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Abstract4

We study the problem of fitting a piecewise affine (PWA) function to input–output data.5

Our algorithm divides the input domain into finitely many regions whose shapes are specified by6

a user-provided template and such that the input–output data in each region are fit by an affine7

function within a user-provided error tolerance. We first prove that this problem is NP-hard.8

Then, we present a top-down algorithmic approach for solving the problem. The algorithm9

considers subsets of the data points in a systematic manner, trying to fit an affine function10

for each subset using linear regression. If regression fails on a subset, the algorithm extracts a11

minimal set of points from the subset (an unsatisfiable core) that is responsible for the failure.12

The identified core is then used to split the current subset into smaller ones. By combining this13

top-down scheme with a set-covering algorithm, we derive an overall approach that provides14

optimal PWA models for a given error tolerance, where optimality refers to minimizing the15

number of pieces of the PWA model. We demonstrate our approach on three numerical examples16

that include PWA approximations of a widely used nonlinear insulin–glucose regulation model17

and a double inverted pendulum with soft contacts.18

1 Introduction19

The problem of identifying models from data is central to designing and verifying Cyber-Physical20

Systems (CPS). These models can predict the output of a subsystem for a given input or the next21

state of a dynamical system from the current state. Even if there is a physical basis for constructing22

a model of the system under investigation, it is often necessary to use data-driven modeling to23

augment these models to incorporate aspects of the system that cannot be easily modeled. CPS are24

often nonlinear and multi-modal, wherein different regions of the input/state space have different25

laws that govern the relationship between the inputs and outputs. In this paper, we study piecewise26

affine (PWA) regression. The goal of PWA regression is to fit a piecewise affine function to a given27

data set of input–output pairs {(xk, yk)}Nk=1. The piecewise affine function splits the input domain28

into finitely many regions H1, . . . ,HM and associates an affine function fi(x) = Aix+ bi to each29

region Hi. This is illustrated in Fig. 1 below.30
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Figure 1: PWA regression of a set of input–output data points with rectangular template.

Further, we seek a PWA model that fits the given data while respecting a user-provided error31

bound ϵ and minimizing the number of regions (pieces). This problem has numerous applications32

including the identification of hybrid systems with state-based switching and simplifying nonlinear33

models using PWA approximations. Existing PWA regression approaches usually do not restrict how34

the input domain is split. For instance, an approach that simply specifies that the input domain is35

covered by polyhedral sets leads to high computational complexity for the regression algorithm [18].36

In this paper, we restrict the possible shape of the polyhedral regions by requiring that each37

region Hi is described by a vector inequality p(x) ≤ ci, wherein p is a fixed, user-provided, vector-38

valued function, called the template, while the regions are obtained by varying the offset vector ci.39

The resulting problem, called template-based PWA regression, allows us to split the input domain40

into pre-specified shapes using a suitable template. For instance, in Fig. 1, the input domain is41

divided into rectangular regions. Our contributions are as follows:42

After introducing and formalizing the problem of template-based PWA regression (Sec. “Problem43

Statement”), we show that — similarly to the classical PWA regression problem [18] — the problem44

of template-based PWA regression is NP-hard in the dimension of the input space and the size45

of the template, but polynomial in the size of the data set (Sec. “Computational Complexity”).46

Next, we provide an algorithm for optimal bounded-error template-based PWA regression, i.e., with47

minimal number of regions while fitting the data within the given error tolerance (Sec. “Top-Down48

Algorithm”). Our algorithm is top-down because it breaks large sets of data into smaller ones until49

those can be fit by an affine function. A more detailed overview of the algorithm is provided later50

in this introduction, after the “Related Work”. Finally, we apply our algorithm on two practical51

problems (Sec. “Numerical Experiments”): the approximation of a nonlinear system, namely the52

insulin–glucose regulation process [12], with affine functions with rectangular domains, and the53

identification of a hybrid linear system consisting in an inverted double pendulum with soft contacts54

on the joints. For both applications, we show that template-based PWA regression is favorable55

compared to classical PWA regression both in terms of computation time and our ability to formulate56

models from the results. We also compare different templates for the identification of a hybrid linear57

system consisting of two carts with springs.58

This paper is an extension of a preliminary version that appeared as part of the Learning for59

Decision and Control (L4DC) conference in May 2023 [7]. This paper extends our previous version60

by providing more detailed explanations of the algorithms and complete proofs of all the results.61
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We have also added a new numerical example involving the identification of a hybrid linear system62

consisting of two carts with springs.63

1.1 Related work64

Piecewise affine systems and hybrid linear systems appear naturally in a wide range of applications65

[16], or as approximations of more complex systems [10]. Therefore, the problems of switched affine66

(SA) and piecewise affine (PWA) regression have received a lot of attention in the literature; see,67

e.g., Paoletti et al. [27] and Lauer and Bloch [18] for surveys. Both problems are known to be68

NP-hard [18]. The problem of SA regression can be formulated as a Mixed-Integer Program (MIP)69

and solved using MIP solvers, but the complexity is exponential in the number of data points [27].70

Vidal et al. [35] propose an efficient algebraic approach to solve the problem, but it is restricted to71

noiseless data. Heuristics to solve the problem in the general case include greedy algorithms [5],72

continuous relaxations of the MIP [21], block–coordinate descent (similar to k-mean regression)73

algorithms [9, 17] and refinement of the algebraic approach using sum-of-squares relaxations [25];74

however, these methods offer no guarantees of finding an (optimal) solution to the problem. As75

for PWA regression, classical approaches include clustering-based methods [13], data classification76

followed by geometric clustering [23] and block–coordinate descent algorithms [4]; however, these77

methods are not guaranteed to find a (minimal) piecewise affine model. In this regard, our approach78

considers a novel “top-down” approach that focuses on searching for subsets of the data that can be79

part of the same affine model for the given error bounds.80

Our approach contrasts with most other approaches in that it is top-down and focuses on refining81

the domains (using the template assumption) of the pieces until affine fitting is possible. Indeed,82

most approaches for PWA regression (e.g., [5], [13], [4]) use a two-step approach in which the83

data are first clustered by solving a SA regression problem and then the clusters are separated84

into polyhedral regions. Medhat et al. [19] and Yuan et al. [36] use a similar two-step approach85

for learning hybrid linear automata. There are also approaches that learn the function and the86

domains in one step: for instance, Breiman [10] for a special class of continuous PWA functions87

called Hinging Hyperplanes, Sadraddini and Belta [31] using mixed-integer linear programming88

