
Reachability Analysis using Message Passing over Tree

Decompositions.

Sriram Sankaranarayanan
University of Colorado, Boulder, CO.
Email: srirams@nameOfTheState.EDU

July 22, 2020

Abstract

In this paper, we study efficient approaches to reachability analysis for discrete-time non-
linear dynamical systems when the dependencies among the variables of the system have low
treewidth. Reachability analysis over nonlinear dynamical systems asks if a given set of target
states can be reached, starting from an initial set of states. This is solved by computing con-
servative over approximations of the reachable set using abstract domains to represent these
approximations. However, most approaches must tradeoff the level of conservatism against the
cost of performing analysis, especially when the number of system variables increases. This
makes reachability analysis challenging for nonlinear systems with a large number of state vari-
ables. Our approach works by constructing a dependency graph among the variables of the
system. The tree decomposition of this graph builds a tree wherein each node of the tree is
labeled with subsets of the state variables of the system. Furthermore, the tree decomposition
satisfies important structural properties. Using the tree decomposition, our approach abstracts
a set of states of the high dimensional system into a tree of sets of lower dimensional projec-
tions of this state. We derive various properties of this abstract domain, including conditions
under which the original high dimensional set can be fully recovered from its low dimensional
projections. Next, we use ideas from message passing developed originally for belief propagation
over Bayesian networks to perform reachability analysis over the full state space in an efficient
manner. We illustrate our approach on some interesting nonlinear systems with low treewidth
to demonstrate the advantages of our approach.

1 Introduction

Reachability analysis asks whether a target set of states is reachable over a finite or infinite time
horizon, starting from an initial set for a dynamical system. This problem is fundamental to the
verification of systems, and is known to be challenging for a wide variety of models. This includes
cyber-physical systems, physical and biological processes. In this paper, we study reachability
analysis algorithms for nonlinear, discrete-time dynamical systems. The key challenge in analyzing
such systems arises from the difficulty of representing the reachable sets of these systems. As
a result, we resort to over-approximations of reachable sets using tractable set representations
such as intervals [16], ellipsoids, polyhedra [19], and low degree semi-algebraic sets [2]. Whereas
these representations are useful for reachability analysis, they also trade off the degree of over-
approximation in representing various sets against the complexity of performing operations such as
intersections, unions, projections and image computations over these sets. The theory of abstract
interpretation allows us to design various abstract domains that serve as representations for sets of

1

srirams@nameOfTheState.EDU

states in order explore these tradeoffs [18, 17, 34]. However, for nonlinear dynamical systems, these
representations often become too conservative or too expensive as the number of state variables
grow.

In this paper, we study reachability analysis using the idea of tree decompositions over the
dependency graph of a dynamical system. Tree decompositions are a well-known idea from graph
theory [37], used to study properties of various types of graphs. The treewidth of a graph is an
intrinsic property of a graph that relates to how “far away” a given graph is from a tree. For
instance, trees are defined to have a treewidth of 1. Many commonly occurring families of graphs
such as series-parallel graphs have treewidth 2 and so on. Formally, a tree decomposition of a graph
is a tree whose nodes are associated with subsets of vertices of the original graph along with some
key conditions that will be described in Section 2. We use tree decompositions to build an abstract
domain. The abstraction operation projects a set of states in the full system state space along
each of the nodes of the tree, yielding various projections of this set. The concretization combines
projections back into the high dimensional set. We study various properties of this abstract domain.
First, we characterize abstract elements that can potentially be generated by projecting some
concrete elements along the nodes of the tree (so called canonical elements, Def. 3.7). Next we
characterize those sets which can be abstracted along the tree decomposition and reconstructed
without any loss in information (tree decomposable sets, Def. 3.8). In this process, we also derive
a message passing approach wherein nodes of the tree can exchange information to help refine sets
of states in a sound manner. However, as we will demonstrate, the abstraction is “lossy” in general
since projections of tree decomposable sets are not necessarily tree decomposable. We discuss some
interesting ways in which precision can be regained by carefully analyzing this situation.

We combine these ideas together into an approach for reachability analysis of nonlinear systems
using a grid domain that represents complex non convex sets as a union of fixed size cells using a
gridding of the state-space. Although such a domain would be prohibitively expensive, we show
that the tree decomposition abstract domain can drastically cut down on the complexity of com-
puting reachable set overapproximations in this domain, yielding precise reachable set estimation
for some nonlinear systems with low treewidth. We demonstrate our approach using a prototype
implementation to show that for a restricted class of systems whose dependency graphs have low
treewidth, our approach can be quite efficient and precise at the same time. Although some inter-
esting systems have low treewidth property, it is easy to see that many systems will have treewidths
that are too high for our approach. Our future work will consider how systems whose dependency
graphs do not have sufficiently low treewidth can still be tackled in a conservative manner using
some ideas from this paper.

1.1 Related Work

As mentioned earlier, the concept of tree decompositions and treewidth originated in graph the-
ory [37]. The concept of treewidth gained popularity when it was shown that many NP-complete
problems on graphs such as graph coloring could be solved efficiently for graphs with small treewidths [5].
Courcelle showed that the problem of checking if a given graph satisfies a formula in the monadic
second order logic of graphs can be solved in linear time on graphs with bounded treewidth [15].
Several NP-complete problems such as 3-coloring can be expressed in this logic. Tree decomposi-
tions are also used to solve inference problems over Bayesian networks leading to representations
of the Bayesian networks such as junction trees that share many of the properties of a tree de-
composition [29]. In fact, belief propagation over junction trees is performed by passing messages
that marginalize the probability distributions at various nodes of the tree. This is analogous to the
message passing approach described here.

2

Tree decomposition techniques have been applied to model checking problems over finite state
systems. For instance, Obdržálek show that the µ-calculus model checking problem can be solved in
linear time in the size of a finite-state system whose graph has a bounded treewidth [35]. However,
as Ferrara et al point out, requiring the state graph of a system to have a bounded treewidth is
often restrictive [24]. Instead, they study concurrent finite state systems wherein the communication
graph has a bounded tree width. However, they conclude that while it is more reasonable to assume
that the communication graph has a bounded tree width, it does not confer much advantages
to verification problems. For instance, they show that the unrolling of these systems over time
potentially results in unbounded treewidth. In this paper, we consider a different approach wherein
we study the treewidth of dependency graphs of the system. We find that many systems have
small treewidth and exploit this property. At the same time, we note that some of the benchmarks
studied have “sparse” dependency graphs but treewidths that are too large for our approach.

Tree decomposition techniques have also been studied in static analysis of programs. The control
and data flow graphs of structured programs without goto-statements or exceptional control flow
are known to have small treewidth that can be exploited to perform compiler optimizations such as
register allocation quite efficiently [38]. Chatterjee et al have shown how to exploit small treewidth
property of the control flow graphs of procedures in programs to perform interprocedural dataflow
analysis by modeling the execution of programs with procedures as recursive state machines [11].
However, this approach seems restricted to control dominated properties such as sequence of func-
tion calls. In a followup work, they study control and data flow analysis problems for concurrent
systems, wherein each component has constant treewidth [10]. In contrast, our approach studies
dynamical system and consider tree decompositions of the data dependency graph.

The use of message passing in this paper closely resembles past work by Gulwani and Jojic [27].
Therein, a program verification problem involving the verification pre/post and intermediate asser-
tions in a program is solved by passing messages that can propagate information between assertions
along program paths in a randomized fashion. The approach is shown to be similar to loopy belief
propagation used in Bayesian inference. The key differences are (a) we use data dependencies and
tree decompositions rather than control flow paths to pass information along; and (b) we formally
prove properties of the message passing algorithm.

Our approach is conceptually related to a well-known idea of speeding up static analysis of
large programs using “packing” of program variables [28, 4]. This approach was used successfully
in the Astreé static analyzer [4, 3, 21]. Therein, clusters of variables representing small sets of
dependent local and global are extracted. The remaining program variables are abstracted away
and the abstract interpretation process is carried out over just these variables. The usefulness of
this approach has borne out in other abstract interpretation efforts, including Varvel [28]. The key
idea in this paper can be seen as a formalization of the rather informal “clustering” approach using
tree decompositions. We demonstrate theoretical properties as well as the ability to pass messages
to improve the results of the abstract interpretation.

The use of the dependency graph structure to speed up reachability analysis approaches has
been explored in the past for speeding up Hamilton-Jacobi-based approaches by Mo Chen et al [12]
as well as flowpipe based approaches by Xin Chen et al [13]. Both approaches consider the directed
dependency graph wherein xi is connected to xj if the former appears in the dynamical update
equation of the latter variable. The approaches perform a strongly connected component (SCC)
decomposition and analyze each SCC in a topological sorted order. However, this approach breaks
as soon as the system has large SCCs, which is common. As a result, Xin Chen et al show how
SCCs can themselves be broken into numerous subsets at the cost of a more conservative solution.
In contrast, the tree decomposition approach can be applied to exploit sparsity even when the
entire dependency graph is a single SCC.

3

2 Preliminaries

In this section, we will describe the system model under analysis, the dependency graph structure
and the basics of tree decompositions. Let X : {x1, . . . , xn} be a set of system variables and
σ : X 7→ R represent a valuation to these system variables. Let D be the domain of all valuations
of X, that describes the state space of the system. Also, let W : {w1, . . . , wm} represent disturbance
variables and w : W 7→ R represent a vector of m ≥ 0 external disturbance inputs that take values
in some compact disturbance space W.

Definition 2.1 (Dynamical Model). A model Π is a tuple 〈X,W,D,W, f,X0, U〉, whereinX,W,D,W
are as defined above, f is an arithmetic expression over variables in X,W describing the dynamics,
X0 is a set of possible initial valuations (states) and U is a designated set of unsafe states.

The dynamics are given by σ′ = eval(f, σ,w), wherein eval evaluates a given an expression f , a
set of valuations to the system variables σ ∈ D and disturbances w ∈ W, and returns a new set of
valuations for each variable in X, denoted by σ′.

