model predicts the correct class label?

- no update since result is 0

(for i-th training example)

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html



Perceptron: Learning Algorithm

1. Initialize weights/bias to 0 or small random numbers

2. Repeat until stopping criterion met:

1. Compute predicted value (i.e., {-1, 1}): 

2. Update parameters based on prediction success: 

What happens to the parameters when 
the model predicts the wrong class label?

- updates since result is “2” or “-2”

(for i-th training example)

https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html



Perceptron: Example 

?

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf

• True Model: Y is 1 if at least 2 of the 3 inputs are 1, and -1 otherwise



Perceptron: Example 

• True Model: Y is 1 if at least 2 of the 3 inputs are 1, and -1 otherwise

?

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf



Perceptron: Example 

• True Model: Y is 1 if at least 2 of the 3 inputs are 1, and -1 otherwise

?

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf



Perceptron: Example 

• True Model: Y is 1 if at least 2 of the 3 inputs are 1, and -1 otherwise

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf



Perceptron: Example (Training with 1rst Sample)

?

Predicted

=  
1 if                 

-1 otherwise
• Compute predicted  value:                              ;                                                                     

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf



Perceptron: Example (Training with 1rst Sample)

• Update params:                                                                     ; learning rate = 0.1

0

1 1

2 2

3 3

1

Predicted

? ? ? ?

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf



Perceptron: Example (Training with 1rst Sample)

0 = 0.1(-1-1)*1 = -0.2

1 = 0.1(-1-1)*1 = -0.2

2 = 0.1(-1-1)*0 = 0

3
= 0.1(-1-1)*0 = 0

• Update params:                                                                     ; learning rate = 0.1

1

Predicted

? ? ? ?

When predicted value is greater than true value (e.g., 1 > -1), 
the updates decrease parameter values to increase the 
likelihood of classifying the sample as -1 next time

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf



Perceptron: Example (Training with 2nd Sample)

1

?

Predicted

=  
1 if                 

-1 otherwise
• Compute output value:                              ;                                                                        

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf



Perceptron: Example (Training with 2nd Sample)

1

-1

Predicted

• Update params:                                                                     ; learning rate = 0.1

? ? ?

0

1 1

2 2

3 3

?

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf



Perceptron: Example (Training with 2nd Sample)

• Update params:                                                                     ; learning rate = 0.1

0

1

2

3

= 0.1(1--1)*1 = 0.2

= 0.1(1--1)*1 = 0.2

= 0.1(1--1)*0 = 0

= 0.1(1--1)*1 = 0.2

1

-1

Predicted

? ? ? ?

When predicted value is less than true value (e.g., -1 < 1), the 
updates increase parameter values to increase the likelihood 
of classifying the sample as 1 next time

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf



Perceptron: Example (Training with 2nd Sample)

• Update params:                                                                     ; learning rate = 0.1

0

1

2

3

= 0.1(1--1)*1 = 0.2

= 0.1(1--1)*1 = 0.2

= 0.1(1--1)*0 = 0

= 0.1(1--1)*1 = 0.2

1

-1

Predicted

What is the influence of the learning rate?  i.e., 
what would happen if the value was larger/smaller?

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf



Perceptron: Example – One Epoch (Training 
with All Samples)
•                                                                         ; learning rate = 0.1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf



Perceptron: Example – Six Epochs

•                                                                         ; learning rate = 0.1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf



Perceptron: Example – Six Epochs

•                                                                         ; learning rate = 0.1

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap4_ann.pdf



Perceptron: Learning Algorithm Choices

1. Initialize weights and bias

2. Repeat until stopping criterion met:

1. Compute predicted value (i.e., {-1, 1}): 

2. Update parameters based on prediction success: 

3. Learning Rate

1. Values 

2. 



Today’s Topics

• Supervised learning: approach to develop a model

• Artificial neuron model: basic unit of neural networks

• Evaluating classification models



Evaluation: How Good Is Our Model?

Learned values for weights and bias 

Python Machine Learning; Raschka & Mirjalili



Evaluation Methods: Confusion Matrix

TP FP

FN TN
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Actual

TP = true positive
TN = true negative
FP = false positive
FN = false negative



Evaluation Methods: Descriptive Statistics

50 10

15 100
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Hairy Not hairy
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d
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te
d

Actual

Commonly-used statistical descriptions:

• How many actual hairy results are there?
• How many actual not hairy results are there? 
• How many correctly classified instances? 
• How many incorrectly classified instances?
• What is the precision (aka – sensitivity)? 

(proportion of predicted instances actually hairy)
• 50/(50+10) ~ 83%

• What is the recall? (proportion of hairy instances 
predicted as hairy)
• 50/(50+15) ~ 77%

e.g.,
-    65
- 110
- 150/175 ~ 86%
- 25/175 ~ 14%



Evaluation Methods: Descriptive Statistics

100 20

20 100
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0 40
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(c) 

Which confusion matrix reflects the best-performing model?



Evaluation Methods: Descriptive Statistics

100 20

20 100

Z
N

o
t 
Z

Z Not Z

P
re

d
ic

te
d

Actual

(a) 

80 0

120 40
Z

N
o

t 
Z

Z Not Z

P
re

d
ic

te
d

Actual

(b) 

100 100

0 40

Z
N

o
t 
Z

Z Not Z

P
re

d
ic

te
d

Actual

(c) 

Which confusion matrix reflects the model with the highest precision?

A cautious model that is 
correct whenever it 
predicts a positive label 

However, it can incorrectly predict 
many positives have negative labels 



Evaluation Methods: Descriptive Statistics
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(c) 

Which confusion matrix reflects the model with the highest recall?

An ambitious model that tries 
to identify every positive label 

However, many 
negatives can be 
deemed positive



Class Discussion

• Which of these evaluation metrics would you use versus not 
use and why?
• Accuracy (percentage of correctly classified examples)

• Precision (percentage of relevant instances among retrieved instances) 

• Recall (percentage of relevant instances retrieved)

• Scenario 1: Medical test for a rare disease affecting one in every 
million people.

• Scenario 2: Deciding which emails to flag as spam.



Today’s Topics

• Supervised learning: approach to develop a model

• Artificial neuron model: basic unit of neural networks

• Evaluating classification models
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