(MILP), and Berger, Narasimhamurthy, and Sankaranarayanan [6] for a class of PWA systems,89

called guarded linear systems. The class of Hinging Hyperplanes and guarded linear systems are90

not comparable in general with those studied in this work.1 Soto, Henzinger, and Schilling [33]91

also learn the function and the domains simultaneously for hybrid linear systems; however, their92

incremental approach is greedy, so that it does not come with guarantees of minimality. By contrast,93

our approach guarantees to find a PWA function with minimal number of regions from the template.94

Piecewise affine systems with constraints on the domain appear naturally in several applications95

including biology [29] and mechanical systems with contact forces [1], or as approximations of96

nonlinear systems [32]. Techniques for PWA regression with rectangular domains have been proposed97

in Münz and Krebs [22] and Smarra et al. [32]; however, these approaches impose further restrictions98

on the arrangement of the domains of the functions (e.g., forming a grid) and they are not guaranteed99

to find a solution with a minimal number of pieces. In the one-dimensional case (time series),100

optimal time series segmentation can be computed efficiently by using dynamic programming [2,101

3, 26, 24], but the approach does not extend to higher dimension and solves a different problem102

(min. # switches vs. min. # pieces). Our approach bears similarities with the “split-and-merge”103

algorithm of Pavlidis and Horowitz [28], except that (i) we only split regions and never merge them104

because by construction merging would lead to incompatible regions; (ii) our algorithm comes with105

1See for instance the example in Berger, Narasimhamurthy, and Sankaranarayanan [6, Lemma 2.5] for a system
that can be described with the rectangular template but not as a guarded linear system.
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guarantees of optimality; and (iii) we address the problem of PWA regression and not segmentation.106

As for the application involving mechanical systems with contact forces, a recent work by Jin et al.107

[15] proposes a heuristic based on minimizing a loss function to learn linear complementary systems.108

1.2 Approach at a glance109

Fig. 2 below shows the working of our algorithm on a simple data set with N = 11 points110

(xk, yk) ∈ R×R (see Plot I). We seek a PWA function that fits the data with error tolerance ϵ = 0.1111

and with the smallest number of affine pieces (green lines in III, V and VI).112
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Figure 2: Left. Illustration of our algorithm on a simple data set with 11 data points (xk, yk) ∈ R×R.
Right. the index sets explored by our algorithm.

The algorithm works as follows. At the very first step, the approach tries to fit a single straight113

line through all the 11 points. This corresponds to the index set I0 = {1, . . . , 11} (see II) where114

the points are indexed as in I. However, no such line can fit the points for the given ϵ. Hence, our115

approach generates an infeasibility certificate that identifies the indices C0 = {4, 5, 6} as a cause116

of infeasibility (see II). In other words, we cannot have all three points in C0 be part of the same117

piece of the PWA function we seek. As explained in the paper, infeasibility certificates can be118

computed efficiently using Linear Programming. Moreover, in case of infeasibility, we can always119

find an infeasibility certificate with cardinality at most d+ 2, where d is the dimension of the input120

(here, d = 1).2 Our approach then splits I0 into two subsets I1 = {1, . . . , 5} and I2 = {5, . . . , 11}.121

These two sets are maximal intervals with respect to set inclusion and do not contain C0. The122

set I1 can be fit by a single straight line with tolerance ϵ (see III). However, considering I2, we123

notice once again that a single straight line cannot be fit (see IV). We identify the set C2 = {6, 7, 8}124

as an infeasibility certificate and our algorithm splits I2 into maximal subsets I3 = {5, 6, 7} and125

I4 = {7, . . . , 11}. Each of these subsets can be fit by a straight line (see V and VI). Thus, our126

approach finishes by discovering three affine pieces that cover all the points {1, . . . , 11}. Note that127

although the data point indexed by 5 is part of two pieces, we can resolve this “tie” in an arbitrary128

manner by assigning 5 to the first piece and removing it from the second; the same holds for the129

data point indexed by 7.130

2This is a consequence of Farkas’ Lemma and Carathéodory’s Theorem; see Lemma 2.
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Notation Given two vectors or matrices u and v, their horizontal (resp. vertical) concatenation is131

denoted by [u, v] (resp. [u; v]). For positive integers d and e and a scalar α, we denote by [α]d (resp.132

[α]e,d) the vector in Rd (resp. matrix in Re×d) whose components are all equal to α. Finally, given133

an natural number n, we let [n] = {1, . . . , n}.134

2 Problem Statement135

Given a data set of N ∈ N>0 input–output pairs {(xk, yk)}Nk=1 ⊆ Rd × Re, the problem of piecewise136

affine (PWA) regression aims at finding a piecewise affine (PWA) function that fits the data within137

some given error tolerance ϵ ≥ 0. Formally, a PWA function f over a domain D ⊆ Rd is defined by138

covering D with M regions H1, . . . ,HM and associating an affine function fi(x) = Aix+ bi with139

each Hi:140

f(x) =


A1x+ b1 if x ∈ H1,
A2x+ b2 if x ∈ H2,
...

AMx+ bM if x ∈ HM .

Note that if Hi ∩Hj ̸= ∅ for some i ̸= j, then f is no longer a function. However, in such a case, we141

may “break the tie” by defining f(x) = fi(x) wherein i = min {j : x ∈ Hj}.142

Problem 1 (PWA regression). Given a data set {(xk, yk)}Nk=1 and an error bound ϵ ≥ 0, find M143

regions Hi ⊆ Rd and affine functions fi(x) = Aix+ bi such that144

∀ k, ∃ i : xk ∈ Hi and ∀ k, ∀ i : xk ∈ Hi ⇒ ∥yk − fi(xk)∥∞ ≤ ϵ. (1)

Furthermore, we restrict the domain Hi of each affine piece by specifying a template, which can145

be any function p : Rd → Rh. Given a template p and a vector c ∈ Rh, we define the set H(c) as146

H(c) = {x ∈ Rd : p(x) ≤ c}, (2)

wherein ≤ is elementwise and c ∈ Rh parameterizes the set H(c). We let H = {H(c) : c ∈ Rh}147

denote the set of all regions in Rd described by the template p.148

Fixing a template allows to control the complexity of the domains, and thus of the overall PWA149

function. This allows among others to mitigate overfitting. The rectangular template p(x) = [x;−x]150

defines regions H(c) that form boxes in Rd. Indeed, for two vectors c1 ≤ c2, H([c2;−c1]) defines the151

box {x ∈ Rd : c1 ≤ x ≤ c2}. Similarly, allowing pairwise differences between individual variables as152

components of p yields the octagon domain [20]. Fig. 1 illustrates PWA functions with rectangular153

domains. Thus, we define the template-based piecewise affine (TPWA) regression problem:154