For simplicity, we write f(σ,w) to denote eval(f, σ,w) for a function expression f . As mentioned
earlier, a state of the system is a valuation σ : X 7→ R such that x ∈ D. Given a finite sequence of
disturbance inputs w0, . . . ,wT , for some T ≥ 0 and wi ∈ W for all i ∈ [0, T], an execution of the
system is a sequence of states σ0, . . . , σT+1, such that: (a) σ0 ∈ X0, (b) σt ∈ D for t ∈ [0, T + 1]
and (c) σt+1 = f(σt,wt) for all t ∈ [0, T]. According to these semantics, the system may fail to
have an execution for a given disturbance sequence wt, t ∈ [0, T] and initial state σ0 if for some
state σt, we have f(σt,wt) 6∈ D.

A state σt is reachable (at time t) if there is an execution of the form σ0, . . . , σt, satisfying the
conditions (a) - (c) above. We say that the unsafe state U is reachable iff some state σ ∈ U is
reachable. Furthermore, we say that U is reachable within a finite time horizon T , iff some state
σ ∈ U is reachable at time t ∈ [0, T].

Example 2.1. Consider a nonlinear example of a dynamical model Π with state variables X =
{x1, x2, x3} and W = {w1}. The dynamics can be written as parallel assignments to the state
variables:

x1 := x1 + 0.25x2 − 0.05x1sin(x2), x2 := x2 + w1, x3 := x3 − 0.2x3x2 ,

The assignments are all evaluated in parallel to update the current state σt to a new state σt+1. The
domain D is described by the constraints

∧3
i=1 xi ∈ [−3, 3], and the disturbance w1 ∈ [−0.1, 0.1].

The initial set X0 is given by the constraints x1 ∈ [−0.2, 0.2] ∧ x2 ∈ [−0.3, 0] ∧ x3 ∈ [0, 0.4].

We will now define the dependency (hyper)graph of the system Π. For convenience, we write the
update function (expression) f of a system Π in terms of individual updates (f1, . . . , fn), wherein
σ′(xj) = fj(σ,w). We say that system variable xi (or disturbance variable wj) is a proper input to
the expression fk if xi (or wj) occurs as a subterm in fk. Let inps(fk) denote the set of all proper
input variables to the function (expression) fk.

As an example, consider X = {x1, . . . , x4} and W = {w1, w2} and the expression f : x1x4 −
w1. The proper inputs to f are {x1, x4, w1}. We exclude cases such as g : sin2(x1)+cos2(x1)

sin2(x2)+cos2(x2)
that

has {x1, x2} as proper inputs. However a simplification using elementary trigonometric rules can
eliminate them. We will assume that all expressions are simplified to involve the least number of
variables.

4

Definition 2.2 (Dependency Hypergraph). A dependency hypergraph of a system Π has vertices
V : X ∪W , given by the union of the system and disturbance variables with hyperedge set E ⊆ 2V

given by E = {e1, . . . , en}, wherein for each update xk := fk(x,w) (k = 1, . . . , n), we have the
hyperedge ek : {xk} ∪ inps(fk). In other words, each update xk := fk(x,w) yields an edge that
includes xk along with all the system/disturbance variables that are proper inputs to fk.

Example 2.2. The dependency hypergraph for the system from Example 2.1 has the vertices
V : {x1, x2, x3, w1} and the edges {e1 : {x1, x2}, e2 : {x2, w1} and e3 : {x2, x3}}.

2.1 Tree Decomposition

We will now discuss tree decompositions and the associated concept of treewidth of a hypergraph
G : (V,E). The tree decomposition will be applied to the dependency hypergraphs (Def. 2.2) for
systems Π (Def. 2.1).

Definition 2.3 (Tree Decomposition and Treewidth). Given a hypergraph G : (V,E), a tree
decomposition is a tree T : (N,C) and a mapping verts : N 7→ 2V , wherein N is the set of tree
nodes, C is the set of tree edges and verts(·) associates each node u ∈ N with a set of graph
vertices verts(n) ⊆ V . The tree decomposition satisfies the following conditions:

1. For vertex v ∈ V there exists (at least one) n ∈ N such that v ∈ verts(n).
2. For each hyperedge e ∈ E there exists (at least one) n ∈ N : e ⊆ verts(n).
3. For each vertex v, for any two nodes n1, n2 such that v ∈ verts(n1) and v ∈ verts(n2),

then v ∈ verts(n) for each node n along the unique path between n1 and n2 in the tree.
Stated another way, the subset of nodes Nv : {n ∈ N | v ∈ verts(n)} induces a subtree of T
(denoted Tv). This property is commonly called the running intersection property.

The width of a tree decomposition is given by max{|verts(n)| | n ∈ N}−1. In other words, we
find the node n in the tree whose associated set of vertices has the largest cardinality. We subtract
one from this maximal cardinality to obtain the treewidth. A tree decomposition is optimal for a
graph G if no other tree decomposition exists with a strictly smaller width. The treewidth of a
hypergraph G is given by width of an optimal tree decomposition.

It is easy to show that if the graph G is a tree, it has treewidth 1. Likewise, a cycle has tree
width 2.

Example 2.3. The tree decomposition of the hypergraphG from Ex. 2.2 has three nodes {n1, n2, n3}
with edges (n1, n2) and (n2, n3). The nodes along with the associated vertex sets are as follows:

n2 : {x2, w1} n1 : {x2, x3} n3 : {x1, x2}

Although the tree decomposition is not a rooted tree, we often designate an arbitrary node
r ∈ N as the root node, and consider the tree T as a rooted tree with root r.

Finding a Tree Decomposition: Interestingly, the problem of finding the treewidth of a
graph is itself a NP-hard problem. However, many practical approaches exist for graphs with small
treewidths. For instance, Bodlaender presents an algorithm that runs in time O(kO(k3)) to construct
a tree decomposition of width at most k or conclude that the treewidth of the graph is at least
k + 1 [6]. Such an approach can be quite useful if a given graph is suspected to have a small tree
width in the first place. Besides this, many efficient algorithms exist to approximate the treewidth
of a graph to some constant factor. A detailed survey of these results is available elsewhere [7, 8].
Open-source packages such as HTD can compute treewidth for graphs with thousands of nodes [1].

5

Finally, we note that if a tree decomposition of width k can be found, then one can be found with
at most |V | nodes.

Lemma 2.1. Let T be a tree decomposition for a (multi)graph G with vertices V and treewidth k.
There exists a tree decomposition T̂ of G with the same treewidth k, and at most |V | nodes.

Proof. Let T : (N,C) be a tree decomposition of tree width k. For each edge (n1, n2) ∈ C such
that verts(n1) ⊆ verts(n2), merge n1, n2 into a single node n̂ with verts(n̂) = verts(n2). We
verify that the resulting tree is still a valid tree decomposition of G with treewidth k. We repeat
this process until no more edges exist with this property. Let T̂ be the resulting tree at the end of
the process: it continues to be a tree decomposition of G with treewidth k. As a result, for every
edge (n1, n2) in T̂ , we have that verts(n1) \ verts(n2) is nonempty. It remains to prove that T̂
has at most as many nodes as the number of vertices in graph G.

Let us designate a node r as the root of T̂ and consider it as a rooted tree. We will construct
a one-to-one mapping β from each node n of T̂ into a vertex G. To start with, arbitrarily select a
vertex β(r) ∈ verts(r). For each node n with parent n̂, we select a β(n) ∈ verts(n) \ verts(n̂).
Such a selection can always be made due to the construction of T̂ . Now, we show that β is a one
to one mapping. If not, let β(n) = β(m) = v for some two nodes (m,n). By construction of β,
we know that (m,n) cannot be an edge in the tree. Thus, consider the path in T̂ from m to n.
Let m̂ 6= n be the first node along that path. We know that v ∈ verts(m) and v ∈ verts(n).
However, we also know that v 6∈ verts(m̂). This directly contradicts the fact that T̂ is a tree
decomposition. Thus β is one to one. Therefore, the number of nodes in T̂ is atmost |V |.

3 Abstract Domains Using Tree Decompositions

In this section, we will define abstract domains using tree decompositions of the dependency hy-
pergraph of the system under analysis. Let Π be a transition system over system variables X. The
concrete states are given by σ ∈ D, wherein σ : X 7→ R maps each state variable xj ∈ X to its
value σ(xj).

Definition 3.1 (Projections). The projection of a state σ to a subset of state variables J ⊆ X,
denoted as proj(σ, J), is a valuation σ̂ : J 7→ R such that σ̂(xi) = σ(xi) for all xi ∈ J . For a set
of states S ⊆ D and a subset of state variables J ⊆ X, we denote the projection of S along (the
dimensions of) J as proj(S, J) : {proj(σ, J) | σ ∈ S}.

Definition 3.2 (Extensions). Let R be a set of states involving just the variables in the set
J1 ⊆ X, i.e, R ⊆ proj(D,J1). We define the extension of R into a set of variables J2 ⊇ J1 as
extJ2(R) : {σ ∈ proj(D,J2) | proj(σ, J1) ∈ R}.

In other words, the extension of a set embeds each element in the larger dimensional space
defined by J2 allowing “all possible values” for the dimensions in J2 \ J1.

We will use the notation ext(S) to denote the set extX(S), i.e, its extension to the entire set of
state variables X. For a state σS , we will use ext(σS) denote ext({σS}).

Definition 3.3 (Product (Join) of Sets). Let R1 ⊆ proj(D,J1) and R2 ⊆ proj(D,J2). We define
R1 ⊗R2 : {σ : J1 ∪ J2 7→ R | proj(σ, J1) ∈ R1 and proj(σ, J2) ∈ R2}.

Let T : (N,C) be a tree decomposition of the dependency hypergraph of the system. Recall
that for each node n ∈ N we associate a set of system/disturbance variables denoted by verts(n).
Let vertsX(n) denote the set of system variables: verts(n)∩X. We say that an update function
xk := fk(σ,w) is associated with a node n in the tree iff {xk} ∪ inps(fk) ⊆ verts(n).

