
Proceedings of Machine Learning Research 288:1–22, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

Taylor-Model Physics-Informed Neural Networks (PINNs) for
Ordinary Differential Equations

Chandra Kanth Nagesh and Sriram Sankaranarayanan FIRST.LASTNAME@COLORADO.EDU
University of Colorado Boulder

Ramneet Kaur, Tuhin Sahai and Susmit Jha FIRST.LASTNAME@SRI.COM

SRI International

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract
We study the problem of learning neural network models for Ordinary Differential Equations
(ODEs) with parametric uncertainties. Such neural network models capture the solution to the
ODE over a given set of parameters, initial conditions, and range of times. Physics-Informed
Neural Networks (PINNs) have emerged as a promising approach for learning such models that
combine data-driven deep learning with symbolic physics models in a principled manner. How-
ever, the accuracy of PINNs degrade when they are used to solve an entire family of initial value
problems characterized by varying parameters and initial conditions.

In this paper, we combine symbolic differentiation and Taylor series methods to propose a
class of higher-order models for capturing the solutions to ODEs. These models combine neural
networks and symbolic terms: they use higher order Lie derivatives and a Taylor series expansion
obtained symbolically, with the remainder term modeled as a neural network. The key insight is
that the remainder term can itself be modeled as a solution to a first-order ODE. We show how
the use of these higher order PINNs can improve accuracy using interesting, but challenging ODE
benchmarks. We also show that the resulting model can be quite useful for situations such as
controlling uncertain physical systems modeled as ODEs.
Keywords: Physics-Informed Neural Networks, Initial Value Problems, Ordinary Differential
Equations, Taylor Models

1. Introduction

Finding closed-form analytic solutions to systems of Ordinary Differential Equations (ODEs) is
challenging for all but the simplest class of systems. The problem is even more challenging for
ODEs with parameters that can take on a set of possible values, unknown initial conditions and
external inputs. Physics-Informed Neural Networks (PINNs) have emerged as a solution to finding
approximate closed-forms modeled as neural networks Raissi et al. (2018). They have been studied
for solving PDEs, especially non-linear PDEs that are hard to solve numerically. The problem
of PINNs for ODEs have received considerably less attention since numerical solvers are quite
successful in finding solutions for many common ODEs Hairer et al. (1993). However, the use
of numerical solvers is distinctly problematic for applications that involve solving optimization
problems involving ODEs with unknown parameters and inputs. These arise in machine learning,
where one wishes to learn parameters from data or optimal control, wherein we seek control inputs
that optimize a function across the trajectories of the system. For such applications, it is desirable
to have a “surrogate model” that can capture the solution of the ODEs with high enough accuracy
over a range of parameters, initial conditions and times. If each evaluation of the surrogate can be
performed more efficiently than using a numerical solver, the overall optimization can be faster.

© 2025 C.K. Nagesh, S. Sankaranarayanan, R. Kaur, T. Sahai & S. Jha.

NAGESH SANKARANARAYANAN KAUR SAHAI JHA

We investigate the use of PINNs to build surrogate models that capture the solution to an initial
value problem (IVP) given by a system of ODEs ẋ = f(x,θ, t) for parameters θ ∈ Θ, initial
conditions x(0) ∈ Ω and t ∈ [0, T]. In other words, our surrogate model φ(x0,θ, t) maps the
inputs to a solution x(t;x0,θ) of the ODE at time t. The standard PINN approach of Raissi et al.
(2019) a) uses a neural network to represent φ and b) a combination of two loss functions given
by the initial condition loss ∥φ(x0,θ, 0) − x0∥ and the gradient loss ∥φ̇ − f(φ,θ, t)∥ averaged at
various randomly chosen “collocation points”.

In this paper, we first point out the inadequacy of the PINN approach to this problem by demon-
strating its failure to approximate the solution when the sets Θ,Ω and [0, T] are large. We show that
higher-order loss functions fail to address the issue. Therefore, we resort to a symbolic approach
that uses successive Lie derivatives to compute the terms of a Taylor series expansion of the so-
lution. We show that the remainder when carefully modeled can be written down as the solution
to a derived ODE. Solving this derived ODE for the higher-order remainder using the “classic”
PINN approach yields a solution that combines the best aspects of symbolic differentiation with
neural network learning. We show that our error grows as O(tm+1eKt) for an approach that uses
derivatives up to order m ≥ 1, whereas, for PINNs, the error grows as O(teKt). As a result, our
approach provides high levels of accuracy at the initial times. We compare our approach, which we
call “Taylor-Model PINNs” with PINNs, and the related approach of “Higher-Order PINNs” that
extends the original PINN loss function with higher order derivative-based loss functions. We show
that Taylor-Model PINNs provide higher accuracy. While our approach increases the complexity of
the training process, the use of efficient symbolic differentiation tools offsets this process.

1.1. Related Work

Machine learning approaches have found applications in diverse domains ranging from celestial
object classification Angeloudi et al. (2024), climate forecasting Iglesias-Suarez et al. (2024), and
tumor identification Li et al. (2023). In such scenarios, it has been observed that using background
knowledge in the form of mathematical models in the learning process can considerably speed up
convergence and improve solution quality.

Physics-Informed Neural Networks (PINNs) Raissi et al. (2019) represent a seminal contribu-
tion in this space. They have been effective in solving systems which involve partial differential
equations (PDEs), where data is sparsely available. By utilizing differentiable loss functions, a neu-
ral network is trained on the PDE residual and boundary condition loss to learn a solution map to
the PDE. These physics-inspired loss terms act as a regularizer against learning solution maps that
do not involve the underlying dynamics of the system, thereby conforming well to how the sys-
tem evolves over time. This promising approach has led to widespread use of the methodology in
various applications Shukla et al. (2020), Wang and Perdikaris (2021), Yin et al. (2021).

Despite their contributions, PINN methodologies can often fail to learn physical dynamics in
many cases Krishnapriyan et al. (2021), Steger et al. (2022). To tackle such issues, there have been
efforts into PINNs with additional loss functions Son et al. (2023), Wang et al. (2022). However,
their efficacy diminishes under two conditions (a) conflicting gradient updates between the two loss
functions, leading to suboptimal gradient descent Hwang and Lim (2025) and (b) when applied
to parametric PDE families, particularly those requiring simultaneous resolution across a range of
initial conditions and parameters Xiang et al. (2025).

2

TM PINNS FOR ODES

The Taylor series expansion represents a fundamental concept in mathematical analysis, provid-
ing a powerful framework for approximating functions through polynomials or power-series Apostol
(1991). Our approach of using Taylor series expansions has been heavily influenced by the work of
Makino and Berz, who have applied so-called “Taylor-model calculus” to represent a set of com-
plex and unknown functions by a finite Taylor series expansion with an interval remainder Berz and
Makino (1998); Makino and Berz (2009). This has led to popular approaches in the area of formal
methods for proving properties of Cyber-Physical Systems Chen and Sankaranarayanan (2022); Al-
thoff et al. (2021); Althoff (2015); Kong et al. (2015). Here, we adapt Taylor models to represent
solutions but let the remainder be represented by a neural network rather than an interval. Parts of
this problem have been investigated before, where trained neural networks are approximated using
Taylor polynomials to enable integration of physical constraints into dynamical systems Zhu et al.
(2022), Balduzzi et al. (2016). Furthermore, researchers have looked into the idea of Taylor layers
for Transformer architectures Zwerschke et al. (2024), which are higher order polynomial approx-
imation replacements of standard linear or attention layers. The contributions of this paper can be
summarized as follows:

1. We show how a symbolic Taylor series expansion of an a priori fixed order and the remainder
term modeled by a neural network can be used to capture solutions of ODEs accurately.