Problem 2 (TPWA regression). Given a data set {(xk, yk)}Nk=1, a template p : Rd → Rh and an155

error bound ϵ > 0, find M regions Hi ∈ H and affine functions fi(x) = Aix + bi such that (1) is156

satisfied.157

Prob. 2 can be posed as a decision problem: Given a bound M̂ , is there a TPWA function with158

M ≤ M̂ pieces? Alternatively, we can pose it as an optimization problem: Find a TPWA function159

with minimum number M of pieces.160

Although a solution to the decision problem can be used repeatedly to solve the optimization161

problem, we will focus on directly solving the optimization problem in this paper. Prob. 2 is closely162

related to the well-known problem of switched affine (SA) regression, in which one aims to explain163

the data with a finite number of affine functions, but there is no assumption on which function164
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may explain each data point (xk, yk). In other words, SA aims to identify a sufficient number of165

modes and dynamics corresponding to each mode without necessarily explaining how the modes are166

assigned to each point in the domain.167

Problem 3 (SA regression). Given a data set {(xk, yk)}Nk=1 and an error bound ϵ ≥ 0, find M168

affine functions fi(x) = Aix+ bi such that ∀ k, ∃ i: ∥yk − fi(x)∥∞ ≤ ϵ.169

3 Computational Complexity170

The problem of SA regression (Prob. 3) is known to be NP-hard, even for M = 2 [18, Sec. 5.2.4]. In171

this section, we show that the same holds for the decision version of Prob. 2. We study the problem172

in the RAM model, wherein the problem input size is N(d+ e) + h, where p : Rd → Rh.173

Theorem 1 (NP-hardness). The decision version of Prob. 2 is NP-hard, even for M = 2 and174

rectangular templates (p(x) = [x;−x]).175

The proof reduces Prob. 3 which is known to be NP-hard to Prob. 2.176

Proof. Without loss of generality, we restrict to piecewise linear models since piecewise affine models177

can be obtained from linear ones by augmenting each data point xk with a component equal to 1.178

We reduce Prob. 3 to Prob. 2 as follows. Consider an instance of Prob. 3 consisting of a data set179

D = {(xk, yk)}Nk=1 ⊆ Rd × Re and tolerance ϵ. From D, we build another data set D′ ⊆ Rd+N × Re
180

with |D′| = 4N as follows. For each k ∈ [N ], we let χk ∈ RN be the indicator vector of the kth181

component. We define182

D′ =
⋃

σ∈{−1,1}

N⋃
k=1

[
{([σxk;χk], σyk), ([[0]d;χk], [σϵ]e)}

]
.

In other words, for each data point (xk, yk) in the original dataset D, we add four data points of the183

form ([xk;χk], yk), ([−xk;χk],−yk), ([[0]d;χk], [ϵ]e), ([[0]d;χk], [−ϵ]e) wherein χk is a vector of size184

N with a 1 entry in the kth position and a 0 entry everywhere else and [0]d is a vector of d zeros185

wherein [ϵ]e is a vector with e entries each of which is ϵ.186

Also, we let p : Rd+N → R2(d+N) be the rectangular template in Rd+N .187

Main step: We show that Prob. 3 with D, ϵ and M = 2 has a solution if and only if Prob. 2188

with D′, p, ϵ and M = 2 has a solution.189

Proof of “if direction”. Assume that Prob. 2 has a solution given by H1, H2 ⊆ Rd+N and190

A1, A2 ∈ Re×(d+N), and for each i, decompose Ai = [Bi, Ci], wherein Bi ∈ Re×d and Ci ∈ Re×N .191

We will show that B1, B2 provide a solution to Prob. 3.192

Therefore, fix k ∈ [N ]. Using the pigeon-hole principle, let i ∈ {1, 2} be such that at least two193

points in {[xk;χk], [−xk;χk], [[0]d;χk]} belong to Hi. Then, by the convexity of Hi, it holds that194

[[0]d;χk] ∈ Hi. For definiteness, assume that [xk;χk] ∈ Hi. Since H1, H2 and A1, A2 provide a195

solution to Prob. 2, it follows that196

∥yk −Bixk − Ciχk∥∞ ≤ ϵ, ∥[ϵ]e − Ciχk∥∞ ≤ ϵ, ∥[ϵ]e + Ciχk∥∞ ≤ ϵ.

The last two conditions imply that Ciχk = 0, so that ∥yk −Bixk∥∞ ≤ ϵ. Since k was arbitrary, this197

shows that B1, B2 provide a solution to Prob. 3; thereby proving the “if direction”.198

Proof of “only if direction”. Assume that Prob. 3 has a solution given by A1, A2 ∈ Re×d. Then,199

for each k ∈ [N ], define the intervals I1,k, I2,k ⊆ R as follows: Ii,k = [0, 1] if ∥yk − Aixk∥∞ ≤ ϵ,200
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and Ii,k = {0} otherwise. Now, define the rectangular regions H1, H2 ⊆ Rd+K as follows: Hi =201

Rd × Ii,1 × · · · × Ii,N . Also define the matrices B1, B2 ∈ Re×(d+N) as follows: Bi = [Ai, [0]e,K ]. We202

will show that H1, H2 and B1, B2 provide a solution to Prob. 2.203

Therefore, fix k ∈ [N ] and i ∈ {1, 2}. First, assume ∥yk−Aixk∥∞ ≤ ϵ. We show that (a) [xk;χk],204

[−xk;χk] and [[0]d;χk] belong to Hi, and (b)205

∥yk −Bi[xk;χk]∥∞ ≤ ϵ, ∥−yk −Bi[−xk;χk]∥∞ ≤ ϵ, ∥[±ϵ]e −Bi[[0]d;χk]∥∞ ≤ ϵ.

This is direct (a) by the definition of Ii,k, and (b) by the definition of Bi. Now, assume that206

∥yk − Aixk∥∞ ≤ ϵ does not hold. We show that [xk;χk], [−xk;χk] do not belong to Hi. This is207

direct since 1 /∈ Ii,k. Thus, we have shown that H1, H2 and B1, B2 provide a solution to Prob. 2;208

thereby proving the “only if direction”.209

Hence, we have built a polynomial-time reduction from Prob. 3 to Prob. 2. Since Prob. 3 is210

NP-hard [18, Sec. 5.2.4], this shows that Prob. 2 is NP-hard as well.211

Remark 1. Note that the reduction from Prob. 3 to Prob. 2 in the above proof relies on the fact that212

M = 2. Two comments are due here. First, the fact that Prob. 2 is NP-hard with M = 2 implies213

that Prob. 2 is NP-hard with any M ≥ 2. Indeed, if Prob. 2 can be solved in polynomial time for214

some M = M̂ > 2, then one can add spurious data points (e.g., at a far distance of the original215

data points) to enforce the value of M̂ − 2 affine pieces of the PWA function. The satisfiability216

of Prob. 2 with M = M̂ and the augmented data set is then equivalent to the satisfiability of217