6

Lemma 3.1. For every system variable xk, its update xk := fk(σ,w) is associated with at least
one node n ∈ N .

Proof. This follows from those of a tree decomposition that states that every hyperedge in the
dependency hypergraph must belong to verts(n) for at least one node n ∈ N .

3.1 Abstraction and Concretization

We consider subsets of the concrete states for the system Π, i.e, the set 2D, ordered by set inclusion
as our concrete domain. Given a tree decomposition, T , we define an abstract domain through
projection of a concrete set along verts(n) for each node n of T . For technical reasons, we will
assume that the domain D is a cartesian product D := D1⊗· · ·⊗Dn such that σ ∈ D iff σ(xj) ∈ Dj .
While this condition can be relaxed considerably, we note that the assumption above is sufficient
for most systems we will work with, in practice.

Definition 3.4 (Abstract Domain). Each element s of the abstract domain AT is a mapping that
associates each node n ∈ N with a set s(n) ⊆ proj(D,vertsX(n)).

For s1, s2 ∈ AT , s1 v s2 iff s1(n) ⊆ s2(n) for each n ∈ N .

We will use the notation proj(S, n) for a node n ∈ N to denote proj(S,vertsX(n)).

Definition 3.5 (Abstraction Map). Given a tree decomposition T , the abstraction map αT takes
a set of states S ⊆ D and produces a mapping that associates tree node n ∈ N to a projection of
S along the variables vertsX(n). Formally,

αT (S) : λn : N. proj(S, n) .

Thus, an abstract state s is a map that associates each node n of the tree to a set s(n) ⊆ Dn.
We now define the concretization map γT .

Definition 3.6 (Concretization Map). The concretization γT (s) of an abstract state is defined as
γT (s) :

⋂
n∈N ext(s(n)). In other words, we take s(n) for every node n ∈ N , extend it to the full

dimensional space of all system variables and intersect the result over all nodes n ∈ N .

Example 3.1. Consider a simple tree decomposition T with 2 nodes n1, n2 and a single edge
(n1, n2). Let verts(n1) : {x1, x2} and verts(n2) : {x2, x3}. Let the domain D be the set
{σ | σ(xi) ∈ {1, 2, 3}} for i = 1, 2, 3. We use the notation (

x1

v1,
x2

v2,
x3

v3) to denote a state σ that
maps x1 to the value v1, x2 to the value v2 and so on.

Now consider the set S = {(
x1

1,
x2

1,
x3

1), (
x1

1,
x2

1,
x3

2), (
x1

1,
x2

2,
x3

3)}. We have that s : α(S) is the mapping
that projects S onto the dimensions (x1, x2) for node n1 and (x2, x3) for node n2:

n1 7→ {(
x1

1,
x2

1), (
x1

1,
x2

2)}, n2 7→ {(
x2

1,
x3

1), (
x2

1,
x3

2), (
x2

2,
x3

3)} .

Likewise, we verify that the concretization map γ(s) will yields us:

γ(s) : {(
x1

1,
x2

1,
x3

1), (
x1

1,
x2

1,
x3

2), (
x1

1,
x2

2,
x3

3)} .

For convenience, if the tree T is clear from the context, we will drop the subscripts to simply
write α and γ for the abstraction and concretization map, respectively.

Theorem 3.2. For any tree decomposition T , the maps α and γ form a Galois connection. I.e,
for all S ⊆ D and s ∈ AT : α(S) v s iff S ⊆ γ(s).

7

Proof. Let S, s be such that α(S) v s. Therefore, proj(S, n) ⊆ s(n) ∀n ∈ N by the definition of v.
Pick any, σ ∈ S. First, proj(σ, n) ∈ proj(S, n) and therefore, proj(σ, n) ∈ s(n) for all n ∈ N . Thus,
σ ∈ ext(s(n)) for all n ∈ N . Therefore, σ ∈

⋂
n∈N ext(s(n)). Thus, σ ∈ γ(s), by defn. of γ. We

conclude that S ⊆ γ(s).
Conversely, assume S ⊆ γ(s). Since γ(s) =

⋂
n∈N ext(s(n)) (from Def. 3.6). Therefore, S ⊆

ext(s(n)) forall n ∈ N . Therefore, for all σ ∈ S, proj(σ, n) ∈ s(n). Therefore, proj(S, n) ⊆ s(n) for
every n ∈ N . Finally, this yields α(S) v s.

The meet operation is defined as s1u s2 : λn : N. s1(n)∩ s2(n), and likewise, the join is defined
as s1 t s2 : λn : N. s1(n) ∪ s2(n). We recall two key facts that follow from Galois connection
between α and γ.

1. For any set S ⊆ D, we have S ⊆ γ(α(S)). Abstracting a concrete set and concretizing it
back again “loses information”. To see why, we start from α(S) v α(S) and apply the Galois
connection to derive S ⊆ γ(α(S)).

2. Likewise, for any abstract domain object s ∈ A, we have α(γ(s)) v s. I.e, for any element s,
taking its concretization and abstracting it “gains information”. To prove this, we start from
γ(s) ⊆ γ(s), and conclude that α(γ(s)) v s.

Example 3.2. Returning back to Ex. 3.1, now consider the set

Ŝ = {(
x1

1,
x2

1,
x3

2), (
x1

1,
x2

2,
x3

3), (
x1

2,
x2

1,
x3

2), (
x1

2,
x2

2,
x3

4)} .

Its abstraction ŝ : α(Ŝ) is given by the mapping:

n1 7→ {(
x1

1,
x2

1), (
x1

1,
x2

2), (
x1

2,
x2

1), (
x1

2,
x2

2)}, n2 7→ {(
x2

1,
x3

2), (
x2

2,
x3

3), (
x2

2,
x3

4)} .

We note that γ(ŝ) is the set: {(
x1

1,
x2

1,
x3

2), (
x1

1,
x2

2,
x3

3), (
x1

1,
x2

2,
x3

4), (
x1

2,
x2

1,
x3

2), (
x1

2,
x2

2,
x3

3), (
x1

2,
x2

2,
x3

4)}. Thus Ŝ ⊆ γ(ŝ).

Notice that (
x1

2,
x2

2,
x3

3) and (
x1

1,
x2

2,
x3

4) are part of γ(ŝ) but not the original set Ŝ. Similarly, consider

the abstract element s1: n1 7→ {(
x1

1,
x2

1), (
x1

1,
x2

2)}, n2 7→ {(
x2

1,
x3

3)}. We note that γ(s1) : {(
x1

1,
x2

1,
x3

3)} and

therefore α(γ(s1)) yields the abstract element s2 v s1: n1 7→ {(
x1

1,
x2

1)}, n2 7→ {(
x2

1,
x3

3)}.

3.2 Canonical Elements and Message Passing

In the tree decomposition, various nodes share information about the subsets of vertices associated
with each node. Since the subsets have elements in common, it is possible that a node n1 has
information about a variable x2 that is also present in some other node n2 of the tree. We will
now see how to take an abstract element s and refine each s(n) by exchanging information between
nodes in a systematic manner.

For each edge (n1, n2) ∈ C of the tree, define the set of variables in common as CV(n1, n2) :
verts(n1) ∩ verts(n2) and CVX(n1, n2) : vertsX(n1) ∩ vertsX(n2)

Definition 3.7 (Canonical Elements). An abstract element s is said to be canonical if and only if
for each edge (n1, n2) ∈ C in the tree:

proj(s(n1),CVX(n1, n2)) = proj(s(n2),CVX(n1, n2)) .

In other words, if we took the common variables vertsX(n1)∩vertsX(n2), the set s(n1) projected
along these common variables is equal to the projection of s(n2) along the common variables.

8

Example 3.3. Consider the abstract element s1 from Ex. 3.2: n1 7→ {(
x1

1,
x2

1), (
x1

1,
x2

2)}, n2 7→ {(
x2

1,
x3

3)}.
proj(s1(n1),CV(n1, n2)) is the set {

x2

1,
x2

2} whereas proj(s1(n2),CV(n1, n2)) is simply {
x2

1}. Therefore,
s1 fails to be canonical.

The key theorem of tree decomposition is that a canonical element in the abstract domain can
be seen as the projection of a concrete set S along vertsX(n) for each node n of the tree.

Theorem 3.3. An element s is canonical (Def.3.7) if and only if s = α(S) for some concrete set
S.

To prove this fact, we will first establish a few useful lemmas.
Consider a labeling that associates a valuation πn : proj(D,n) with every node n ∈ N of the

tree decomposition. First, we will establish the equivalent of Theorem 3.3 when each node in the
tree is labeled with a singleton valuation.

Lemma 3.4. Given a state labeling πn for n ∈ N , the following are equivalent:
(A) There exists (a unique) σ ∈ D such that proj(σ, n) = πn for each n ∈ N .
(B) For each edge (m,n) of the tree decomposition, the labeling satisfies

proj(πn,CV(m,n)) = proj(πm,CV(m,n)) . (1)

Note that the lemma above is akin to the canonicity condition but for a concrete set containing
just a single state.

Proof. It is trivial to see how (A) implies (B). We prove that (B) implies (A).
We arbitrarily designate a node r ∈ N as the “root” of the tree and having done so, consider T

as a rooted tree.
Let π be a labeling that satifies (1). We will construct a σ ∈ D such that proj(σ, n) = πn for

each n ∈ N .
The construction of σ ∈ D proceeds by induction on the subtrees of the rooted tree starting from

the leaves. For each subtree Tj rooted at node nj , let us define the set Xj =
⋃

m∈Tj
vertsX(m).

Xj collects all variables that occur in some node of the subtree Tj . Our goal is to construct a state
σj ∈ proj(D,Xj) for the subtree Tj such that for any node p ∈ Tj , proj(σj , p) = πp.

Each leaf l of the tree is its own subtree. We associate it with the state σl = πl. As a result,
proj(σl, l) = πl, trivially holds at the leaves.