2. We present an evaluation of our approach based on how PINN errors grows over time.
3. We develop a novel neural network training method and show that this new approach con-

verges to tight solution maps compared to traditional PINNs, on seven ODE systems with
varying dimensionality and parameter space.

4. The trends predicted by our analysis are empirically demonstrated on a set of examples.

2. Preliminaries

We will present some preliminary facts about ODEs, their solutions, and Taylor series expansions.

Definition 1 (Ordinary Differential Equations) A system of (coupled) Ordinary Differential Equa-
tions (ODE) over state variables x = (x1, . . . , xn) and parameters θ = (θ1, . . . , θm) is of the form
dx
dt = f(x,θ, t), wherein t represents the time variable, and f : Rn×Rm×R→ Rn is a vector-field

that maps states, parameters and time to the value of the derivative.

For an initial condition x(0) = x0 and fixed values of the parameters θ, the solution of the ODE

is a differentiable map ψ(x0,θ, t) such that for all time t, dψ(x0,θ,t)
dt = f(ψ(x0,θ, t),θ, t). We

assume that the function f defining the RHS of the ODE is Lipschitz continuous, thus ensuring the
existence and uniqueness of solutions.

Example 1 (Duffing Oscillator) Consider an ODE that models the dynamics of a Duffing oscilla-
tor with x = (x, y), θ = (δ) and dynamics given by dx

dt = y, dy
dt = x− x3 − δy.

Given an ODE model, we seek to represent the solution φ as a function of all initial conditions
x0, parameters θ and time t. However, this sort of analytical solution is only available for a restricted
class of ODEs. In practice, we have to settle for an approximate solution available either through a
numerical ODE solver (for instance, using the Runge-Kutta algorithm) or an approximate analytic
solution φ(x0,θ, t) that provides a solution close to the real solution for a range of initial conditions
x0 ∈ Ω, θ ∈ Θ and t ∈ [0, T] for given sets Ω,Θ and time horizon T > 0. The approximate solution

3

NAGESH SANKARANARAYANAN KAUR SAHAI JHA

map has two potential advantages: (a) it can be computationally less expensive than numerical
solvers; and (b) it can be used to estimate derivatives such as dφ(t)

dθ
and dφ(t)

dx0
efficiently. Computing

such derivatives is useful for learning parameters from data, and is hard to do using numerical
solvers. The main problem statement for this paper is as follows:

Definition 2 (Learning Solution Map) Given the description of an ODE dx
dt = f(x,θ, t), a set of

initial conditions x0 ∈ Ω, a set of parameters θ ∈ Θ and a time horizon t ∈ [0, T] for T > 0, we
wish to learn a solution map φ : Rn × Rm × R → Rn such that φ(x0, θ, t) is as close as possible
to the precise solution map ψ.

The physics-informed approach learns φ by fixing a finite sample set of “collocation points”
S ⊆ Ω×Θ× [0, T], wherein |S|= N , and minimizing two different loss functions simultaneously:

Li = 1
N

∑
(x0,θ,t)∈S∥φ(x0,θ, 0)− x0∥ ,

Lg = 1
N

∑
(x0,θ,t)∈S∥

∂
∂tφ(x0, φ, t)− f(φ(x0,θ, t),θ, t)∥

In practice, the approaches minimizes a linear combination L = ωiLi + ωgLg for user-specified
constants ωi, ωg. The process of learning φ proceeds by fixing a neural network architecture with
unknown weights W and using stochastic gradient descent (since N is typically very large) tech-
nique to find a local minimizer W ∗ for the overall loss L.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
x0= [0.085, 0.445], θ= [0.121]

pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

x0= [−0.187, − 0.465], θ= [0.15]
pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−0.8

−0.6

−0.4

−0.2

0.0

x0= [−0.174, 0.06], θ= [0.304]

pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

x0= [−0.22, − 0.27], θ= [0.327]
pred
gt

x 0
,y

0

Figure 1: Numerical simulations (taken as ground-truth) shown in green compared against the PINN
prediction shown in blue for the Duffing Oscillator system provided in Ex. 1. The initial conditions
and parameters are randomly sampled from Ω ∈ [−0.5, 0.5] and θ ∈ [0.1, 0.5] respectively.

Example 2 Consider the Duffing oscillator model from Ex. 1. Fig. 1 compares the “ground truth”
trajectories obtained through a numerical simulation against the predictions of the PINN model
given by a neural network with 1 layers and 64 neurons per layer. Note that the trajectories diverge
rapidly from predictions. Also, note that since the loss Li is not zero, it causes discrepancies even
in the initial predictions.

Let us assume that we are able to learn a neural network model φN (x0,θ, t) for x0 ∈ Ω, θ ∈ Θ
and t ∈ [0, T] such that φN is a differentiable function of t, and the following inequalities hold:

max
x0∈Ω,θ∈Θ

∥φN (x0,θ, 0)− x0∥≤ Li,max and max
x0∈Ω,θ∈Θ,t∈[0,T]

∥φ̇N (x0,θ, t)− f(φN ,θ, t)∥≤ Lg,max

for some constants Li,max, Lg,max > 0. Let ψ(x0,θ, t) represent the analytical solution of the ODE.

4

TM PINNS FOR ODES

Theorem 3 There exists a constant K > 0 such that, for all x0 ∈ Ω,θ ∈ Θ and t ∈ [0, T], we
have ∥φ(x0,θ, t)− ψ(x0,θ, t)∥≤ (Li,max + Lg,maxt)e

Kt

Proof Note that ψ(x0,θ, t) = x0 +
∫ t
0 f(ψ(x0,θ, s),θ, s)ds. Likewise, assuming differentiabil-

ity of φN , we have φN (x0,θ, t) = φN (x0,θ, 0) +
∫ t
0 φ̇N (x0,θ, s)ds. For simplicity, we write

φN (t) := φN (x0,θ, t) and ψ(t) := ψ(x0,θ, t). We have,

∥φN (t)− ψ(t)∥ ≤ ∥φN (0)− x0∥+
∥∥∥∥∫ t

0
φ̇N (s)− f(ψ(s),θ, s)ds

∥∥∥∥
≤ Ki,max +

∫ t

0
∥φ̇N (x0,θ, s)− f(ψ,θ, s)∥ds

≤ Ki,max +

∫ t

0
∥φ̇N (s)− f(φN (s),θ, s)∥ds+

∫ t

0
∥f(φN ,θ, s)− f(ψ,θ, s)∥ds

≤ Ki,max +Kg,maxt+ Lf

∫ t

0
∥φN (s)− ψ(s)∥ds

wherein Lf is the Lipschitz constant of f(x,θ, t) over, x ∈ X obtained as φ(Ω,Θ, [0, T]) ∪
ψ(Ω,Θ, [0, T]). This set will be compact if Ω,Θ are compact and T is finite. Applying Grönwall’s
inequality Bellman (1943), we conclude, ∥φN − ψ∥≤ (Ki,max +Kg,maxt)e

Lf t.

3. Higher-Order PINNs

In this section, we will tackle the problem of using symbolic differentiation computations based
on Taylor series methods. Given ODE ẋ = f(x,θ, t), recall that the Lie derivative of a function
g(x, t) is given by Lf (g) = (∇xg) · f + ∂

∂tg. We define the successive Lie derivatives: L(0)(x) =
f0(x) = x, and L(i+1)(x) = L(fi(x,θ, t)) := fi+1(x,θ, t).