Prob. 2 with M = 2 and the original data set. Second, given M̂ ≥ 2 and any template p, a218

construction similar to the one used in the above proof can be used to reduce Prob. 3 to Prob. 2219

at the cost of introducing a small gap in the reduction. Indeed, fix λ > 0 and consider the data220

set D′ =
⋃M+1

t=1 {([xk; tλχk], yk)}Nk=1. Then, one can show that if Prob. 2 with D′, p, ϵ = ϵ̂(1 − 2
λ)221

and M = M̂ has a solution, then Prob. 3 with D, ϵ = ϵ̂ and M = M̂ has a solution. The gap222

corresponds to the factor 1− 2
λ , which can be made arbitrarily close to one. ◁223

So, we showed that Prob. 2 is NP-hard, thereby implying no known algorithm with complexity224

polynomial in the problem input size N(d + e) + h. Nevertheless, one can show that for fixed225

dimension d, template size h and number of pieces M , the complexity is polynomial in the data size226

N .227

Theorem 2 (Polynomial complexity in N). For fixed dimension d, template p : Rd → Rh and228

number of pieces M , the complexity of Prob. 2 is bounded by O(NMh).229

The following notation will be useful in the proof of Theorem 2 below and also later in the paper.230

For every c ∈ Rh, let I(c) = {k ∈ [N ] : xk ∈ H(c)} be the set of all indices k such that xk ∈ H(c).231

Also, let I = {I(c) : c ∈ Rh} be the set of all such index sets.232

Proof. The crux of the proof is to realize that |I| ≤ Nh + 1.233

For every c ∈ Rh, define P (c) = {p(xk) : k ∈ [N ], p(xk) ≤ c} and let P = {P (c) : c ∈ Rh}. First,234

we prove that |P| ≤ Nh + 1. For convenience, we write p(x) = [p1(x), . . . , ph(x)]. Note that for any235

c ∈ Rh such that P (c) ̸= ∅, it holds that P (c) = P (ĉ) where ĉ = max({p(xk) : k ∈ [N ], p(xk) ≤ c})236

and the “max” is elementwise. Therefore, we can identify at most h elements xk1 , . . . , xkh wherein237

k1, . . . , kh ∈ [N ] such that ĉ ∈ {[p1(xk1), . . . , ph(xkh)] : k1, . . . , kh ∈ [N ]}. Each element can be seen238

as “fixing” the maximum value along some dimension of p(x). Hence, there are at most Nh distinct239

such ĉ. This implies that there are at most Nh distinct nonempty sets P (c), concluding the proof240

that |P| ≤ Nh + 1.241

Next, observe that there is a one-to-one correspondence between P and I given by: P (c) 7→ I(c).242

Indeed, it is clear that if I(c1) = I(c2), then P (c1) = P (c2). On the other hand, if I(c1) ⊈ I(c2),243
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then there is at least one k such that p(xk) ≤ c1 but p(xk) ≰ c2. This implies that P (c1) ⊈ P (c2).244

Therefore, |P| = |I| ∈ O(Nh).245

Now, Prob. 2 can be solved by enumerating the L = Nh nonempty index sets I1, . . . , IL in I,246

and keeping only those Iℓ for which we can fit an affine function over the data {(xk, yk)}k∈Iℓ with247

error bound ϵ. Next, we enumerate all combinations of M such index sets that cover the indices248

[N ]. There are at most LM such combinations. This concludes the proof of the theorem.249

Remark 2. Note that a similar result holds for Prob. 3 [18, Theorem 5.4]. The proof of Theorem 2 is250

however simpler than that in [18] because in our case we can use the template to build the different251

regions. ◁252

The algorithm presented in the proof of Theorem 2, although polynomial in the size of the data253

set, can be quite expensive in practice. For instance, in dimension d = 2, with rectangular regions254

(i.e., h = 4) and N = 100 data points, one would need to solve Nh = 108 regression problems,3 each255

of which is a linear program.256

In the next section, we present an algorithm for TPWA regression that is generally several orders257

of magnitude faster by using a top-down approach that avoids having to systematically enumerate258

all the elements in I.259

4 Top-Down Algorithm260

We first define the concept of compatible and maximal compatible index sets. We will assume an261

instance of Prob. 2 with data {(xk, yk)}Nk=1, template p, and error bound ϵ.262

Definition 1 (Maximal compatible index set). An index set I ⊆ [N ] is compatible if (a) I ∈ I and263

(b) there is an affine function f(x) = Ax+ b such that ∀ k ∈ I, ∥yk − f(xk)∥∞ ≤ ϵ. A compatible264

index set I is maximal if there is no compatible index set I ′ such that I ⊊ I ′.265

The key idea is that we can restrict ourselves to searching for maximal compatible index sets in266

order to find a solution to Prob. 2.267

Lemma 1. Let M be given. Prob. 2 has a solution if and only if it has a solution wherein the268

regions correspond to maximal compatible index sets.269

Proof. The “if direction” is clear. We prove the “only if direction”. Consider a solution of Prob. 2270

with regions H1, . . . ,HM . For each i ∈ [M ], there is a maximal compatible index set Ii = I(ci) such271

that Hi ∩ {xk}Nk=1 ⊆ H(ci). Since {xk}Nk=1 ⊆
⋃M

i=1Hi, it holds that {xk}Nk=1 ⊆
⋃M

i=1H(ci). Hence,272

H(c1), . . . ,H(cq), along with affine functions fi(x) = Aix + bi satisfying (b) in Def. 1, provide a273

solution to Prob. 2, concluding the proof.274

The main result of this section is that maximal compatible index sets can be computed by275

using a recursive top-down approach as follows (implemented in Algo. 1). Consider the lattice276

⟨I,⊆⟩ consisting of elements of I ordered by set inclusion. Our algorithm starts at the very top277

of this lattice with a set of points I = [N ] and descends until we find maximal compatible index278

sets. At each step, we consider a current set I ∈ I (initially, I = [N ]) that is a candidate for being279

compatible and check it for compatibility. If I is not compatible, we find subsets I1, . . . , IS ⊊ I280

using the FindSubsets procedure, which is required to be consistent, as defined below:281

3In theory, by using Sauer–Shelah’s lemma (see, e.g., [14, Lemma 6.2.2]), this number can be reduced to
∑h

i=1

(
K
i

)
≈

4× 106. This is because the VC dimension of rectangular regions in Rd is 2d.
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Algorithm 1: Top-down algorithm to compute maximal compatible index sets.