Proceeding by induction, let m be a node with subtrees T1, . . . , Tk rooted at nodes m1, . . . ,mk,
which have corresponding sets X1, . . . , Xk (as defined above) and states σ1, . . . , σk associated with
the respective subtrees. Furthermore, we note that by induction hypothesis proj(σi, pi) = πpi for
any node pi ∈ Ti. We will construct the required state σm for the subtree rooted at m as follows:

σm(xl) =

{
πm(xl) if xl ∈ vertsX(m)

σj(xl) if xl ∈ Xj \ vertsX(m), j ∈ 1, . . . , k

Note that Xm = vertsX(m) ∪
⋃k

j=1Xk. Note that πm ∈ proj(D,m) and assuming inductively
that σj ∈ proj(D,Xj), we can establish from assumption that D : D1 ⊗ · · · ⊗ Dn that σm ∈
proj(D,Xm).

We are required to prove that proj(σm, p) = πp for any node p ∈ Tm. Pick any node p ∈ Tm.
There are two cases to consider.

Case-1: p = m. Since σm(xl) = πm(xl) for all xl ∈ vertsX(m), we conclude that proj(σm, p) = πp.

9

Case-2: p ∈ Tj for some subtree Tj for 1 ≤ j ≤ k. First, we will prove that proj(σm, Xj) = σj . To
see why, we consider any variable xl ∈ Xj and in turn split on two cases:

Case-2a: xl ∈ vertsX(m). In this case, by running intersection property, we conclude that
xl ∈ vertsX(mj). Therefore, xl ∈ vertsX(mj) ∩ vertsX(m). Thus, by (1), we note
that πmj (xl) = πm(xl). Therefore,

σm(xl) = πm(xl) = πmj (xl) = σj(xl)

The last equality is given by the induction hypothesis proj(σj ,mj) = πmj and xl ∈
vertsX(mj).

Case-2b xl 6∈ vertsX(m). Thus, xl ∈ Xj \ vertsX(m). Hence, σm(xl) = σj(xl).

Combining cases 2a and 2b, we conclude that proj(σm, Xj) = σj . Therefore, for any p ∈ Tj ,
we have proj(σm, p) = proj(proj(σm, Xj), p) since vertsX(p) ⊆ Xj . However, proj(σj , p) = πp
by induction hypothesis.

Combining cases 1 and 2, we conclude that proj(σm, p) = πp for any p ∈ Tm.
Finally, at the root, we have a state σ : σr and the subtree Tr is now the entire tree. This

concludes the required existence of σ. Uniqueness of σ follows by the following simple argument. Let
σ1, σ2 be two different states such that σ1(xi) 6= σ2(xi) for some xi ∈ X. Since xi ∈ vertsX(nj) for
some nj (by condition for being a tree decomposition), we have that proj(σ1, nj) = πj = proj(σ2, nj).
However, this directly contradicts the assumption that σ1(xi) 6= σ2(xi).

Lemma 3.5. For every canonical element s ∈ A, node n ∈ N and element σn ∈ s(n), we have that
ext(σn) ∩ γ(s) 6= ∅.

Stated another way, the lemma claims that for any canonical s, any σn ∈ s(n) can be extended
to form some element of γ(s).

Proof. Let s be canonical. Pick any n ∈ N and σn ∈ s(n). We will construct a state σ ∈ γ(s) such
that proj(σ, n) = σn. This immediately shows the result since, σ ∈ ext(σn) and σ ∈ γ(s). We will
achieve this construction through a process called (downward) “message passing” in the tree.

First, we convert the tree into a rooted tree designating the node n as the root.
Next, for every child n̂ of n, we send a “message” msg(n, n̂) : proj(σn,CVX(n̂, n)). Once any

nodem receives a message from its parent m̂, it chooses σm ∈ s(m) such that proj(σm,CVX(m, m̂)) =
msg(m̂,m).

Such a choice can always be made at each node by canonicity of s. This is because we have
(a) proj(s(m),CVx(m, m̂)) = proj(s(m̂),CVx(m, m̂)), (b) msg(m̂,m) ∈ proj(s(m̂),CVx(m, m̂)) and
therefore msg(m̂,m) ∈ proj(s(m),CVx(m, m̂)).

Therefore, each node m that receives a message from its parent makes a choice σm ∈ s(m)
as noted above and sends a message to each of its children by projecting σm along the common
dimensions. The process stops when the messages reach the leaves of the rooted tree.

Once the process stops, each node m ∈ N is labeled by an element σm ∈ s(m). Furthermore, for
any edge (n1, n2) ∈ T , we have the property that proj(σn1 ,CVX(n1, n2)) = proj(σn2 ,CVX(n1, n2))
by construction. Applying Lemma 3.4, we note that there exists σ ∈ D such that proj(σ,vertsX(m)) =
σm for all nodes m.

To complete the proof, we note that σ ∈ ext(s(m)) for every node m ∈ N and therefore σ ∈ γ(s).
At the same time, proj(σ,vertsx(n)) = σn as required.

10

Proof of Theorem 3.3

Proof. Let s be any given canonical abstract domain element. We will now prove that S : γ(s)
will satisfy the required condition s = α(S). In other words, α(γ(s)) = s. Assuming otherwise,
we conclude that α(S) 6= s. Let ŝ denote α(S). We know from the discussion above that ŝ =
α(S) = α(γ(s)) v s. Combining the two facts, we note that for all n ∈ N , ŝ(n) ⊆ s(n) but there
exists a node r ∈ N such that ŝ(r) ⊂ s(r). Hence, there exists σr ∈ s(r) such that σr 6∈ ŝ(r). In
other words, σr 6∈ proj(S, r). Thus, ext(σr) ∩ S = ∅. However, using lemma 3.5 we note that for a
canonical s, and for every σr ∈ s(r), ext(σr) ∩ γ(s) 6= ∅. This is a direct contradiction. Therefore,
we conclude that α(S) = s. Thus, s = α(γ(s)).

To prove the other direction, let us take a set S and compute s : α(S). Note that s(n) =
proj(S,vertsX(n)) by definition. We need to show that s is canonical. Consider an edge of the
tree (m,n). We have that

proj(s(n),CVX(m,n)) = proj(proj(S,vertsX(n)),CVX(m,n))
= proj(S,CVX(m,n)) ∵ CVX(m,n) ⊆ vertsX(n)
= proj(proj(S,vertsX(m)),CVX(m,n)) ∵ CVX(m,n) ⊆ vertsX(m)
= proj(s(m),CVX(m,n))

This establishes that s is canonical.

Ideally, in abstract interpretation, we would like to work with abstract domain objects that
satisfy s = α(γ(s)). One way to ensure that is to take any given domain element s0 and simply
calculate out α(γ(s0)) by applying the maps. However, γ(s0) in our domain takes lower dimensional
projections and reconstructs a set in the full state space. It may thus be too expensive to compute.
Fortunately, canonical objects satisfy the equality s = α(γ(s)). Therefore, given any object s ∈ A
that is not necessarily canonical, we would like to make it canonical: I.e, we seek an object ŝ such
that γ(ŝ) = γ(s), but ŝ is canonical. As mentioned earlier, directly computing ŝ = α(γ(s)) can be
prohibitively expensive, depending on the domain. We now describe a message passing approach.

First, we convert the tree T to a rooted tree by designating an arbitrary node r ∈ N as the
root of the tree. The choice of the node r does not matter for what follows. Let p(m) denote the
parent of node m in this rooted tree for m 6= r.

Message Passing along Edges: Let (n1, n2) be an edge of the tree and s be an abstract
element. A message from n1 to n2 is defined as the set msg(s, n1 → n2) : proj(s(n1),CV(n1, n2)).
In other words, we project the set s(n1) along the dimensions that are common to (n1, n2).

Once a node n2 receives M : msg(s, n1 → n2), it processes the message by updating s(n2)
as s(n2) := s(n2) ∩ extverts(n2)(M). In other words, it intersects the message (extended to the
dimensions in n2) with the current set that is associated with n2.

Example 3.4. Consider a tree decomposition with three nodes {n1, n2, n3} and the edges (n1, n2)
and (n2, n3). Let verts(n1) : {x1, x2}, verts(n2) : {x2, x4} and verts(n3) : {x2, x3}. Let D be
the domain {1, 2, 3, 4}4. Consider the abstract element s:

n1 7→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 7→ {(
x2

1,
x4

1), (
x2

2,
x4

2), (
x2

3,
x4

3), (
x2

4,
x4

4)}, n3 7→ {(
x2

4,
x3

4), (
x2

2,
x3

3)} .

A message msg(s, n1 → n2) is given by the set proj(s(n1), {x2}) : {
x2

2,
x2

3,
x2

4}. This results in the

new abstract object s′ wherein the element (
x2

1,
x4

1) is removed from s(n2) :

n1 7→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 7→ {�
��(

x2

1,
x4

1), (
x2

2,
x4

2), (
x2

3,
x4

3), (
x2

4,
x4

4)}, n3 7→ {(
x2

4,
x3

4), (
x2

2,
x3

3)} .

11

Upwards Message Passing: The upwards message passing works from leaves up to the root of
the tree according to the following two rules:

1. First, each leaf of the tree n passes a message to its parent np : p(n). The parent node np
intersects its current value s(np) with the message to update its current set.

2. After a node has received (and processed) a message from all its children, it passes a message
up to its parent, if one exists.

The upwards message passing terminates at the root since it does not have a parent to send a
message to.

Example 3.5. Going back to Ex. 3.4, we designate n2 as the root and the upwards pass sends the
messages msg(s, n1 → n2) and msg(s, n3 → n2). This results in the following updated element:

n1 7→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 7→ {�
��(

x2

1,
x4

1), (
x2

2,
x4

2),�
��(

x2

3,
x4

3), (
x2

4,
x4

4)}, n3 7→ {(
x2

4,
x3

4), (
x2

2,
x3

3)} .

Downwards Message Passing: The downwards message passing works from the root down to
the leaves.