The main idea behind higher order PINNs is to consider loss functions beyond the first order
loss function. For instance, the second and third order losses are defined as:

L2 =
1
N

∑
(x0,θ,t)∈S

∥∥∥ d2dt2φ(x0,θ, t)− f2(φ,θ, t)
∥∥∥ and

L3 =
1
N

∑
(x0,θ,t)∈S

∥∥∥ d3dt3φ(x0,θ, t)− f3(φ,θ, t)
∥∥∥

The overall loss is obtained by combining the initial condition loss Li, the PINN gradient loss
Lg, and the higher order losses: L = α0Li + α1Lg + α2L2 + α3L3 + · · ·+ αmLm.

However, such a scheme has two main disadvantages: (a) it requires us to take higher order
derivatives of a large and complex neural network model; and (b) it introduces multiple loss func-
tions, all of which need to be minimized by selecting an appropriate linear combination of loss
functions. We propose, instead, a simpler scheme based on Taylor series that has the advantage
of (a) using a single loss function, (b) not requiring Hessians or higher-order gradients of neural
networks and (c) tries to match the flow up to some order m > 0.

3.1. Higher-Order PINNs based on Taylor series

We will assume through the rest of this paper that the RHS function f is at least m + 2 times
differentiable for some m > 0, we have:

x(t) = ψ(x0,θ, t) = x0 + tf1(x0,θ, 0) +
t2

2!
f2(x0,θ, 0) + · · ·+

tm

m!
fm(x0,θ, 0) + Tm(x0,θ, t)

5

NAGESH SANKARANARAYANAN KAUR SAHAI JHA

wherein Tm denotes the remainder term of order m+ 1.

Theorem 4 The function Tm satisfies the following properties:

1. Tm(x0,θ, t) =
1
m!

∫ t
0 (t− s)

mfm+1(x(s),θ, s)ds

2. Tm(x0,θ, 0) = Ṫm(x0,θ, 0) = · · · = T
(m)
m (x0,θ, 0) = 0

Proof The proof of the first statement is available from (Apostol, 1991, Theorem 7.6). The second
statement follows from repeatedly differentiating the RHS of the first equality using Leibnitz’s rule
for differentiation under the integral sign.

Rather than use loss functions to enforce that T (j)
m (x0,θ, 0) = 0 for j ≤ m, we can write

Tm(x0,θ, t) =
tm+1

(m+ 1)!
Rm(x0,θ, t) ,whereinRm = (m+1)

∫ t

0

1

t

(
1− s

t

)m
fm+1(x(s),θ, s)ds

Rm can be re-written using the change of variables α = s
t as

Rm = (m+ 1)

∫ 1

0
(1− α)mfm+1(x(αt),θ, αt)dα (1)

The goal is to use a neural network model for Rm while inferring its parameters through a loss
function. We propose two approaches: (a) an indirect approach based on the PINN loss function
and (b) a direct approach that uses quadrature to approximate the integral in Eq. (1).

PINN-based loss function: We will use a PINN to model Rm(x0,θ, t). For convenience, we
will assume that x0, θ are fixed and denote τm(t) = Tm(x0,θ, t), rm(t) = Rm(x0,θ, t) and fi(0)
denote fi(x0,θ, 0). Note that τm(t) = tm+1

(m+1)!rm(t). Let

φr(x0,θ, t) = f0(0) + tf1(0) + · · ·+
tm

m!
fm(0) + τm(t) (2)

Theorem 5 The remainder τm is a solution to the ODE with Lipschitz continuous RHS:

τ̇m(t) = f1(φr,θ, t)−
(
f1(0) + tf2(0) + · · ·+

tm−1

(m− 1)!
fm(0)

)
.

Furthermore, it has the form τm(t) = tm+1

(m+1)!rm(t) for a continuous and differentiable function
rm(t) with rm(0) = fm+1(x0,θ, 0)

Now, we can use PINNs to learn the remainder Rm as a function of time using the loss functions:
1. Lr,g = 1

N

∑
(x0,θ,t)∈S

∥∥∥f(φr, θ, t)− (f1 + tf2 + · · ·+ tm

(m)!Rm + tm+1

(m+1)!Ṙm

)∥∥∥, and

2. Lr,i = 1
N

∑
(x0,θ,t)∈S ∥fm+1(x0,θ, 0)−Rm(x0,θ, 0)∥

Example 3 Consider the Duffing Oscillator case from Ex. 1 with state variables x, y and parameter
δ. The overall system φ(x0, δ, t) based on Taylor series expansion of order m = 4 is as follows:[

x0 + ty0 +
t2

2! (x0 − δy0 − x
3
0) +

t3

3!f2(x0, δ, t) +
t4

4!Rm(x0, δ, t)

y0 + t(x− δy − x3) + t2

2!f2(x0, δ, t) +
t3

3!f3(x0, δ, t) +
t4

4!Rm(x0, δ, t)

]

6

TM PINNS FOR ODES

where, f2(x0, δ, t) = (−δ(x0 − δy0 − x30) + y0(1 − 3x20)); f3(x0, δ, t) = (y0(−δ(1 − 3x20) −
6x0y0) + (δ2 − 3x20 + 1)(−δy0 − x30 + x0)) are the second and third derivatives of the system and
Rm is the neural network model that is trained to learn the remainder term of the expansion.

Now, in order for the solution of the system φ to match the original Duffing Oscillator, we can
write φ̇(x0, δ, t) as:[

y0 + t(x0 − δy0 − x30) + t2

2!f2(x0, δ, t) +
t3

3!Rm(x0, δ, t) +
t4

4! Ṙm(x0, δ, t)

(x0 − δy0 − x30) + tf2(x0, δ, t) +
t2

2!f3(x0, δ, t) +
t3

3!Rm(x0, δ, t) +
t4

4! Ṙm(x0, δ, t)

]

where, Ṙm is the first-order time derivative of the neural network model. The overall loss function
for the learning procedure, L = Lr,g+Lr,i can now be calculated with the both sides of the equation
computed as above. The implementation of the training algorithm is provided in Appendix D.

Loss Function Through Numerical Quadrature: Rather than differentiate Rm, we can use a
numerical approach to directly encode the remainder formula in Eq. (1). Let us subdivide the
interval α ∈ [0, 1] into K + 1 quadrature points, wherein αk = k

K for k ∈ {0, . . . ,K}. Using
the trapezoidal rule, we obtain

Rm(x0,θ, t) ≈
m+ 1

K

(
1

2
F (0) +

K−1∑
k=1

F

(
k

K

)
+

1

2
F (1)

)
(3)

wherein F (α) := (1 − α)mfm+1(φ(x0,θ, αt),θ, αt). Note that F (1) = 0. However, complexity
of this approach depends on the choice of K: a small value of K makes the quadrature highly
erroneous whereas a larger value makes the approach quite expensive. Further investigation shows
us that the quadrature method does not work well for smaller choices of K, however, is faster than
our other approach. Detailed results and analysis of this behaviour is provided in Appendix B.

Analysis: Let us assume that we have inferred a differentiable model Rm which achieves a max-
imum possible loss max(x0,θ,t)∈S Lr,g = Krg,max and max(x0,θ,t)∈S Lr,i = Kr,i,max over the
compact set of inputs S = Ω×Θ× [0, T].
Let ψ(x0,θ, t) represent the solution map for the ODE and φr denote the model from Eq. (2).