Data: Data set {(xk, yk)}Nk=1, template p
Result: Collection S of all maximal compatible index sets

1 S ← ∅ // compatible sets so far

2 U ← {[N ]} // sets to be processed

3 V ← ∅ // already explored

4 while U ̸= ∅ do
5 Pop an index set I from U // removes I from U
6 if I is a subset of a set of S then

// do nothing

7 else if I is compatible then
8 Add I to S
9 Remove strict subsets of I from S // Removed sets are not maximal

10 else
11 (I1, . . . , IS)← FindSubsets(I) // must be consistent

12 Add to U all I1, . . . , IS that are not in V
13 end
14 Add I to V
15 end
16 return S

Definition 2 (Consistency). Given a non-compatible index set I ∈ I, a collection of index sets282

I1, . . . , IS ∈ I is said to be consistent w.r.t. I if (a) for each s, Is ⊊ I and (b) for every compatible283

index set J ⊆ I, there is s such that J ⊆ Is.284

We will assume that the procedure FindSubsets is implemented such that for any non-285

compatible index set I, the collection of sets I1, . . . , IS output by FindSubsets(I) is consistent286

w.r.t I.287

Theorem 3 (Correctness of Algo. 1). If FindSubsets satisfies that for every non-compatible index288

set I ∈ I, the output of FindSubsets(I) is consistent w.r.t. I, then Algo. 1 always terminates and289

the output S contains all the maximal compatible index sets.290

Proof. Termination follows from the fact that each index set I ∈ I is picked at most once, because291

when some I ∈ I is picked, it is then added to the collection V of visited index sets, so that it292

cannot be added a second time to U (line 12). Since I is finite, this implies that the algorithm293

terminates in a finite number of steps.294

Now, we prove that, upon termination, any maximal compatible index set is in the output S of295

the algorithm. Therefore, let J be a maximal compatible index set. Then, among all sets I picked296

during the execution of the algorithm and satisfying J ⊆ I, let I∗ have minimal cardinality. Such297

an index set exists since J ⊆ [N ]. We will show that:298

Main result. I∗ = J .299

Proof of main result. For a proof by contradiction, assume that I∗ ̸= J . Since J is maximal and300

J ⊊ I∗, I∗ is not compatible. Hence, the index sets (I1, . . . , IS) = FindSubsets(I∗) were added301

to U (line 11). Using the assumption on FindSubsets, let s be such that J ⊆ Is ⊊ I∗. Since Is302

must have been picked during the execution of the algorithm, this contradicts the minimality of the303

cardinality of I∗, concluding the proof of the main result.304
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Algorithm 2: An implementation of FindSubsets using infeasibility certificates

Data: Data set {(xk, yk)}Nk=1, template p = [p1, . . . , ph], non-compatible index set I = I(c)
where c = [c1, . . . , ch], infeasibility certificate C ⊆ I

Result: A collection of index sets I1, . . . , IS consistent w.r.t. I
1 foreach s = 1, . . . , h do
2 ĉs ← max {ps(xk) : k ∈ I, ps(xk) < maxℓ∈C ps(xℓ)}
3 Define Is = I([c1, . . . , cs−1, ĉs, cs+1, . . . , ch])

4 end
5 return all nonempty index sets I1, . . . , Ih

Thus, J was picked during the execution of the algorithm. Since it is compatible, it was added305

to S at the iteration at which it was picked (line 8), and since it is maximal, it is not removed at306

later iterations. Hence, upon termination, J ∈ S. Since J was arbitrary, we conclude that upon307

termination, S contains all maximal compatible index sets.308

Finally, we show that upon termination, S contains only maximal compatible index sets. This309

follows from the fact that, at each iteration of the algorithm, for any distinct I1, I2 ∈ S, it holds that310

I1 ⊈ I2 and I2 ⊈ I1. Indeed, when I1 is added to S, all subsets of I1 are removed from S (line 9)311

and are ignored at later iterations (line 6). The same holds for I2. This concludes the proof of the312

theorem.313

4.1 Implementation of FindSubsets using infeasibility certificates314

We now explain how to implement FindSubsets so that it is consistent. For that, we use infeasibility315

certificates, which are index sets that are not compatible.316

Definition 3 (Infeasibility certificate). An index set C ⊆ [N ] is an infeasibility certificate if there317

is no affine function f(x) = Ax+ b such that ∀ k ∈ C, ∥yk − f(xk)∥∞ ≤ ϵ.318

Note that any incompatible index set I contains an infeasibility certificate C ⊆ I (e.g., C = I).319

However, it is quite useful to extract an infeasibility certificate C that is as small as possible. We320

explain below how to compute small infeasibility certificates. Thereafter, from an infeasibility321

certificate C ⊆ I, one can compute a consistent collection of index subsets of I by tightening each322

component of the template independently, in order to exclude a minimal nonzero number of indices323

from the infeasibility certificate, while keeping the other components unchanged. This results in324

an implementation of FindSubsets that satisfies the consistency property, described in Algo. 2.325

Fig. 3 below shows an illustration for rectangular regions.326

I I1 I2 I3 I4

Figure 3: FindSubsets implemented by Algo. 2 with rectangular regions. The red dots represent
the infeasibility certificate C. Each Is excludes at least one point from C by moving one face of the
box but keeping the others unchanged.

10



Theorem 4 (Correctness of Algo. 2). For every non-compatible index set I ∈ I, the output I1, . . . , IS327

of Algo. 2 is consistent w.r.t. I.328

Proof. Observe that if C is an infeasibility certificate, then every I ⊆ [N ] satisfying C ⊆ I is not329

compatible. Now, let J ⊆ I be compatible. Using that C ⊈ J , let s be a component such that330

maxk∈J ps(xk) < maxk∈C ps(xk). It holds that J ⊆ Is. Since J was arbitrary, this concludes the331

proof.332

4.2 Finding infeasibility certificates333

We outline the process of finding an infeasibility certificate C ⊆ I for a given non-compatible index334

set I ⊆ [N ]. Recall that the data is of the form {(xk, yk)}Nk=1, wherein for each k ∈ [N ], xk ∈ Rd
335

and yk ∈ Re. For simplicity, assume that the output is scalar, i.e, e = 1, or equivalently, yk ∈ R for336

all k ∈ [N ]. We will subsequently show how technique for the scalar case will extend to the case of337

e > 1.338

For the scalar case, the goal is to find an affine function f(x) = a⊤x+ b wherein a ∈ Rd and339

b ∈ R so that for all k ∈ I, |yk − f(xk)| ≤ ϵ. However, since I is non-compatible, no such function340

exists by definition. Therefore, the system of linear inequalities involving unknowns (a, b) ∈ Rd × R341

is infeasible:342

x⊤k a+ b− yk ≤ ϵ ∀ k ∈ I ,

−x⊤k a− b+ yk ≤ ϵ ∀ k ∈ I .