1. To initialize, the root sends a message to all its children.
2. After a node has received (and processed) a message from its parent, it sends a message to

all its children.
The overall procedure to make a given abstract object s canonical is as follows: (a) perform an

upwards message passing phase and (b) perform a downwards message passing phase.

Example 3.6. Going back to Ex. 3.5, the downward message passing phase sends messages from
n2 → n1 and n2 → n3. The resulting element ŝ is

n1 7→ {(
x1

1,
x2

2),�
��(

x1

3,
x2

3), (
x1

1,
x2

4)}, n2 7→ {�
��(

x2

1,
x4

1), (
x2

2,
x4

2),�
��(

x2

3,
x4

3), (
x2

4,
x4

4)}, n3 7→ {(
x2

4,
x4

4), (
x2

2,
x4

3)} .

On the other hand, it is important to perform message passing upwards first and then downwards
second. Reversing this does not yield a canonical element. For instance going back to Ex. 3.4, if
we first performed a downwards pass from n2, the result is unchanged:

n1 7→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 7→ {(
x2

1,
x4

1), (
x2

2,
x4

2), (
x2

3,
x4

3), (
x2

4,
x4

4)}, n3 7→ {(
x2

4,
x3

4), (
x2

2,
x3

3)} .

Performing an upwards pass now yields the element s2:

n1 7→ {(
x1

1,
x2

2), (
x1

3,
x2

3), (
x1

1,
x2

4)}, n2 7→ {�
��(

x2

1,
x4

1), (
x2

2,
x4

2),�
��(

x2

3,
x4

3), (
x2

4,
x4

4)}, n3 7→ {(
x2

4,
x4

4), (
x2

2,
x4

3)} .

However this is not canonical, since the element (
x1

3,
x2

3) in s2(n1) violates the requirement over the
edge (n1, n2).

We first establish an useful fact of message passing that shows that each step of message passing
preserves the concretization.

Lemma 3.6. Let s be an abstract element and s′ be the result of a single message passed along
edge (m,n). It follows that γ(s) = γ(s′).

Proof. As a result of the message passed, we have s′(m) = s(m) for all m 6= n and s′(n) =
s(n) ∩ proj(s(m),CV(m,n)).

We have that γ(s′) = ∩r∈Next(s′(r)) = ∩r∈N\{n}ext(s(r)) ∩ ext(s′(n)). This is obtained by
expanding out the intersection and noting that s′(r) = s(r) for r 6= n.

12

We note that s′(n) = s(n) ∩ proj(s(m),CV(m,n)) and thus,

ext(s′(n)) = ext(s(n)) ∩ ext(proj(s(m),CV(m,n))) .

However, the second term ext(proj(s(m),CV(m,n))) ⊇ ext(s(m)). Thus, ext(s′(n)) = ext(s(n))∩R,
where R ⊇ ext(s(m)).

Therefore, γ(s′) = ∩r∈N\{m,n}ext(s(r)) ∩ ext(s(n)) = γ(s).

Let ŝ be the resulting abstract object after the message passing procedure finishes.

Theorem 3.7. The result of message passing ŝ is a canonical object, and it satisfies γ(ŝ) = γ(s).

To prove this theorem, we will first establish two important properties:

An abstract element s is said to have the “downward containment property” for an edge (m,n)
wherein n = p(m), denoted as s ↓ (m,n), iff proj(s(n),CV(m,n)) ⊆ proj(s(m),CV(m,n)).
We write s ↓ C to denote that s satisfies the downward containment property for all tree
edges in the set C.

An abstract element s is said to have the “upward containment property” for an edge (m,n)
wherein n = p(m), denoted as s ↑ (m,n), iff proj(s(m),CV(m,n)) ⊆ proj(s(n),CV(m,n)).
We write s ↑ C to denote that s satisfies the downward containment property for all tree
edges in the set C.

Note that an abstract object s is canonical iff s ↓ C and s ↑ C. Let (m,n) be an edge in the
tree with n = p(m). Let si be any abstract element obtained after the message from m to n has
been sent during the upwards pass.

Lemma 3.8. For any abstract value si we encounter after the message from m→ n has been sent
in the upwards message passing phase, si ↓ (m,n) holds.

Proof. It is easy to see that the property si ↓ (m,n) holds for the abstract object obtained imme-
diately after the message from m to n has been sent:

proj(si(n),CV(m,n)) ⊆ proj(si(m),CV(m,n)) .

Next, suppose the property held for object si encountered after the message from m to n has
been sent. Let us assume that some message (p, q) is sent along an edge with q : p(p). Let s′i be
the resulting object. We wish to show that s′i ↓ (m,n). To do so, we distinguish two cases, (a)
q 6∈ {m,n}, (b) q = m or (c) q = n. As a result of case (a), s′i(m) = si(m) and s′i(n) = si(n).
Therefore, the property continues to hold for s′i. Case (b) is impossible since all messages involving
m’s children need to be passed before m passes a message to n in the upwards phase. Finally, as a
result of case (c), we have s′i(n) ⊆ si(n). This means that property s′i ↓ (m,n) continues to hold:

proj(s′i(n),CV(m,n)) ⊆ proj(si(n),CV(m,n)) ⊆ proj(si(m),CV(m,n)) .

However, proj(s′i(m),CV(m,n)) = proj(si(m),CV(m,n)). Therefore, s′i ↓ (m,n) is concluded.

We note that the downward containment property is maintained by “downwards” message
passing. Let us assume that s ↓ C holds for an abstract domain object s.

Lemma 3.9. Let us pass a message n → m from the parent node n : parent(m) down to m,
resulting in object s′. It follows that s′ ↓ C.

13

Proof. Note that the message from n to m, modifies s′(m). For all other nodes, s′(p) = s(p)
(p 6= m). Therefore, s′ ↓ (p, q) for all p 6= m. Since s ↓ (m,n), we have proj(s(n),CV(m,n)) ⊆
proj(s(m),CV(m,n)). As a result of the message passing, we have that proj(s′(n),CV(m,n)) =
proj(s′(m),CV(m,n)). In other words, s′ ↓ (m,n) holds. Combining, we conclude s′ ↓ C.

Let sj be any abstract object obtained after a downward message from n → m has been sent
during the downward message passing phase.

Lemma 3.10. sj ↑ (m,n) holds.

Proof. As a proof, note that sj ↑ (m,n) holds immediately after the message n→ m has been sent.
Next, note that subsequent to the message (m,n) any other message p → q must satisfy the

criterion that q 6= m because m has a unique parent n, and q 6= n, since the message from n to m
is sent only after n itself has already received a message from its own parent (if any). As a result,
we note that if sj ↑ (m,n) holds before the message from p → q, then it continues to hold after,
during the downwards message passing phase.

Proof of Theorem 3.7:

Proof. We conclude that ŝ ↓ C, and ŝ ↑ C by combining Lemmas 3.8, 3.9, and 3.10. As a result,
ŝ is canonical.

Next to prove that γ(ŝ) = γ(s), we show that each message passing iteration across an edge
does not affect the concretization (Lemma 3.6). There are a total of at most 2|N | message passing
steps. We prove that γ(s) = γ(ŝ) by induction over the number of messages passed.

3.3 Decomposable Sets and Post-Conditions

We have already noted that for any concrete set over S ⊆ D, the process of abstracting it by
projecting into nodes of a tree T , and re-concretizing it is “lossy”: I.e, S ⊆ γ(α(S)). In this
section, we study “tree decomposable” concrete sets S for which γ(α(S)) = S. Ideally, we would
like to prove that if a set S is tree decomposable then so is the set post(S,Π) of next states. However,
we will disprove this by showing a counterexample. Nevertheless, we will present an analysis of
why this fact fails and suggest approaches that can “manage” this loss in precision.

Definition 3.8 (Decomposable Sets). We say that a set S is tree decomposable given a tree T iff
γ(α(S)) = S.

This is in fact a “global” definition of decomposability. In fact, a nice “local” definition can
be provided that is reminiscent of the notion of conditional independence in graphical models. We
will defer this discussion to an extended version of this paper due to space limitations.

Example 3.7. Consider set S : {(
x1

1,
x2

2,
x3

1), (
x1

2,
x2

2,
x2

2)} and tree T below:

n1 : {x1, x2} n2 : {x2, x3}

We wish to check if S is T -decomposable. We have s : α(S) as

s(n1) : proj(S, n1) : {(
x1

1,
x2

2), (
x1

2,
x2

2)} s(n2) : proj(S, n2){(
x2

2,
x3

1), (
x2

2,
x3

2)} .

Now, γ(s) : {(
x1

1,
x2

2,
x3

1), (
x1

1,
x2

2,
x2

2), (
x1

2,
x2

2,
x3

1), (
x2

2,
x2

2,
x2

2) .}. We note that the set S is not tree decomposable.

On the other hand, one can verify that the set S1 : {(
x1

1,
x2

2,
x3

2), (
x1

2,
x2

2,
x2

2)} is tree decomposable.

14

Lemma 3.11. Let R ⊆ proj(D,J) for a subset of variables J and n be a node in the tree such that
J ⊆ verts(n). The set ext(R) is tree decomposable.

Proof. Let S : ext(R) and s = α(S). We note that s(n) = proj(S, n) = extverts(n)(R), since
R ⊆ proj(D,J). Therefore, ext(s(n)) ⊆ ext(R). γ(s) =

⋃
m∈N ext(s(m)) ⊆ ext(R). Therefore,

γ(α(S)) ⊆ S, showing that ext(R) is tree decomposable.

Lemma 3.12. Let S1, S2 be tree decomposable sets over T . Their intersection is tree decomposable.

Proof. Let S1, S2 satisfy the condition γ(α(Si)) = Si for i = 1, 2. Let s1 = α(S1) and s2 = α(S2).
Let s3 : α(S1 ∩ S2). We have that s3(n) = proj(S1 ∩ S2, n) ⊆ proj(S1, n) ∩ proj(S2, n). Therefore
s3(n) ⊆ s1(n) ∩ s2(n) for each n ∈ N .