Theorem 6 There exists a constant K such that for all (x0,θ, t) ∈ S,

∥φr(x0,θ, t)− ψ(x0,θ, t)∥≤
tm+1

(m+ 1)!
(Kr,i +Kr,gt)e

Kt

Proof Applying Theorem 3 to the PINN learning problem for Rm, and letting R∗
m be the exact

remainder obtained from the ODE solution map ψ, we obtain that

∥Rm −R∗
m∥≤ (Kr,i +Kr,gt)e

Kt

In turn, from Eq. (2), we obtain that ∥φ− ψ∥≤ tm+1

(m+1)!(Kr,i +Kr,gt)e
Kt.

7

NAGESH SANKARANARAYANAN KAUR SAHAI JHA

4. Results

In this section, we present results of running the three models against seven numerical ODE bench-
mark systems with varying dimensionality and number of parameters. The seven systems are as
follows: a) Duffing Oscillator, b) Damped Pendulum, c) Lorenz Attractor, d) Lotka-Volterra system,
e) Rikitake Model, f) Susceptible-Infected-Recovered (SIR) Model g) Susceptible-Exposed-Infected-
Recovered (SEIR) model. Further, we show that our method scales well on higher dimensional
systems. The results and prediction performance are very similar to the seven benchmarks ODEs
mentioned above and their analysis can be found in Appendix C.3.

Detailed definitions for all the seven dynamical system along with the initial condition range Ω
and parameter range Θ are provided in Appendix A. The PINN, Higher-Order PINN (HO-PINN),
and Taylor-Model PINN (TM-PINN) are all represented using a 1 layer, 64 hidden unit shallow
neural network. The input sizes vary according to the dynamical system, however, for TM-PINN
we use separate neural networks to learn each dimension of the system. All the models were trained
on Apple M3 Pro 14-Core GPU, running JAX 0.4.x with Metal 3 support. The seeds for all dataset
creation and model initialization are provided in this codebase.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

PINN
pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Higher-Order PINN
pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Taylor-Model PINN
pred
gt

x 0
,y

0

Figure 2: Prediction performance of the three models on Duffing Oscillator system. The initial con-
dition are set to x0 = [−0.224,−0.269] and θ0 = [0.327]. {“gt”=ground truth, “pred”=prediction}

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.25

0.50

0.75

1.00

1.25

1.50

1.75

PINN
pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Higher-Order PINN
pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Taylor-Model PINN
pred
gt

x 0
,y

0,
z 0

Figure 3: Prediction performance of the three models on SIR system. The initial conditions are set
to x0 = [0.586, 0.945, 0.899] and θ0 = [0.81, 0.1]. {“gt”=ground truth, “pred”=prediction}

8

https://github.com/cuplv/TM-PINNs

TM PINNS FOR ODES

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3
PINN

pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3
Higher-Order PINN

pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.5

1.0

1.5

Taylor-Model PINN
pred
gt

x 0
,y

0

Figure 4: Prediction performance of the three models on Damped Pendulum system. The initial
conditions and parameters are set to x0 = [−0.224,−0.269] and θ0 = [0.288, 7.2]. {“gt”=ground
truth, “pred”=prediction}

4.1. Exact collocation point match for shorter time periods

We can first understand the performance of these models by looking at collocation points for shorter
time windows. In Fig. 2, 3, 4 we can observe the performance of standard PINNs does not really
match the collocation points after the initial few sample points. This behavior can also be observed
with HO-PINNs where the initial conditions also do not tend to match. However, with further
qualitative results from Tab. 1 we can observe that TM-PINNs seem to match well with the system
output for larger time horizons, up to two seconds for all the benchmark systems.

Method DO (2,1) DP (2,2) LV (2,4) R (3,2) SIR (3,2) LoA (3,3) SEIR (4,6) Time (sec)
PINN 0.130 0.109 0.035 0.038 0.08 0.019 0.069 1
HO-PINN 0.141 0.210 0.070 0.042 0.329 0.029 246.2 1
TM-PINN 0.003 0.012 0.004 0.016 0.002 0.008 0.784 1
PINN 0.229 0.143 0.079 0.09 0.146 0.022 0.135 2
HO-PINN 0.24 0.215 0.133 0.09 0.334 0.035 309.2 2
TM-PINN 0.048 0.185 0.06 0.085 0.023 0.074 12.28 2
PINN 0.312 0.16 0.169 0.247 0.188 0.025 0.202 3
HO-PINN 0.329 0.21 0.251 0.248 0.354 0.038 376.4 3
TM-PINN 0.170 0.677 0.453 0.206 0.079 0.220 55.17 3

Table 1: Results showing (MAE↓) on Taylor-Model PINN (TM-PINN) compared against vanilla
PINN and Higher-Order PINN (HO-PINN) on seven different dynamical system models across
varying prediction time. {DO=Duffing Oscillator, DP=Damped Pendulum, LV=Lotka-Volterra,
R=Rikitake, SIR=Susceptible-Infected-Recovered, LoA=Lorenz Attractor, SEIR=S-Exposed-IR}.
The two numbers next to each model name in the header row show the number of state variables
and parameters, respectively.

To understand why TM-PINNs exhibit poorer performance over longer time horizons Fig. 5,
we can examine the third graph in Fig. 4. This figure shows that TM-PINNs accurately capture the
evolving dynamics of the Damped Pendulum model up to approximately 1.4 seconds. However,
beyond this point, the residual term fails to converge effectively, causing predictions to exceed the

9

NAGESH SANKARANARAYANAN KAUR SAHAI JHA

expected output range of this dynamical system. This observation is further supported by the error
plots and metrics presented in Appendix C. In general, we observe that TM-PINNs achieve conver-
gence significantly faster than the other methods. However, each epoch is significantly slower due
to the more complicated loss functions that involve additional terms. We find that on average across
all systems, TM-PINNs require approximately 8 minutes to train for an average of 500 epochs. In
comparison, PINNs take 2 minutes to complete 105 epochs, while HO-PINNs require 8 minutes.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.1

0.2

0.3

0.4

0.5

Duffing Oscillator
PINN
HO-PINN
TM-PINN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.1

0.2

0.3

0.4

SIR Model
PINN
HO-PINN
TM-PINN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Damped Pendulum

PINN
HO-PINN
TM-PINN

M
AE

Figure 5: Avg. MAE plotted at various time points throughout the simulation of PINN, HO-PINN
and TM-PNN (our approach) on three different ODEs presented in Fig. 2, 3, 4.

5. Conclusion

We have presented an approach that uses Taylor models to cast the problem of learning solutions as
one for learning the remainder term from the Taylor series expansion of the solution. A theoretical
analysis of our approach yields error bounds that indicate that the approach can be quite effective
over smaller time horizons, while PINNs have an error growth that makes them less error-prone over
longer time horizons. The extension of our work to solving PDEs using Taylor series expansions
and alternatives to characterizing the remainder term remains an important part of our future work.
The challenge therein lies in carefully characterizing the boundary conditions and initial conditions
for the higher-order terms in the Taylor series expansion of the PDE solution. We are also interested
in other types of series expansions that can approximate the ODE solutions, such as Fourier series
expansions, expansions based on special functions, especially for ODEs/PDEs with oscillatory solu-
tions Agarwal and O’Regan (2009). Specialized techniques such as power-series expansions based
on Koopman operators and convergent power series expansions, especially for Lotka-Volterra-type
systems, are also amenable to the approaches developed in this paper Basor and Morrison (2024).