Note that each constraint of the form |α| ≤ β is expanded as two constraints α ≤ β and −α ≤ β.343

By applying Farkas’ Lemma or a theorem of the alternative [30, Theorem 21.3], and simplifying the344

result, we conclude that the system of inequalities above is infeasible (i.e, I is non-compatible) if345

and only if there exists a multiplier λk ∈ R for each k ∈ I such that the following system of linear346

constraints is feasible:347 ∑
k∈I λkxk = [0]d,∑
k∈I λk = 0,∑
k∈I λkyk +

∑
k∈I |λk|ϵ ≤ −1 .

(3)

Thus, in order to check whether a given index set I is non-compatible, we simply formulate348

the system of inequalities (3) involving unknowns λk ∈ R for each k ∈ I and attempt to find349

a feasible solution using a Linear Programming (LP) solver. If feasible, we conclude that I is350

non-compatible. In fact, given any solution (λk)k∈I to the system of inequalities above, we can351

extract a corresponding infeasibility certificate as C = {k ∈ I : λk ̸= 0}. It is easy to see why: any352

k ∈ I with λk = 0 indicates that I \ {k} remains a non-compatible set since such a variable λk can353

be removed from the system of inequalities while retaining feasibility.354

Lemma 2. If I is non-compatible, then there exists an infeasibility certificate C ⊆ I such that355

|C| ≤ d+ 2.356

Proof. The system of constraints (3) has |I| unknowns and d + 2 constraints of which d + 1 are357

equality constraints. We may write λk = αk−βk for variables αk, βk ≥ 0 and therefore |λk| = αk+βk.358

Under this transformation, the system of constraints can be rewritten as359 ∑
k∈I(αk − βk)xk = [0]d,∑
k∈I(αk − βk) = 0,∑
k∈I(αk − βk)yk +

∑
k∈I(αk + βk)ϵ ≤ −1 ,

αk, βk ≥ 0, ∀ k ∈ I .
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With this transformation, the system above is a standard-form Linear Program with d+2 constraints360

and decision variables αk, βk ≥ 0 for each k ∈ I. We treat the objective function for this LP as the361

constant 0. Any basic feasible solution will have at most d+ 2 non-zero variables. Furthermore,362

from the theory of Linear Programming, we know that if a system is feasible, then it has a basic363

feasible solution [34]. Translating this back to the original system (3), we get that there is a solution364

involving at most d+ 2 non-zero values for λk. That is, there exists an infeasibility certificate C365

such that |C| ≤ d+ 2.366

So far, we have assumed that the outputs yk are scalar, i.e., e = 1. However, if e > 1, we can367

simply use the previous analysis by focusing separately on each component of the output vectors yk.368

This is possible because if a given index set I is non-compatible, then there must exist a component369

s ∈ [e] such that I is non-compatible even if the data set is restricted to {(xk, ysk)}Nk=1, wherein370

ysk denotes the sth component of yk. Indeed, if it were not the case, then for each component s,371

we could find an affine function fs(x) = a⊤s x + bs such that for all k ∈ I, |fs(xk) − ysk| ≤ ϵ. By372

letting A = [a⊤1 ; . . . ; a
⊤
e ] and b = [b1, . . . , be]

⊤, we see that f(x) = Ax + b satisfies that for all373

k ∈ I, ∥f(xk) − yk∥∞ ≤ ϵ. This contradicts the assumption that I is non-compatible. Thus, the374

infeasibility certificate for e > 1 is extracted by simply considering each output component in turn,375

thus reducing the problem to the scalar case considered above.376

We conclude that checking whether a set I is non-compatible and if so, finding an infeasibility377

certificate C ⊆ I, can be solved by posing the system of constraints (3) and solving it using an378

algorithm such as the simplex algorithm.379

4.2.1 Good infeasibility certificates for the top-down approach380

The implementation of FindSubsets boils down to finding infeasibility certificates, which can be381

done as explained above. However, not all certificates will be as good in terms of overall complexity382

of the top-down approach. To exclude non-compatible index sets more rapidly, it is desirable that383

the points in the certificate are “spatially concentrated” in the input domain. This means that the384

points {xk}k∈C are close to each other w.r.t. some distance metric.385

We illustrate the benefit of spatially concentrated certificates with the example used to illustrate386

the top-down approach in the introduction.387

Example 1. Consider the TPWA regression problem in Fig. 2, introduced in the section “Approach at388

a glance”. In Plot II, we obtained the infeasibility certificate C0 = {4, 5, 6}. Note that Ĉ0 = {1, 5, 11}389

is another infeasibilitty certificate that could have been obtained as a result of solving the system (3).390

However, C0 is more “spatially concentrated” in the sense that the points in C0 are closer to each391

other than those in Ĉ0.392

Recall that using C0 as the infeasibility certificate allowed to find the compatible subset393

I1 = {1, . . . , 5} directly and the compatible subsets I3 = {5, 6, 7} and I4 = {7, . . . , 11} at the394

subsequent steps.395

However, if the certificate Ĉ0 = {1, 5, 11} were used, then we would have obtained Î1 = {2, . . . , 11}396

and Î2 = {1, . . . , 10}. Note that both Î1, Î2 are non-compatible because they contain C0 and thus397

further steps of our procedure are needed until we find maximally compatible sets. ◁398

We now refine the above argument with a volume-contraction argument to discuss what would399

be the complexity of the overall top-down algorithm if all certificates are spatially concentrated in400

the input domain.401

Example 2. Consider a PWA function f with M pieces whose domains H1, . . . ,HM are rectangles,402

as illustrated in Fig. 4. Let N ∈ N>0 and consider a data set D = {(xk, yk)}Nk=1. We aim to solve403
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x̄

H(c)Hi

{xk}k∈C

Figure 4: Illustration of FindSubsets with a spatially concentrated certificate. The green and
orange hatched rectangles illustrate two possible cases for H(cs) output by FindSubsets.