γ(s3) =
⋂

n∈N ext(s3(n))
⊆

⋂
n∈N ext(s1(n) ∩ s2(n))

⊆
⋂

n∈N ext(s1(n)) ∩
⋂

n∈N ext(s2(n))
⊆ γ(S1) ∩ γ(S2)
= S1 ∩ S2

We have shown that γ(α′(S3)) ⊆ S3 and from Galois connection we can already conclude the
other direction of containment holds. As a result S3 is tree decomposable.

Let Π be a transition system over system variables in σ ∈ D. For a given set S ⊆ D, us define
the post-condition post(S,Π) to be the set of states reachable in one step starting from some state
in S:

post(S,Π) : {σ′ | σ ∈ S, σ′ = eval(f, σ)} .

Let us also consider a transition relation R over pairs of states (σ, σ′) ∈ D ⊗D:

R = {(σ, σ′) | σ, σ′ ∈ D and σ′ = eval(f, σ)} .

The relation R can be viewed as the intersection of n relations: R :
⋂

xj∈X Rj , wherein

Rj : {(σ, σ′) | σ, σ′ ∈ D and σ′j = eval(fj , σ)} .

In other words, Rj is a component of R that models the update of the system variable xj . Also for
each xj ∈ X, let ej : inps(fj) ∪ xj be the inputs to the update function fj and the node xj itself.

Given the tree T , we define the extended tree T ′ as having the same node set N and edge
set C as T . However, vertsT ′(n) = vertsT (n) ∪ {x′j |xj ∈ vertsT (n)}. Note that T ′ with the
labeling vertsT ′ satisfies all the condition of a tree decomposition for a graph G save the addition
of vertices x′i in each node of the tree. We will write verts′(n) to denote the set vertsT ′(n).

Lemma 3.13. The transition relation R of a system Π is tree T ′ decomposable.

Proof. Note that R :
⋂

xj∈X Rj . We simply show that each Rj is tree decomposable and appeal

to Lemma 3.12. Each Rj involves variables in the set ej and ej ⊆ verts(nj) for some node nj
of the tree. As a result, we note that Rj : ext(R̂j), wherein R̂j is a relation that just involves
variables in ej , e

′
j which are in vertsT ′(n). From Lemma 3.11, any set written in this form is tree

decomposable.

First, we show the negative result that the image of a tree (T) decomposable set under a tree
(T ′) decomposable transition relation is not tree decomposable, in general.

15

Example 3.8. Let X = {x1, x2, x3} and consider again the tree decomposition from Ex. 3.7. Let
S be the set {(

x1∗,
x2∗,

x3∗)}, wherein we use the wild card character as notation that can be substituted
for any element in the set {1, 2}. Therefore, we take S to be a set with 8 elements. Clearly S is
tree decomposable in the tree T from Ex. 3.7.

Consider the transition relation R that will be written as the intersection of three transition
relations:

R1 : {(X,X ′) | x′1 = x2}, R2 : {(X,X ′) | x′2 ∈ {1, 2}}, R′3 : {(X,X ′) | x′3 = x2} .

Clearly R is tree T ′ decomposable. We can now compute the post-condition of S under this

relation. The reader can verify the post-condition Ŝ : {(
x1

1,
x2∗,

x3

1), (
x1

2,
x2∗,

x3

2)}. However, Ŝ is not tree
decomposable. We note that ŝ : α(Ŝ) is the set ŝ(n1) : {(

x1∗,
x2∗)} and ŝ(n2) : {(

x1∗,
x2∗)}. Therefore

γ(ŝ) is the set {(
x1∗,

x2∗,
x3∗)}.

As noted above, the set R is tree T ′ decomposable. If S is tree decomposable, we can extend
S to a set S′ : extX′(S) that is now defined over X ∪ X ′ and is also tree decomposable. As a
result S′ ∩R is also tree decomposable. However, the postcondition of S is the set proj(S′ ∩R,X ′).
Thus, the key operation that failed was the projection operation involved in computing the post-
condition. This suggests a possible solution to this issue albeit an expensive one: at each step, we
maintain the reachable states using both current and next state variables, thus avoiding projection.
In effect, the reachable states at the ith step will be entire trajectories of the system expressed
over variables X0 ∪ X1 ∪ · · ·Xi. This is clearly not practical. However, a more efficient solution
is to note that some of the current state variables can be projected out without losing the tree
decomposability property. Going back to Ex. 3.8, we note that we can safely project away {x1, x3},
while maintaining the new reachable set in terms of (x2, x

′
1, x
′
2, x
′
3). In this way, we may recover

the lost precision back.
In conclusion, we note that tree decompositions may lose precision over post-conditions. How-

ever, the loss in precision can be avoided if carefully selected “previous state variables” are main-
tained as the computation proceeds. The question of how to optimally maintain this information
will be investigated in the future.

4 Grid-Based Interval Analysis

We now combine the ideas to create a disjunctive interval analysis using tree decompositions. The
main idea here is to apply tree decompositions not to the concrete set of states but to an abstraction
of the concrete domain by grid-based intervals.

We will now describe the interval-based abstraction of sets of states dynamical system Π in order
to perform over-approximate reachability analysis. Let us fix a system Π : 〈x,w, D,W, f,X0, U〉
as defined in Def. 2.1. We will assume that the domain of state variables D is a hyper-rectangle
given by D : [L(x1), U(x1)]× · · · × [L(xn), U(xn)] for L(xj), U(xj) ∈ R and L(xj) ≤ U(xj) for each
j = 1, . . . , n. In other words, each system variable xj lies inside the interval [L(xj), U(xj)]. Likewise,
we will assume that W :

∏m
k=1[L(wk), U(wk)] such that L(wk) ≤ U(wk) and L(wk), U(wk) ∈ R.

We will consider a uniform cell decomposition wherein each dimension is divided into some
natural number M > 0 of equal sized subintervals. The ith subinterval of variable xj is denoted as

subInt(xj , i), and is given by [L(xj)+iδj , L(xj)+(i+1)δj] for i = 0, . . . ,M−1 and δj :
(U(xj)−L(xj))

M .
Similarly, we will define subInt(wk, i) for disturbance variables wk whose domains are also divided
into M subdivisions. The overall domain D × W is therefore divided into Mm+n cells wherein

16

each cell is indexed by a tuple of natural numbers i : 〈i1, . . . , in, in+1, . . . , in+m〉, such that ij ∈
{0, . . . ,M − 1} and the cell corresponding to i is given by:

γC(i) :

n∏
j=1

subInt(xj , ij) ×
m∏
k=1

subInt(wk, in+k) (2)

Definition 4.1 (Grid-Based Abstract Domain). The grid based abstract domain is defined by
the set C : P(i ∈ {0, . . . ,M}m+n), wherein each abstract domain element is a set of grid cells.
The sets are ordered simply by set inclusion ⊆ between sets of grid cells. The abstraction map
αC : P(D)→ C is defined as follows:

αC(S) : {i ∈ C | γC(i) ∩ S 6= ∅} .

The concretization map γC is defined above in (2).

Definition 4.2 (Interval Propagator). An interval propagator (IP) is a higher order function that
takes in the description of a function f with k real-valued inputs and p real valued outputs, and an
interval I : [l1, u1]×· · ·× [lk, uk] and outputs an interval (hyperrectangle over Rp) IntvlProp(f, I)
such that the following soundness guarantees hold:

(∀x ∈ D)
k∧

j=1

xj ∈ [lj , uj] ⇒ eval(f,x) ∈ IntvlProp(f, I) .

In practice, interval arithmetic approaches have been used to build sound interval propaga-
tors [33]. However, they suffer from issues such as the wrapping effect that make their outputs too
conservative. This can be remedied by either (a) performing a finer subdivision of the inputs (i.e,
increasing M) to ensure that the intervals I being input into the IntvlProp are sufficiently small
to guarantee tight error bounds; or (b) using higher order arithmetics such as affine arithmetic or
Taylor polynomial arithmetic [25, 32].

The interval propagator serves to define an abstract post-condition operation over sets of cells
Ŝ ⊆ C. Given such a set, Ŝ, we compute the post condition in the abstract domain. Informally,
the post condition is given (a) by iterating over each cell in S; and (b) computing the possible next
cells using IntvlProp. Formally, we define the abstract post operation as follows:

postC(Ŝ,Π) :
⋃
i∈Ŝ

αC(IntvlProp(f, γC(i))) .

Given this machinery, an abstract T -step reachability analysis is performed in the standard
manner: (a) abstract the initial state; (b) compute post condition for T steps; and (c) check for
intersections of the abstract states with the abstraction of the unsafe set. We can also define and
use widening operators to make the sequence of iterates converge. The grid based abstract domain
can offer some guarantees with respect to the quality of the abstraction. For instance, we can easily
bound the Hausdorff distance between the underlying concrete set and the abstraction as a function
of the discretization sizes δj . However, the desirable properties come at a high computational cost
since the number of cells grows exponentially in the number of system and disturbance variables.

4.1 Tree Decomposed Analysis

We now consider a tree-decomposed approach based on the concept of nodal abstractions. The key
idea here is to perform the grid-based abstraction not on the full set of system and disturbance
variables, but instead on individual nodal abstractions over a tree decomposition T .

17

Definition 4.3 (Nodal Abstractions). A nodal abstraction NodalAbstraction(Π, n) corre-
sponding to a node n ∈ N is defined as follows:

1. The set of system variables are given by Xn : vertsX(n) with domain given by Dn :
proj(D,Xn).

2. The initial states are given by proj(X0, Xn).
3. The unsafe set is given by proj(U,Xn).
4. The set of disturbance variables are Yn : vertsW (n) with domain given by Wn : proj(W,Wn).
5. The updates are described by a relation R(Xn, X

′
n) that relate the possible current states Xn

and next states X ′n. The relation is constructed as a conjunction of assertions over variables
xi, x

′
i wherein xi ∈ Xn.