Acknowledgments

We would like to acknowledge the valuable discussions, feedback, and resources provided by our
colleagues and external collaborators through out the process. This material is based upon work
supported by the United States Air Force and DARPA under Contract No. FA8750-23-C-0519
and HR0011-24-9-0424, and the U.S. Army Research Laboratory under Cooperative Research
Agreement W911NF-17-2-0196, the US National Science Foundation (NSF) under awards # CCF-
2422136 and CPS-1836900 and NCCIH grant # R01AT012288. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of the author(s) and do not necessarily

10

TM PINNS FOR ODES

reflect the views of the United States Air Force, DARPA, the U.S. Army Research Laboratory, or
the United States Government.

References

Ravi P. Agarwal and Donal O’Regan. Ordinary and Partial Differential Equations: With Special
Functions, Fourier Series, and Boundary Value Problems. Universitext. Springer New York, NY,
1 edition, 2009.

M. Althoff. An introduction to cora 2015. In Proc. of ARCH’15, volume 34 of EPiC Series in
Computer Science, pages 120–151. EasyChair, 2015.

Matthias Althoff, Goran Frehse, and Antoine Girard. Set propagation techniques for reachability
analysis. Annual Review of Control, Robotics, and Autonomous Systems, 4, 2021.

Eirini Angeloudi, Jeroen Audenaert, Micah Bowles, Benjamin M Boyd, David Chemaly, Brian
Cherinka, Ioana Ciucă, Miles Cranmer, Aaron Do, Matthew Grayling, Erin E Hayes, Tom
Hehir, Shirley Ho, Marc Huertas-Company, Kartheik G Iyer, Maja Jablonska, Francois Lanusse,
Henry W Leung, Kaisey Mandel, Juan Rafael Martı́nez-Galarza, Peter Melchior, Lucas Meyer,
Liam H Parker, Helen Qu, Jeff Shen, Michael J Smith, Connor Stone, Mike Walmsley, and John F
Wu. The Multimodal Universe: Enabling Large-Scale Machine Learning with 100 TB of Astro-
nomical Scientific Data. 2024.

Tom M. Apostol. Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra.
John Wiley & Sons, New York, 2nd edition, 1991.

David Balduzzi, Brian McWilliams, and Tony Butler-Yeoman. Neural taylor approximations: Con-
vergence and exploration in rectifier networks, 2016.

Estelle Basor and Rebecca Morrison. Analytic solutions to nonlinear odes via spectral power series.
Linear Algebra and its Applications, 697:561–582, Sep 2024.

Richard Bellman. The stability of solutions of linear differential equations. Duke Math. J., 10(4):
643–647, 1943.

M. Berz and K. Makino. Verified integration of ODEs and flows using differential algebraic methods
on high-order Taylor models. Reliable Computing, 4:361–369, 1998.

Xin Chen and Sriram Sankaranarayanan. Reachability analysis for cyber-physical systems: Are we
there yet? (invited paper). In Proc. NASA Formal Methods Symposium, volume 13260 of Lecture
Notes in Computer Science, page 109–130. Springer, 2022.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256. JMLR W&CP, 2010.

E. Hairer, G. Wanner, and S. P. Nørsett. Solving Ordinary Differential Equations I: Nonstiff Prob-
lems. Springer, Berlin, second edition, 1993.

11

NAGESH SANKARANARAYANAN KAUR SAHAI JHA

Youngsik Hwang and Dong-Young Lim. Dual Cone Gradient Descent for Training Physics-
Informed Neural Networks, jan 2025. arXiv:2409.18426 [cs].

Fernando Iglesias-Suarez, Pierre Gentine, Breixo Solino-Fernandez, Tom Beucler, Michael
Pritchard, Jakob Runge, and Veronika Eyring. Causally-Informed Deep Learning to Im-
prove Climate Models and Projections. Journal of Geophysical Research: Atmospheres,
129(4):e2023JD039202, 2024. ISSN 2169-8996. doi: 10.1029/2023JD039202. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2023JD039202.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, and Ralf Herwig. Systems
Biology: A Textbook. Wiley-VCH, 2nd edition, 2016. ISBN 9783527336364. See Chapter 5:
Modeling Biochemical Reactions — examples of cascades with Michaelis–Menten steps.

S. Kong, S. Gao, W. Chen, and E. M. Clarke. dreach: δ-reachability analysis for hybrid systems. In
Proc. of TACAS’15, volume 9035 of LNCS, pages 200–205. Springer, 2015.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. In Advances in Neural
Information Processing Systems, volume 34, pages 26548–26560. Curran Associates, Inc., 2021.

Mengfang Li, Yuanyuan Jiang, Yanzhou Zhang, and Haisheng Zhu. Medical image analysis using
deep learning algorithms. Front Public Health, 11:1273253, nov 2023. ISSN 2296-2565. doi:
10.3389/fpubh.2023.1273253.

K. Makino and M. Berz. Rigorous integration of flows and ODEs using Taylor models. In Proc.
SNC’09, pages 79–84, 2009.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, feb 2019. ISSN 0021-9991. doi:
10.1016/j.jcp.2018.10.045.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep neural networks for data-
driven discovery of nonlinear dynamical systems, 2018.

M. G. Rosenblum, A. Pikovsky, and J. Kurths. Synchronization – A universal concept in nonlinear
sciences. Cambridge University Press, Cambridge, 2001.

Khemraj Shukla, Patricio Clark Di Leoni, James Blackshire, Daniel Sparkman, and George Em
Karniadakis. Physics-Informed Neural Network for Ultrasound Nondestructive Quantification
of Surface Breaking Cracks. J Nondestruct Eval, 39(3):61, aug 2020. ISSN 1573-4862. doi:
10.1007/s10921-020-00705-1.

Hwijae Son, Sung Woong Cho, and Hyung Ju Hwang. Enhanced physics-informed neural networks
with Augmented Lagrangian relaxation method (AL-PINNs). Neurocomputing, 548:126424, sep
2023. ISSN 0925-2312. doi: 10.1016/j.neucom.2023.126424.

12

TM PINNS FOR ODES

Sophie Steger, Franz M. Rohrhofer, and Bernhard C Geiger. How PINNs cheat: Predicting chaotic
motion of a double pendulum. In The Symbiosis of Deep Learning and Differential Equations II,
2022.

Chuwei Wang, Shanda Li, Di He, and Liwei Wang. Is L2 Physics-Informed Loss Always Suitable
for Training Physics-Informed Neural Network? 2022.

Sifan Wang and Paris Perdikaris. Deep learning of free boundary and Stefan problems. Journal
of Computational Physics, 428:109914, mar 2021. ISSN 00219991. doi: 10.1016/j.jcp.2020.
109914. arXiv:2006.05311 [math].

Zixue Xiang, Wei Peng, Wen Yao, Xu Liu, and Xiaoya Zhang. Physics-informed Neural Implicit
Flow neural network for parametric PDEs. Neural Netw, 185:107166, jan 2025. ISSN 1879-2782.
doi: 10.1016/j.neunet.2025.107166.

Minglang Yin, Xiaoning Zheng, Jay D. Humphrey, and George Em Karniadakis. Non-invasive
Inference of Thrombus Material Properties with Physics-informed Neural Networks. Computer
Methods in Applied Mechanics and Engineering, 375:113603, mar 2021. ISSN 00457825. doi:
10.1016/j.cma.2020.113603. arXiv:2005.11380 [physics].

Frances Zhu, Dongheng Jing, Frederick Leve, and Silvia Ferrari. Nn-poly: Approximating common
neural networks with taylor polynomials to imbue dynamical system constraints. Frontiers in
Robotics and AI, 9, Nov 2022. doi: https://doi.org/10.3389/frobt.2022.968305.