Prob. 2 with D, ϵ = 0 and the rectangular template. We will discuss the complexity of the top-down404

approach presented in Algo. 1 if all certificates are spatially concentrated. This means that {xk}k∈C405

consists in d+ 2 points concentrated around the center x̄ of H(c), where C is the certificate for I(c)406

(see Fig. 4).407

This will imply that the rectangles H(c1), . . . ,H(ch) computed by FindSubsets satisfy that408

for all s ∈ [h], either the volume of H(cs) is half of that of H(c) since one face is tight at x̄ (see the409

green rectangle in Fig. 4) or H(cs) has one more face near the boundary of Hi compared to H(c)410

(see the orange rectangle in Fig. 4). By adding the natural assumption that all regions Hj have a411

volume of at least ν ∈ (0, 1] and discarding regions with volume smaller than ν, we get that the412

algorithm cannot divide the volume of a region more than − log2(ν) times. Hence, the depth of the413

tree underlying the algorithm is upper bounded by h− log2(ν). Since, each node of the tree has at414

most h children (the subsets given by FindSubsets), the number of rectangles encountered during415

the algorithm is upper bounded by hh−log2(ν). Note that this upper bound on the complexity of the416

algorithm is independent of the data size N . This concludes the example. ◁417

To conclude this section on good certificates, we explain briefly how spatially concentrated418

certificates can be computed by adding a cost function to the Linear Program (3). For simplicity, we419

will assume that the output dimension e = 1. For the case when e > 1, we can apply our approach420

to each component of the output in turn.421

Given a center point x̄ = 1
N

∑
i∈I xi for a non-compatible index set I ⊆ [N ], we consider the422

following Linear Program with variables λk ∈ R for each k ∈ I,423

minimize
∑

k∈I |λk|∥xk − x̄∥2
s.t.

∑
k∈I λkxk = [0]d,∑
k∈I λk = 0,∑
k∈I λkyk +

∑
k∈I |λk|ϵ ≤ −1 .

(4)

The objective function of (4) tends to put zero value to λk whenever ∥xk− x̄∥ is large. This promotes424
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Algorithm 3: Extra step at the beginning of each iteration of Algo. 1

Data: S and U at the iteration, N
Result: break if we can extract from S an optimal cover of [N ] with compatible index

sets; otherwise, continue
1 Let α be the size of an optimal cover of [N ] by index sets in S // Note: α =∞ if [N ]

cannot be covered by S.
2 Let β be the size of an optimal cover of [N ] by index sets in S ∪ U
3 if α ≤ β then return break else return continue

Algorithm 4: Top-down algorithm for Prob. 2.

// Lines 1--3 from Algo. 1

1 while true do
2 if Algo. 3 outputs break then return an optimal cover of [N ] using index sets from S

// Lines 5--14 from Algo. 1

3 end

proximity of the point xk to x̄ when λk ̸= 0.4425

4.3 Early stopping using set cover algorithms426

Finally, Algo. 1 can be made more efficient by enabling early termination if [N ] is optimally covered427

by the compatible index sets computed so far. For that, we add an extra step at the beginning of428

each iteration, that consists in (i) computing a lower bound β on the size of an optimal cover of [N ]429

with compatible index sets; and (ii) checking whether we can extract from S a collection of β index430

sets that form a cover of [N ]. The extra step returns break if (ii) is successful. An implementation431

of the extra step is provided in Algo. 3.432

The soundness of Algo. 3 follows from the following lemma.433

Lemma 3. Let β be as in Algo. 3. Then, any cover of [N ] with compatible index sets has size at434

least β.435

Proof. The crux of the proof relies on the observation from the proof of Theorem 3 that for any436

compatible index set I ∈ I, there is J ∈ S ∪ U such that I ⊆ J . It follows that for any cover of [N ]437

with M compatible index sets, there is a cover of [N ] with M index sets in S ∪ U . Since β is the438

smallest size of such a cover, this concludes the proof.439

The implementation of the extra step in Algo. 1 is provided in Algo. 4. The correctness of the440

algorithm follows from that of Algo. 1 (Theorem 3) and Algo. 3 (Lemma 3). In conclusion, we441

provided an algorithm for optimal TPWA regression.442

Theorem 5 (Optimal TPWA regression). Algo. 4 solves Prob. 2 with minimal M .443

Proof. Let I1, . . . , IM be the output of Algo. 4. For each i ∈ [M ], let Hi = H(ci) where Ii = I(ci)444

and let fi(x) = Aix+bi be as in (b) of Def. 1. The fact that H1, . . . ,HM and f1, . . . , fM is a solution445

to Prob. 2 follows from the fact that I1, . . . , IM is a cover of [N ] and the definition of f1, . . . , fM .446

4Note that L1 regularization costs are often used in machine learning to induce sparsity of the optimal solution [8,
p. 304]. Here, we use a weighted L1 regularization cost to induce a sparsity pattern dictated by the geometry of the
problem.
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The fact that it is a solution with minimal M follows from the optimality of I1, . . . , IM among all447

covers of [N ] with compatible index sets.448

Remark 3. To solve the optimal set cover problems (known to be NP-hard in general) in Algo. 3, we449

use MILP formulations. The complexity of solving these MILPs grows as 2|S| and 2|S ∪U| respectively.450

However, in our numerical experiments (see next section), we observed that the gain of stopping the451

algorithm early if an optimal cover is found systematically outbalanced the computational cost of452

solving the set cover problems. Furthermore, if one is satisfied with a sub-optimal solution, they453

can use an approximation algorithm, such as the greedy algorithm, which outputs a cover whose454

size is within some factor t(N) ≥ 1 of the optimal set cover size [11]. In this case, Algo. 3 outputs455

break if α ≤ t(N)β. ◁456

5 Numerical Experiments457

In this section, we demonstrate the applicability of our algorithm on three numerical examples.5458

We also compare it with the MILP and PARC [4] approaches to solve SA and PWA regression, and459

we discuss the impact of different templates in terms of simplicity of the model and efficiency of the460

algorithm.461

5.1 PWA approximation of insulin–glucose regulation model462

Dalla Man, Rizza, and Cobelli [12] present a nonlinear model of insulin–glucose regulation that has463

been widely used to test artificial pancreas devices for treatment of type-1 diabetes. The model is464

nonlinear and involves 10 state variables. However, the nonlinearity arises mainly from the term465

Uid (insulin-dependent glucose utilization) involving two state variables, say x1 and x2 (namely, the466

level of insulin in the interstitial fluid, and the glucose mass in rapidly equilibrating tissue):467

Uid(x1, x2) =
(3.2667 + 0.0313x1)x2

253.52 + x2
.