(a) If the update xi := fi(x,w) is associated with the node n, we add the conjunct x′i =
fi(Xn,Wn), noting that the proper inputs to fi are contained in verts(n).

(b) Otherwise, x′i ∈ proj(D, {xi}) that simply states that the next state value of the variable
xi is some value in its domain.

Given a system Π, the nodal abstraction is a conservative abstraction, and therefore, it preserves
reachability properties.

Lemma 4.1. For any reachable state x of Π at time t, its projection proj(x, Xn) is a reachable
state of NodalAbstraction(Π, n) at time t.

Since each nodal abstraction involves at most ω+ 1 variables, the abstraction at each node can
involve at most Mω+1 cells where ω is the tree width. Also, note that a tree decomposition can be
found with tree width ω that has at most |X|+ |W | nodes. This implies that the number of nodal
abstractions can be bounded by (|X|+ |W |).

Let Π(n) : NodalAbstraction(Π, n) be the nodal abstraction for tree node n ∈ N . For
each node n ∈ N , we instantiate a grid based abstract domain for Π(n) ranging over the variables
vertsX(n). At the ith step of the reachability analysis, we maintain a map si each node n to a set
of grid cells si(n) defined over verts(n).

1. Compute ŝi(n) : postC(si(n),Π(n)).
2. Make ŝi canonical using message passing between nodes to obtain si+1.
The message passing is performed not over projections of concrete states but over cells belonging

to the grid based abstract domain. Nevertheless, we can easily extend the soundness guarantees in
theorem 3.7 to conclude soundness of the composition.

Once again, we can stop this process after T steps or use widening to force convergence. We
now remark on a few technicalities that arise due to the way the tree decomposition is constructed.

Intersections with Unsafe Sets: Checking for a non-empty intersection with the unsafe sets
may require constructing concrete cells over the full dimensional space if the unsafe sets are not tree
decomposable for the tree T . However in many cases, the unsafe states are specified as intervals
over individual variables, which yields a tree decomposable set. In such cases, we need to intersect
the abstraction at each node with the unsafe set and perform message passing to make it canonical
before checking for emptiness.

Handling Guards and Invariants: We have not discussed guards and invariants. It is assumed
that such guards and invariants are tree decomposable over the tree T . In this case, we can
check which abstract cells have a non-empty intersection with the guard using message passing.
The handling of transition systems with guards and invariants will be discussed as part of future
extensions.

18

Table 1: Results on benchmark examples. |X|: Number of state variables, |W |: number of dis-
turbance variables, Tree Decomp.: reachability using tree decompositions, Monolithic: reachability
analysis without tree decompositions. SAPO: number of directions (|L|), number of bundles (|T |)
and running time. All timings are reported in seconds on a Macbook pro laptop running MacOS
10.14 with 16GB RAM and 3.4 GHz Intel core i7 processor. Reachability analysis was carried out
for 15 time steps.

Name |X| |W | Tree Tree Decomp. Monolithic SAPO
Width Time # Cells Time # Cells (|L|, |T |) Time

System # 1 3 1 1 14.4 0.22M 1047.6 7.6M -n/a-
System # 2 4 1 2 2.7 24K 652 3.1M -n/a-
SIR [23, 40] 3 0 1 4.1 95K 143 2M (3,1) 0.1
1D-Lattice-10 [39] 10 0 2 99 1.1M TO (1.5 hours) (16,6) 679
ebola-epidemic [14] 5 0 2 799.4 1.9M TO (1.5 hours) (5,5) 0.02
p53-gene-reg [31] 6 0 2 135.8 98K TO (1.5 hours) -n/a-
influenza-epidemic [22] 4 0 2 517.9 1.4M TO (1.5 hours) (7,4) 0.1
coupled-vanderpol 6 0 2 10.5 0.1M TO (1.5 hours) (10,5) 2.5
Laub-Loomis [30, 20] 7 0 3 1755.1 2.6M TO (1.5 hours) (12,6) 1.8
Honeybee* [23, 9] 6 4 3 206.1 2.1M TO (1.5 hours) (8,4) 0.7
Phosporelay [22] 7 0 3 1566.2 7.5M TO (1.5 hours) (10,4) 1.2
Coord. Vehicles (1) 5 1 2 150.2 0.5M TO (1.5 hours) -n/a-
Coord. Vehicles (2) 10 2 2 1175.2 2M TO (1.5 hours) -n/a-
Coord. Vehicles (4) 20 4 2 2206.7 3.9M TO (1.5 hours) -n/a-

5 Experimental Evaluation

In this section, we describe an experimental evaluation of our approach over a set of benchmark
problems. Our evaluation is based on a C++-based prototype implementation that can read in
the description of a nonlinear dynamical system over a set of system and disturbance variables.
The dynamics can currently include polynomials, rational functions and trigonometric functions.
Our implementation uses the MPFI library to perform interval arithmetic over the grid cells [36].
We use the HTD library to compute tree decompositions [1]. The system then computes a time-
bounded reachable set over the first T steps of the system’s execution. Currently, we plot the
results and compare the reachable set estimates against simulation data. We also compare the
reachable sets computed by the tree decomposition approach against an approach without using
tree decompositions. However, we note that the latter approach timed out on systems beyond 4
state variables.

Table 1 presents the results over a small set of challenging nonlinear systems benchmarks along
with a comparison to two other approaches (a) the approach without tree decomposition and (b)
the tool SAPO [22] which computes time bounded reachable sets for polynomial systems using the
technique of parallelotope bundles described by Dreossi et al [23]. The benchmarks range in number
of system variables from 3 to 20 state variables. We describe the sources for each benchmark where
appropriate. Note that the SAPO tool does not handle nonpolynomial dynamics or time varying
disturbances at the time of writing.

The treewidths range from 1 for the simplest system (Ex. 2.1) to 3 for the 7-state Laub Loomis
oscillator example [30]. We note that the tree decomposition was constructed within 0.01 seconds
for all the examples. We also note that systems with as many as 20 state variables are handled

19

Figure 1: Reachable set projections (shaded blue) for System# 2 (left) and the SIR model [22]
(right). Top : tree decomposition approach and Bottom: monolithic approach without tree decom-
positions. Reachable sets are identical for the SIR model. Note the difference in range of z for the
system #2. The red dots show the results of simulations.

by our approach whereas the monolithic approach cannot handle systems beyond 4 state variables.
We now compare the results of our approach to that of the monolithic approach on the two cases
where the latter approach completed.

System # 1: Consider again the system from Ex. 2.1 with 3 state variables and 1 disturbance.
We have already noted a tree decomposition of tree width 1 for this example.

System # 2: In this example, we consider a system over 4 state variables {x, y, z, w} and one
disturbance variable w1.

x := 0.5x+ y + 0.05xy − w1, y := −0.7y − 0.03x, z := z − 0.4y, w := w − 0.05xw

The domains include (x, y, z, w) ∈ [−1, 1]4 and divided into 16 × 108 grid cells (200 for each
state variable). The disturbance w1 ∈ [−0.1, 0.1]. The initial conditions are x ∈ [0.08, 0.16], y ∈
[−0.16,−.05], z ∈ [0.12, 0, 31] and w ∈ [−0.15,−0.1]. We obtain a tree decomposition of width 2,
wherein the nodes include n1 : {x, y, w1}, n2 : {y, z} and n3 : {x,w} with the edges (n1, n2) and
(n1, n3).

Figure 1 compares the resulting reachable sets for the tree decomposed reachability analysis
versus the monolithic approach. We note differences between the two reachable sets but the loss in
precision is not significant.

Coordinated Vehicles: In this example, we study nonlinear vehicle models of vehicles executing
coordinated turns. Each vehicle has states (xi, yi, vx,i, vy,i, ω), representing positions, velocities and
the rate of change in the yaw angle, respectively, with a disturbance wi. The dynamics are given
by

xi := xi + 0.1vx,i, yi := yi + 0.1vy,i, vx,i = vx,i + 0.1vx,i cos(0.1ωi)− 0.1vy,i sin(0.1ωi)
ωi = 0.5ωi + 0.5ω0 + 0.1wi

The vehicles are loosely coupled with ωi representing the turn rate of the ith vehicle and ω0

that of the “lead” vehicle. The ith vehicle tries to gradually align its turn rate to that of the lead
vehicle. This model represents a simple scenario of loosely coupled systems that interact using
a small set of state variables. applications including models of cardiac cells that are also loosely
coupled through shared action potentials [26]. The variables xi, yi are set in the domain [−15, 15]
and subdivided into 300 parts along each dimension. Similarly, the velocities range over [−10, 10]
and are subdivided into 500 parts each and the yaw rate ranges over [−0.2, 0.2] radians/sec and

20

Figure 2: Projection of reachable sets for the Laub-Loomis model.

subdivided into 25 parts. The disturbance ranges over [−0.1, 0.1]. Table 1 reports results from
models involving 1, 2 and 4 vehicles. Since they are loosely coupled, the treewidth of these models
is 2.

Laub-Loomis Model: The Laub-Loomis model is a molecular network that produces sponta-
neous oscillations for certain values of the model parameters. The model’s description was taken
from Dang et al [20]. The system has 7 state variables each of which was subdivided into 100 cells
yielding a large state space with 1014 cells. We note that the tree width of the graph is 3, yielding
nodes with upto 4 variables in them.

Figure 2 shows two projections of the reachable set computed by our approach against numerical
simulations.

Comparison With SAPO SAPO is a state-of-the-art tool that uses polytope bundles and
Bernstein polynomials to represent and propagate reachable sets for polynomial dynamical sys-
tems [22, 23]. We compare our approach directly on SAPO for identical models and initial sets.
Note that SAPO does not currently handle non-polynomial models or models with time-varying
disturbances. Table 1 shows that SAPO is orders of magnitude faster on all the models, with the
sole exception of the 1D-Lattice-10 model. Figure 3 shows the comparison of the reachable sets
computed by our approach (shaded blue region) against those computed by SAPO (black rectan-
gles) for five different models. We note that for three of the models compared, neither reachable
set is contained in the other. For the one dimensional lattice model, SAPO produces a better
reachable set, whereas our approach is better for the influenza model. We also note that both for
our approach the precision can be improved markedly by increasing the number of subdivisions,
albeit at a large computational cost that depends on the treewidth of the model. The same is true
for SAPO, where the number of directions and the template sizes have a non-trivial impact on
running time.