Pavel Zwerschke, Arvid Weyrauch, Markus Götz, and Charlotte Debus. Taylor expansion in neural
networks: How higher orders yield better predictions. Iospress.nl, page 2983–2989, 2024. doi:
https://doi.org/10.3233/FAIA240838.

13

NAGESH SANKARANARAYANAN KAUR SAHAI JHA

Appendix A. Benchmark systems

This section gives a detailed explanation of the seven benchmark ODEs that were considered for the
experiments. We have mentioned the parametric and initial condition ranges that were considered
for training the models. Further, we made sure to fix a unique seed value for generating all the
datasets in the ranges mentioned below.

A.1. Duffing Oscillator

A nonlinear differential equation that is used to represent the dynamics of a damped oscillator is
called a Duffing equation. It can be represented in two-dimensional form as follows:

ẋ = y ; ẏ = x− x3 − δy ; (x, y) ∈ Ω

Ω ∈ [−0.5, 0.5]× [−0.5, 0.5]

where, δ ∈ [0.1, 0.5] is the damping factor. The initial conditions and parameters of the model
are uniform-randomly sampled from the range. The second derivatives w.r.t. time t and the Lie
derivatives w.r.t the parameter of the model δ as follows:

ẍ = x− x3 − δy ; ÿ = (1− 3x2)y − δ(x− x3 − δy)
xδ = 0 ; yδ = −y

A.2. Damped Pendulum

The equations of motion of a pendulum can be represented in two-dimensional form as follows:

θ̇ = ω ; ω̇ = −bω − g

L
sin θ ; (θ, ω) ∈ Ω

Ω ∈ [−0.5, 0.5]× [−0.5, 0.5]

where, L ∈ [1, 10] is the length of the string attached to the pendulum and b ∈ [0.01, 0.5] is the
air resistance, θ and ω are the state variables representing the angle and angular momentum of the
pendulum. The initial conditions and parameters of the model are similarly sampled from the range.
The second derivatives w.r.t. time t and the Lie derivatives w.r.t the parameters b, L as follows:

θ̈ = −gsinθ
L
− bω ; ω̈ = −gωcosθ

L
− b(−gsinθ

L
− bω)

θb,L = 0 + 0 = 0 ; ωb,L = 0 +
g

L2
sinθ

A.3. Lotka-Volterra System

A simple biological dynamical system that describes the behavior of two species where one behaves
as the predator and the other a prey is called the Lotka-Volterra system. It can be represented in two-
dimensional form as follows:

ẋ = αx− βxy ; ẏ = −γy + δxy ; (x, y) ∈ Ω

Ω ∈ [0, 1]× [0, 1]

14

TM PINNS FOR ODES

where, α ∈ [0.6, 1] represent the per capita growth rate of the prey, β ∈ [0.2, 0.5] represent the
presence of predator in the prey death rate, γ ∈ [0.5, 1.0] is the per capita death rate of the predator,
and δ ∈ [0.1, 0.4] represents presence of prey in predator growth rate. Further, x, y are the state
variables for the system representing the prey and predator populations, respectively. The initial
condition and parameters are uniform-randomly sampled from the range. The second derivative
w.r.t time t and the Lie derivatives w.r.t the parameters of the model α, β, γ, δ are as follows:

ẍ = −x(xyδ − yγ)β + (xα− xyβ)(α− yβ) ; ÿ = (xα− xyβ)γδ + (xyδ − yγ)(xδ − γ)
xα,β,γ,δ = x− xy ; yα,β,γ,δ = −y + xy

A.4. Rikitake Attractor

A dynamical system that models the behavior of a coupled magnetic dynamo, is called the Rikitake
attractor. It can be simplified and represented in three-dimensional form as follows:

ẋ = −µx+ yz ; ẏ = −µy + x(z − h) ; ż = 1− xy ; (x, y, z) ∈ Ω

Ω ∈ [−0.5, 0.5]× [−0.5, 0.5]× [−0.5, 0.5]

where, µ = (ω1 − ω2)
√
CM/GL ∈ [0.3, 0.9] consists of terms C,G,L,M which are the mo-

ment of inertia, applied torque, self-inductance and mutual-inductance of the dynamos, which are
rotated to ω1, ω2 angular velocities respectively. Further, h = R

√
C/GLM ∈ [0.3, 0.9] is an-

other simplified term, where R is the electrical resistance. The initial condition and parameters are
uniform-randomly sampled from the range. The second derivative with respect to time t and the
Lie derivatives with respect to the parameter µ of the model are omitted as they get larger to be
represented. One can find the symbolic derivations of these systems in the code provided.

A.5. Lorenz Attractor

A dynamical system that models atmospheric convection and exhibits chaotic behavior is called the
Lorenz attractor. It can be represented in three-dimensional form as follows:

ẋ = σ(y − x) ; ẏ = x(ρ− z)− y ; ż = xy − βz ; (x, y, z) ∈ Ω

Ω ∈ [0, 1]× [0, 1]× [0, 1]

where, σ ∈ [0, 1] represent the Prandtl number, ρ ∈ [0, 1] the Rayleigh number, and β ∈ [0, 1]
geometric factor. The variables x, y, z correspond to the convective flow, temperature difference,
and vertical temperature variation, respectively. The initial condition and parameters are uniform-
randomly sampled from the range. The second derivative with respect to time t and the Lie deriva-
tives with respect to the parameters σ, ρ, β of the model are as follows:

ẍ = σ(ẏ − ẋ) ; ÿ = ẋ(ρ− z) + x(−ż)− ẏ ; z̈ = ẋy + xẏ − βż
xσ = y − x ; yρ = x ; zβ = −z

A.6. Susceptible-Infected-Recovered (SIR) Model

The SIR model is an epidemiological framework used to describe the spread of diseases where
individuals transition between being susceptible (S), infected (I), and recovered (R). It can be rep-

15

NAGESH SANKARANARAYANAN KAUR SAHAI JHA

resented in three-dimensional form as follows:

Ṡ = −ISβ
N

; İ =
ISβ

N
− Iγ ; Ṙ = Iγ ; (S, I,R) ∈ Ω

Ω ∈ [0, 1]× [0, 1]× [0, 1]

where, β ∈ [0, 1] is the probability of disease transmission per contact, γ ∈ [0, 1] is the per-capita
recovery rate. The initial conditions and parameters of the model are uniform-randomly sampled
from the range. The second derivatives w.r.t time t and the Lie derivatives w.r.t. the parameters β, γ
are as follows:

S̈ =
KSβ

N
+ L ; Ï = −L+

K(−Nγ + Sβ)

N
; R̈ = Kγ

Sβ,γ = −SI
N

; Iβ,γ =
SI

N
− I ; Rβ,γ = I

where, K = ISβ
N − Iγ, L = β2I2S

N2

A.7. Susceptible-Exposed-Infected-Recovered (SEIR) Model

A compartmental epidemiological model that describes the spread of infectious diseases with tem-
porary immunity is called the SEIR model. It can be represented in four-dimensional form as
follows:

Ṡ = µ(N − S)− βSI

N
+ ωR ; Ė =

βSI

N
− (σ + µ)E ;

İ = σE − (µ+ γ + α)I ; Ṙ = γI − (µ+ ω)R ; S,E, I,R ∈ Ω

Ω ∈ [0, 0.99]× [0, 0.99]× [0, 0.5]× [0, 0.5]

where, µ ∈ [0.01, 0.02] represent the birth/death rate, β ∈ [0.01, 0.02] transmission rate, σ ∈
[0.1, 0.2] is the incubation rate, γ ∈ [0.01, 0.2] is the recovery rate, α ∈ [0, 0.5] is the disease-
induced death rate, and ω ∈ [0.1, 1] is the loss of immunity rate. Further, the variables S,E, I,R
correspond to the susceptible, exposed, infected, and recovered populations, respectively. The initial
condition and parameters are uniform-randomly sampled from the range. The second derivative with
respect to time t and the Lie derivatives with respect to the parameter µ of the model are omitted as
they get larger to be represented.