We consider the problem of approximating Uid with a PWA model, thus converting the entire model468

into a PWA model. Therefore, we simulated trajectories and collected N = 100 values of x1, x2 and469

Uid(x1, x2); see Fig. 5(a). For three different values of the error tolerance, ϵ ∈ {0.2, 0.1, 0.05}, we470

used Algo. 4 to compute a PWA regression of the data with rectangular domains. The results of the471

computations are shown in Fig. 5(b,c,d). The computation times are respectively 1, 22 and 112 secs.472

Finally, we evaluate the accuracy of the PWA regression for the modeling of the glucose-insulin473

evolution by simulating the system with Uid replaced by the PWA models. The results are shown in474

Fig. 5(e,f). We see that the PWA model with ϵ = 0.05 induces a prediction error less than 2% over475

the whole simulation interval, which is a significant improvement compared to the PWA models476

with only 1 affine piece (ϵ = 0.2) or 2 affine pieces (ϵ = 0.1).477

Finally, we compare with SA regression and classical PWA regression. To find a SA model,478

we solved Prob. 3 with ϵ = 0.05 and M = 3 using a MILP approach. The computation is very479

fast (< 0.5 secs); however, the computed clusters of data points (see Fig. 6) do not allow to learn480

a (simple) PWA model, thereby hindering the derivation of a model for Uid that can be used for481

simulation and analysis.482

5The implementation is made in Julia, with Gurobi 11.0, under academic license, as LP and MILP solver (including
for the optimal set cover problems). Our approach uses the standard set data structures available in Julia for
manipulating index sets in order to implement the key steps of Algorithm 1. All computations were made on a laptop
with processor Intel Core i7-7600u and 16GB RAM running Windows.
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(a) Uid (b) ϵ = 0.2 (c) ϵ = 0.1

(d) ϵ = 0.05

(e) Simulated trajectories (f) Average error over 50 simulations

Figure 5: Glucose–insulin system. (a) 100 sampled points (black dots) on the graph of Uid (surface).
(b,c,d) Optimal TPWA regression for various error tolerances ϵ. (e) Simulations using the nonlinear
model versus the PWA approximations. (f) Error between nonlinear and PWA models averaged
over 50 simulations with different initial conditions.

5.2 Hybrid system identification: double pendulum with soft contacts483

We consider a hybrid linear system consisting in an inverted double pendulum with soft contacts484

at the joints, as depicted in Fig. 7(a). This system has nine linear modes, depending on whether485

the contact force of each joint is inactive, active on the left or active on the right [1]. Our goal is486

to learn these linear modes as well as their domain of validity, from data. For that, we simulated487

trajectories and collected N = 250 sampled values of θ1, θ2 and the force applied on the lower joint.488

We used Algo. 4 to compute a PWA regression of the data with rectangular domains and with error489

tolerance ϵ = 0.01. The result is shown in Fig. 7(b). The number of iterations of the algorithm was490

about 23000 for a total time of 800 secs.491

We see that the affine pieces roughly divide the state space into a grid of 3× 3 regions. This is492

consistent with our ground-truth model, in which the contact force at each joint has three linear493

modes depending only on the angle made at the joint. The PWA regression provided by Algo. 4494

allows us to learn this feature of the system from data, without assuming anything about the system495

except that the domains of the affine pieces are rectangular.496

We compare with SA regression and classical PWA regression. The MILP approach to solve the497
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(a) Insulin–glucose regulation system. (b) Inverted double pendulum with soft contacts

Figure 6: Clusters of data points from SA regression.

θ1

θ2

(a) Schematic (b) TPWA regression ϵ = 0.01

Figure 7: Inverted double pendulum with soft contacts. (a): Elastic contact forces apply when θ is
outside gray region, (b): Optimal TPWA regression of the data with rectangular domains.

SA regression (Prob. 3) with ϵ = 0.01 and M = 9 could not handle more than 51 data points within498

reasonable time (1000 secs); see Fig. 8(a). Furthermore, the computed clusters of data points (see499

Fig. 6) do not allow to learn a (simple) PWA model, thereby hindering to learn important features500

of the system. Last but not least, we compare with the recent tool PARC [4].6 The fitting accuracy501

on training data is high (R2 = 0.995). The resulting partition of the input space is depicted in502

Fig. 8(b). As we can see, PARC finds a PWA function with 8 modes, although an upper bound503

(K) of 10 was given. However, the regions do not align with the axis (as this is not enforced by the504

algorithm). Consequently, regions with a small number of samples (e.g., lower-right) are missing,505

while regions with many samples (e.g., central) are overly divided.506

6We used the default parameters proposed on the webpage https://github.com/bemporad/PyPARC.
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(a) Computation times: our approach vs MILP (b) PWA regression using PARC

Figure 8: (a): Comparison with MILP approach for SA regression. Time limit is set to 1000 secs.
(b) Partition of the input space by the PWA function computed using the state-of-the-art tool
PARC [4].

5.3 Hybrid system identification: carts with springs507

We consider a hybrid linear system consisting in two carts with springs, as depicted in Fig. 9(a).508

The force applied on the left cart has four linear modes, depending on the values of x1 and x2.509

Our goal is to learn these linear modes as well as their domain of validity, from data. For that,510

we used N = 400 data obtained by gridding the input domain [0, L]2 uniformly. We used Algo. 4511

to compute a PWA regression with error tolerance ϵ = 0.01. We considered two templates: first512

the “rectangular–octagonal” template wherein each region can have up to eight faces consisting in513

horizontal, vertical and oblique lines (see Fig. 9(b) for an example); then, we compared with the514

rectangular template.515

The results are shown in Fig. 9(c,d). The running time of the algorithm was about 950 secs for516

the rectangular–octagonal template, and 120 secs for the rectangular template. It is natural that517

the rectangular–octagonal template takes more time because we allow for degrees of freedom in the518

shape of the regions. However, we observe in Fig. 9(c,d) that the most expressive template gives519

better result in terms of simplicity of the PWA function.520

6 Conclusion521

To conclude, we have presented an algorithm for fitting piecewise affine models wherein each piece522

ranges over a region whose shape is dictated by a user-provided template. The complexity of the523

problem has been analyzed in terms of the number of data points, the dimension of the input524

domain and the template, and the desired number of pieces of the model. We have presented525

a top-down algorithm that explores subsets of the data guided by the concept of infeasibility526

certificates. Finally, our implementation provides some interesting applications of this approach to527

cyber-physical systems. Despite these contributions, the problem of identifying hybrid systems from528

data remains a computationally hard problem and the computational challenges of providing precise529
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Figure 9: Carts with springs. (a): Elastic contact forces apply when the springs are compressed.
(b): Example of rectangular–octagonal region. (c): Optimal TPWA regression of the data with
rectangular–octagonal domains. (d): Optimal TPWA regression of the data with rectangular
domains.

solutions with mathematical guarantees remain formidable. Our future work will investigate the use530

of better data structures to help scale our algorithms to larger and higher dimensional data sets. We531

are also investigating other approaches to PWA identification involving regions that are separated532

by arbitrary hyperplanes rather than fixed templates. Finally, we are interested in connections533

between the approach presented here and ideas from computational geometry. In particular, the534

link between the VC dimension of the shapes used to specify the regions in our PWA model and the535

complexity of the regression procedure offers interesting venues for future work.536
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