Models with Large Treewidths We briefly report on a few models that we attempted with
large treewidths. For such models, our approach of decomposing the space into cells becomes
infeasible due to the curse of dimensionality.

A model of how honeybees select between different sites [9, 23] has 6 variables and its tree
width is 5 with a single tree node containing all state variables. However, the large treewidth is
due to two terms in the model which are replaced by disturbance variables that overapproximate
their value. This brings down the treewidth to 3, making it tractable for our approach. Details of
this transformation are discussed in our extended version. Treewidth reduction using abstractions
is an interesting topic for future work.

We originally proposed to analyze a 2D grid lattice model taken from Vleck et al [39]. However,
a 2D 10×10 lattice model has a dependency hypergraph that forms a 10×10 grid with treewidth 10.

21

Likewise, the 17-state crazyflie benchmark for SAPO [22] could not be analyzed by our approach
since its treewidth is too large.

6 Conclusions

We have shown how tree decompositions can define an abstract domain that projects concrete
sets along the various subsets of state variables. We showed how message passing can be used to
exchange information between these subsets. We analyze the completeness of our approach and
show that the abstraction is lossy due to the projection operation. We show that for small tree
width models, a gridding-based analysis of nonlinear system can be used whereas such approaches
are too expensive when applied in a monolithic fashion. For the future, we plan to study tree
decompositions for abstract domains such as disjunctions of polyhedra, parallelotope bundles and
Taylor models. The process of model abstraction to reduce treewidth is another interesting future
possibility.

Acknowledgments: This work was supported by US NSF under award number CPS 1836900,
CCF 1815983 and the US Air Force Research Laboratory (AFRL). The author acknowledges Profs.
Mohamed Amin Ben Sassi and Fabio Somenzi for helpful discussions, and the anonymous reviewers
for their comments.

22

Figure 3: Comparison of various projections of the reachable sets computed by our approach shown
in blue, the reachable set computed by SAPO shown as black rectangles and states obtained through
random simulation shown in red dots. Top row: ebola model, second row: phosporelay, third row:
1d-lattice-10, fourth row: vanderpol (35 steps) and bottom row: influenza model.

23

References

[1] Abseher, M., Musliu, N., Woltran, S.: htd – a free, open-source framework for(customized)
tree decompositions andbeyond. In: Integration of AI and OR Techniques in Constraint Pro-
gramming. pp. 376–386. Springer International Publishing, Cham (2017)

[2] Adjé, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite relaxation
to compute accurate numerical invariants in static analysis. In: Programming Languages and
Systems. pp. 23–42. Springer Berlin Heidelberg (2010)

[3] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: A static analyzer for large safety-critical software. In: Prog. Lang. Design & Implementa-
tion. pp. 196–207. ACM Press (2003)

[4] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X.: Design and implementation of a special-purpose static program analyzer for safety-
critical real-time embedded software (invited chapter). In: In The Essence of Computation:
Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones. LNCS, vol. 2566,
pp. 85–108. Springer (2005)

[5] Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In: Automata,
Languages and Programming. pp. 105–118. Springer (1988)

[6] Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing 25(6), 1305–1317 (1996)

[7] Bodlaender, H.L.: Fixed-Parameter Tractability of Treewidth and Pathwidth, pp. 196–227.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

[8] Bodlaender, H.L., Koster, A.M.: Treewidth computations i. upper bounds. Information and
Computation 208(3), 259 – 275 (2010)

[9] Britton, N.F., Franks, N.R., Pratt, S.C., Seeley, T.D.: Deciding on a new home: how do
honeybees agree? Proceedings of the Royal Society of London. Series B: Biological Sciences
269(1498), 1383–1388 (2002)

[10] Chatterjee, K., Ibsen-Jensen, R., Goharshady, A.K., Pavlogiannis, A.: Algorithms for alge-
braic path properties in concurrent systems of constant treewidth components. ACM Trans.
Program. Lang. Syst. 40(3) (Jul 2018)

[11] Chatterjee, K., Ibsen-Jensen, R., Pavlogiannis, A., Goyal, P.: Faster algorithms for algebraic
path properties in recursive state machines with constant treewidth. In: Principles of Pro-
gramming Languages (POPL). p. 97109. Association for Computing Machinery, New York,
NY, USA (2015)

[12] Chen, M., Herbert, S., Tomlin, C.: Exact and efficient Hamilton-Jacobi-based guaranteed
safety analysis via system decomposition. In: IEEE International Conference on Robotics and
Automation (ICRA) (2017), to appear, also at arXiv:1609.05248

[13] Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear systems. In:
2016 IEEE Real-Time Systems Symposium (RTSS). pp. 13–24 (Nov 2016)

24

[14] Chowell, G., Hengartner, N., Castillo-Chavez, C., Fenimore, P., Hyman, J.: The basic repro-
ductive number of ebola and the effects of public health measures: the cases of congo and
uganda. Journal of Theoretical Biology 229(1), 119 – 126 (2004)

[15] Courcelle, B.: The monadic second-order logic of graphs iii: Treewidth, forbidden minors and
complexity issues. Informatique Théorique 26, 257286 (1992)

[16] Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proc.
ISOP’76. pp. 106–130. Dunod, Paris, France (1976)

[17] Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing approaches
to Abstract interpretation, invited paper. In: PLILP ’92. LNCS, vol. 631, pp. 269–295. springer
(1992)

[18] Cousot, P., Cousot, R.: Abstract Interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: ACM Principles of Programming
Languages. pp. 238–252 (1977)

[19] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among the variables of a
program. In: POPL’78. pp. 84–97 (Jan 1978)

[20] Dang, T., Dreossi, T.: Falsifying oscillation properties of parametric biological models. In:
Hybrid Systems Biology (HSB). EPTCS, vol. 125, pp. 53–67 (2013)

[21] Delmas, D., Souyris, J.: Astrée: from research to industry. In: Proc. Static Analysis Sympo-
sium, SAS. LNCS, vol. 4634, pp. 437–451. Springer, Berlin (2007)

[22] Dreossi, T.: Sapo: Reachability computation and parameter synthesis of polynomial dynamical
systems. In: Hybrid Systems:Computation and Control (HSCC). pp. 29–34. ACM (2017)

[23] Dreossi, T., Dang, T., Piazza, C.: Parallelotope bundles for polynomial reachability. In: Hybrid
Systems: Computation and Control (HSCC). pp. 297–306. ACM (2016)

[24] Ferrara, A., Pan, G., Vardi, M.Y.: Treewidth in verification: Local vs. global. In: Logic for
Programming, Artificial Intelligence, and Reasoning. pp. 489–503. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005)

[25] de Figueiredo, L.H., Stolfi, J.: Self-validated numerical methods and applications. In: Brazilian
Mathematics Colloquium monograph. IMPA, Rio de Janeiro, Brazil (1997)

[26] Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Guernic, C.L., Smolka, S.A., Bartocci, E.: From
cardiac cells to genetic regulatory networks. In: Computer Aided Verification CAV. Lecture
Notes in Computer Science, vol. 6806, pp. 396–411. Springer (2011)

[27] Gulwani, S., Jojic, N.: Program verification as probabilistic inference. In: POPL. p. 277289.
POPL 07, Association for Computing Machinery (2007)

[28] Ivancic, F., Balakrishnan, G., Gupta, A., Sankaranarayanan, S., Maeda, N., Imoto, T.,
Pothengil, R., Hussain, M.: Scope bounded software verification in varvel. Journal of Au-
tomated Software Engineering (J. ASE) pp. 1–14 (2014)

[29] Koller, D., Friedman, N.: Probabilistic Graphical Models. The MIT Press (2009)

25

[30] Laub, M.T., Loomis, W.F.: A molecular network that produces spontaneous oscillations in
excitable cells of dictyostelium. Molecular biology of the cell 9(12), 3521–3532 (1998)

[31] Leenders, G., Tuszynski, J.A.: Stochastic and deterministic models of cellular p53 regulation.
Frontiers in Oncology 3(64) (2013)

[32] Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. Inter-
national Journal of Pure and Applied Mathematics 4(4), 379–456 (2003)

[33] Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM (2009)

[34] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer (1999)

[35] Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded. In: Computer
Aided Verification. pp. 80–92. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

[36] Revol, N., Rouillier, F.: Motivations for an arbitrary precision interval arithmetic and the mpfi
library. Reliable Computing 11, 275290 (2005)

[37] Robertson, N., Seymour, P.: Graph minors. iii. planar tree-width. Journal of Combinatorial
Theory, Series B 36(1), 49 – 64 (1984)

[38] Thorup, M.: All structured programs have small tree width and good register allocation.
Information and Computation 142(2), 159 – 181 (1998)

[39] Vleck, E.S.V., Mallet-Paret, J., Cahn, J.W.: Traveling wave solutions for systems of odes on
a two-dimensional spatial lattice. SIAM Journal of Applied Mathematics 59, 455–493 (1998)

[40] Weisstein, E.W.: SIR model, from MathWorld–A Wolfram Web Resource. https://

mathworld.wolfram.com/SIRModel.html. Accessed May 2020.

26

https://mathworld.wolfram.com/SIRModel.html
https://mathworld.wolfram.com/SIRModel.html

	Introduction
	Related Work

	Preliminaries
	Tree Decomposition

	Abstract Domains Using Tree Decompositions
	Abstraction and Concretization
	Canonical Elements and Message Passing
	Decomposable Sets and Post-Conditions

	Grid-Based Interval Analysis
	Tree Decomposed Analysis

	Experimental Evaluation
	Conclusions