Appendix B. Numerical Quadrature insights

To support our final approach of learning the remainder term, we proposed the numerical quadrature
method. In this section, we define and compute the method against three systems A.1, A.2, A.3 to
showcase how approximation using quadratures affect the performance. We set the number of
quadrature points to 10 and obtain the remainder term Rm as follows:

Rm(x0,θ, t) ≈
4

10

(
1

2
F (0) + F (0.1) + F (0.2) + · · ·+ 1

2
F (1)

)
The results shown in Tab. 2 indicate that for smaller number of quadrature points, the error increases
rapidly over time making the predictions highly erroneous across all systems. However, since the

16

TM PINNS FOR ODES

Method DO (2,1) DP (2,2) LV (2,4) Time (sec)
TM-PINN 0.003 0.012 0.004 1
TM-PINN-NQ 0.002 0.016 0.002 1
TM-PINN 0.048 0.185 0.06 2
TM-PINN-NQ 0.046 0.477 0.077 2
TM-PINN 0.170 0.677 0.453 3
TM-PINN-NQ 0.218 4.155 0.665 3

Table 2: Results showing (MAE↓) on Taylor-Model PINN using 10 Numerical Quadrature points
(TM-PINN-NQ) compared against TM-PINNs as reported in the main paper on three different dy-
namical systems. {DO=Duffing Oscillator, DP=Damped Pendulum, LV=Lotka-Volterra}.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5
DO Taylor-Model PINN-NQ

pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50
DO Taylor-Model PINN

pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0

1

2

3

4

5

6

7

DP Taylor-Model PINN-NQ
pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
DP Taylor-Model PINN

pred
gt

x 0
,y

0

Figure 6: Prediction performance of the both models Taylor-Model PINN using 10 Numerical
Quadrature points (TM-PINN-NQ) and TM-PINN, on {DO=Duffing Oscillator} and {DP=Damped
Pendulum} systems. The initial conditions of the dynamical system are set as before.

number of points are small the algorithm takes less time to train the neural network as there is
no longer expensive differential computation at each epoch. Further, Fig. 6 shows the prediction
performance of training the neural network using both the approaches on the first two dynamical
system (we see similar performance for the Lotka-Volterra system as well).

Appendix C. Supporting results from other systems

In this section, we continue with the results from our experiments on the benchmark systems. First,
we can continue looking at the prediction plots for the rest of the systems. Secondly, we look at the
error propagation through time for the various models. Finally, we look at scaling the systems to
larger dimensional ODEs and study the predictive performance in this scenario.

C.1. Prediction performance graphs

The following Fig. 7, 8, 9, 10 show the prediction performance of the three models across the same
set of initial condition and parameter space.

C.2. Results and error propagation

In Fig. 11 we can further see that across all the remaining four systems, as noted earlier, TM-PINNs
have negligent mean absolute error across the first few seconds of the evolution. But, the error tends

17

NAGESH SANKARANARAYANAN KAUR SAHAI JHA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0

1

2

3

4

5

PINN
pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0

1

2

3

4

5

Higher-Order PINN
pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0

1

2

3

4

5

Taylor-Model PINN
pred
gt

x 0
,y

0

Figure 7: Prediction performance of the three models on Lotka-Volterra system. The initial con-
ditions are set to x0 = [0.53, 0.52] and θ0 = [0.87, 0.43, 0.95, 0.39]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
PINN

pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Higher-Order PINN

pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Taylor-Model PINN

pred
gt

x 0
,y

0,
z 0

Figure 8: Prediction performance of the three models on Rikitake system. The initial conditions of
the dynamical system are set to x0 = [0.08, 0.44, 0.39] and θ0 = [0.49, 0.69]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−0.2

0.0

0.2

0.4

0.6

0.8

PINN
pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

−700

−600

−500

−400

−300

−200

−100

0

Higher-Order PINN

pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0

50

100

150

200

250

300

Taylor-Model PINN
pred
gt

x 0
,y

0,
z 0

,a
0

Figure 9: Prediction performance of the three models on SEIRS system. The initial conditions are
set to x0 = [0.01, 0.078, 0.45, 0.36] and θ0 = [0.01, 0.2, 0.17, 0.76, 0.36, 0.049]

to grow as prediction time horizon increases. Finally, we also compute the Root Mean Square Error
(RMSE) and notice a similar performance across models Tab. 3.

18

TM PINNS FOR ODES

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.2

0.3

0.4

0.5

0.6

0.7

PINN
pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Higher-Order PINN
pred
gt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.2

0.3

0.4

0.5

0.6

0.7

Taylor-Model PINN

pred
gt

x 0
,y

0,
z 0

Figure 10: Prediction performance of the three models on Lorenz Attractor system. The initial
conditions of the dynamical system are set to x0 = [0.29, 0.32, 0.73] and θ0 = [0.53, 0.03, 0.79]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.5

1.0

1.5

2.0

Lotka-Volterra system
PINN
HO-PINN
TM-PINN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0

50

100

150

200

250

300

350

SEIRS Model
PINN
HO-PINN
TM-PINN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.2

0.4

0.6

0.8

Lorenz Attractor
PINN
HO-PINN
TM-PINN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.2

0.4

0.6

0.8

Rikitake Attractor
PINN
HO-PINN
TM-PINN

M
AE

Figure 11: MAE plotted at various time points the three different models comparing the PINN,
HO-PINN and the TM-PNN (our approach).

Method DO (2,1) DP (2,2) LV (2,4) R (3,2) SIR (3,2) LoA (3,3) SEIR (4,6) Time (sec)
PINN 0.178 0.154 0.051 0.055 0.120 0.027 0.102 1
HO-PINN 0.186 0.264 0.094 0.055 0.399 0.039 253.7 1
TM-PINN 0.008 0.046 0.007 0.028 0.004 0.021 1.346 1
PINN 0.307 0.195 0.136 0.149 0.202 0.033 0.198 2
HO-PINN 0.321 0.267 0.210 0.145 0.409 0.050 321.901 2
TM-PINN 0.119 0.664 0.123 0.142 0.045 0.167 20.78 2
PINN 0.411 0.214 0.349 0.469 0.255 0.040 0.299 3
HO-PINN 0.433 0.262 0.481 0.468 0.431 0.059 396.9 3
TM-PINN 0.337 2.130 0.912 0.371 0.150 0.478 92.44 3

Table 3: Results showing (RMSE↓) on TM-PINN compared against vanilla PINN and HO-PINN on
seven different dynamical system models across varying prediction time. {DO=Duffing Oscillator,
DP=Damped Pendulum, LV=Lotka-Volterra, R=Rikitake, SIR=Susceptible-Infected-Recovered,
LoA=Lorenz Attractor, SEIR=S-Exposed-IR }.

19

NAGESH SANKARANARAYANAN KAUR SAHAI JHA

C.3. Larger systems

Addressing the reviews, we ran our method against two larger systems. (a) A multi-coupled damped
oscillator, building upon the system provided in Rosenblum et al. (2001), (b) Michaelis-Menten
kinetics system similar to the system provided in Klipp et al. (2016).

C.3.1. MULTI-COUPLED DAMPED OSCILLATOR

The multi-coupled damped oscillator is a 8-dimensional nonlinear differential equation similar to the
damped oscillator model used in our benchmarks (Appendix A) and can be represented as follows:

ẋ1 = y1 ; ẏ1 = µ(1− x21)y1 − x1 + δ(x2 − 2x1 + x4)

ẋ2 = y2 ; ẏ2 = µ(1− x22)y2 − x2 + δ(x3 − 2x2 + x1)

ẋ3 = y3 ; ẏ3 = µ(1− x23)y3 − x3 + δ(x4 − 2x3 + x2)

ẋ4 = y4 ; ẏ4 = µ(1− x24)y4 − x4 + δ(x1 − 2x4 + x3)

where, {x1, y1, x2, y2, x3, y3, x4, y4} ∈ [−0.5, 0.5] are the state variables of the system and δ, µ ∈
[0.1, 0.5] are the damping factors of the coupled system. The initial conditions and parameters of
the model are uniform-randomly sampled from the range. The second derivatives w.r.t. time t and
the Lie derivatives w.r.t the parameter of the model δ, µ are symbolically created.

C.3.2. MICHAELIS-MENTON ENZYME KINETICS

The Michaelis-Menten system explains how presence of some i-enzyme concentrations in an enzyme-
substrate complex can cause kinetic rate enhancement of a reaction. We extend this system to 6-
dimensions i.e. six enzymes present in the concentrate, which can be represented as follows:

ẋ1 =
V1

Km + 1
− δx1 ; ẋ2 =

V2x1
Km + x1

− δx2

ẋ3 =
V3x2

Km + x2
− δx3 ; ẋ4 =

V4x3
Km + x3

− δx4

ẋ5 =
V5x4

Km + x4
− δx5 ; ẋ6 =

V6x5
Km + x5

− δx6

where, {x1, x2, x3, x4, x5, x6} ∈ [0.1, 0.5] are the state variables and {V1, V2, V3, V4, V5, V6} ∈
[0.5, 1.0] are the maximum reaction velocities for each enzyme present in the substrate. We set the
Michaelis constant Km = 0.5 and the degradation rate constant δ = 0.1. The initial conditions
and parameters of the model are uniform-randomly sampled from the range. The second derivatives
w.r.t. time t and the Lie derivatives w.r.t the parameter of the model Vi are symbolically created.

To this end, we run all three models against the above two systems. The hyperparamters of
the models are kept the same as other experiments reported, however, the learning rate is reduced
to 0.005 (high dimensional systems have sharper gradients and many local minima) and the time
duration T is reduced to 2 seconds with same intervals (to accomodate hardware limitations). We
notice similar performance to previous methods where TM-PINNs perform well on shorter time
horizons compared to other methods. Tab. 4 gives us the MAE across each system and Fig. 13, 12
show the prediction performance of the models.

20

TM PINNS FOR ODES

Method MMEK (6,6) CDO (8,2) Time (sec)
PINN 0.020 0.061 1
HO-PINN 0.157 0.188 1
TM-PINN 0.005 0.005 1
PINN 0.030 0.112 2
HO-PINN 0.171 0.220 2
TM-PINN 0.097 0.130 2

Table 4: Results showing MAE(↓) on TM-PINN compared against vanilla PINN and HO-PINN on
two larger dynamical system models across varying prediction time. {MMEK=Michaelis-Menton
Enzyme Kinematics, CDO=Coupled Damped Oscillators}

0.0 0.5 1.0 1.5 2.0
t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
PINN

pred
gt

0.0 0.5 1.0 1.5 2.0
t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Higher-Order PINN

pred
gt

0.0 0.5 1.0 1.5 2.0
t

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Taylor-Model PINN
pred
gt

x 0
,y

0

Figure 12: Prediction performance of the three models on Michaelis-Menton Enzyme
Kinematics system. The initial conditions of the dynamical system are set to x0 =
[0.29, 0.38, 0.38, 0.28, 0.24, 0.42] and θ0 = [0.9, 0.76, 0.93, 0.62, 0.85, 0.74]

0.0 0.5 1.0 1.5 2.0
t

−0.6

−0.4

−0.2

0.0

0.2

0.4

PINN
pred
gt

0.0 0.5 1.0 1.5 2.0
t

−0.6

−0.4

−0.2

0.0

0.2

0.4

Higher-Order PINN
pred
gt

0.0 0.5 1.0 1.5 2.0
t

−0.5

0.0

0.5

1.0

1.5
Taylor-Model PINN

pred
gt

x 0
,y

0

Figure 13: Prediction performance of the three models on Coupled Damped Oscil-
lator system. The initial conditions of the dynamical system are set to x0 =
[0.00, 0.20, 0.21,−0.04,−0.13, 0.3, 0.31, 0.03] and θ0 = [0.44, 0.19]

21

NAGESH SANKARANARAYANAN KAUR SAHAI JHA

Appendix D. Algorithm for Taylor-Model PINNs

In this section, we provide the algorithm for training TM-PINNs as used in our experiments. We
start by symbolically computing the m Lie derivatives of the dynamical system f provided, and use
a neural network ψ to numerically approximate the remainder term. The loss functions, defined in
3.1 is implemented as shown in Alg. 1 pseudocode.

Algorithm 1 Taylor Model Physics-Informed Neural Networks (TM-PINNs)

1: Require: Training data D = (x0
i ,θ

0
i , t)

N
i=1 where x0 and θ0 are the initial conditions and

parameters, t represents the time horizon up to time T divided by ∆t, number of epochs Niter,
the dynamical system f(x0,θ0, t), and a neural network ψ with weights and biases (w, b).

2: Initialize: Symbolically compute the m Lie derivatives L(m) of the system f
3: Training:
4: for i = 1 to Niter do
5: Sample a random mini-batch of training data b ⊂ D
6: gr ← b+ tL(1)(b) + · · ·+ tm

m!L
(m)(b)

7: gl ← L(1)(b) + tL(2)(b) + · · ·+ t(m−1)

(m−1)!L
(m)(b)

8: b̂, ḃ← ψ(b),∇ψ(b)
9: gr ← f(gr +

t(m+1)

(m+1)! b̂,θ0, t)

10: gl ← gl +
tm

m! b̂+
t(m+1)

(m+1)! ḃ

11: ∇w,bL(w, b)← ∇w,b(||gl − gr||22) +∇w,b(||L(m+1)(b)− b̂||22)
12: Update weights of ψ using ADAM
13: end for

Here, we assume the same gradient update steps as used by the Adaptive Moment Estimation
(ADAM) optimizer Kingma and Ba (2014), with some learning rate η. All the neural network
weights are initalized using the Glorot initialization Glorot and Bengio (2010) i.e. sampled from a
uniform random distribution of mean 0 and variance

√
2

ξin+ξout
, where ξin in the number of input

layers and ξout is the number of output layers.

22

	Introduction
	Related Work

	Preliminaries
	Higher-Order PINNs
	Higher-Order PINNs based on Taylor series

	Results
	Exact collocation point match for shorter time periods

	Conclusion
	Benchmark systems
	Duffing Oscillator
	Damped Pendulum
	Lotka-Volterra System
	Rikitake Attractor
	Lorenz Attractor
	Susceptible-Infected-Recovered (SIR) Model
	Susceptible-Exposed-Infected-Recovered (SEIR) Model

	Numerical Quadrature insights
	Supporting results from other systems
	Prediction performance graphs
	Results and error propagation
	Larger systems
	Multi-Coupled Damped Oscillator
	Michaelis-Menton Enzyme Kinetics

	Algorithm for Taylor-Model PINNs

