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Abstract. In this paper, we draw upon connections between bilinear
programming and the process of computing (post) fixed points in ab-
stract interpretation. It is well-known that the data flow constraints for
numerical domains are expressed in terms of bilinear constraints. Algo-
rithms such as policy and strategy iteration have been proposed for the
special case of bilinear constraints that arise from template numerical do-
mains. In particular, policy iteration improves upon a known post-fixed
point by alternating between solving for an improved post-fixed point
against finding certificates that are used to prove the new fixed point.
In this paper, we draw upon these connections to formulate a policy it-
eration scheme that changes the template on the fly in order to prove a
target reachability property of interest. We show how the change to the
template naturally fits inside a policy iteration scheme, and thus propose
a policy iteration scheme that updates the template matrices associated
with each program location. We demonstrate that the approach is effec-
tive over a set of benchmark instances, wherein starting from a simple
predefined choice of templates, the approach is able to infer appropri-
ate template directions to prove a property of interest. We also note
some key theoretical questions regarding the convergence of the policy
iteration scheme with template updates, that remain open at this time.

1 Introduction

In this paper, we study policy iterations for computing inductive invariants of
programs using template abstract domains, and present an approach that mod-
ifies templates on the fly. In a template abstract domain, we fix the left-hand
side expressions of the invariant properties of interest and use abstract inter-
pretation to compute valid right-hand side constants so that the resulting in-
equalities form an inductive invariant. As such, template domains such as inter-
vals [15], octagons [30, 31], octahedra [11], pentagons [28], linear templates [36],
and quadratic templates [2] have been well studied as effective numerical domains
for proving safety of runtime assertions in software [24, 6, 5, 18, 29, 39]. Template
domains have given rise to specialized approaches such as policy iteration [13, 20]
for improving post-fixed points, and strategy iteration for computing the least
fixed point [22, 21].

Policy iteration starts from a known post-fixed point, and alternates between
finding a “policy” that certifies the current solution versus finding the best so-
lution under the current “policy”. This approach was originally proposed by



Costan et al. for the interval domain [13] and generalized to arbitrary templates
subsequently [20]. Extensions have been proposed for quadratic templates [2].
On the other hand, strategy iteration approach works in a bottom up fashion
starting from the bottom of the lattice and exploiting the “monotonicity” prop-
erty in the dataflow equations for the template domain [21]. Specifically, the
system of data flow equations are linearized around the current solution, and a
fixed point of the linearized system is obtained as the next solution.

Our approach here exploits a connection between policy iteration approach
and classic bilinear optimization problems. In fact, policy iteration is a variant
of the popular alternating coordinate descent that has been used widely in the
control systems and optimization communities [23]. Using this connection, we
notice that the alternation between solutions and multipliers can be extended
to update the templates on the fly, as the iteration proceeds. Significantly, the
update to the templates can be made property-directed in a simple manner. By
combining these observations, we arrive at a policy iteration approach that can
start from initial, user-defined templates and update them on the fly. However
policy iteration is not guaranteed to converge to a globally optimal solution,
which would correspond to the least fixed point solution in the abstract domain.
In practice, the technique gets stuck in a local minimum, yielding a suboptimal
solution. A result by Helton and Merino on more general biconvex programs
suggests that the alternating minimization almost never converges to a local
minimum (technically a solution satisfying the KKT conditions) [27]. Adjé et al.
demonstrate an approach that computes an optimal solution for systems which
are nonexpansive [3]. However, the general applicability of this result is unclear.
To circumvent this issue, we work in a property directed fashion, wherein the
goal of the approach is to find a suitably strong invariant that is sufficient to
prove a property of interest. Such a property can be established with a solution
that is not necessarily a least fixed point.

An implementation of the approach and evaluation over a set of small bench-
marks shows that the approach of updating the policies on the fly is an effective
solution to inferring appropriate templates in a property directed manner.

1.1 Related Work

Colón et al. were the first to discover the connection between linear invariant syn-
thesis problems and bilinear constraints through the use of Farkas lemma in lin-
ear programming [12]. These constraints were solved using specialized quantifier
elimination techniques, but restricted to small problems [40]. Sankaranarayanan
et al. explored the use of heuristic approaches to solve bilinear constraints [35].
These approaches were generalized by Cousot, as instances of Lagrangian re-
laxations [14]. Additionally, Cousot’s work uses numerical optimization tools
to prove total correctness properties of programs. His approach relies on for-
mulating the constraints as Linear or Bilinear Matrix inequalities (LMI/BMI).
However, the use of numerical solvers requires rigorous symbolic verification of
the results. Recent experiences reveal surprising pitfalls, including erroneous in-
variants obtained, even when the error tolerances are quite low [33, 38]. In fact,



one of the advantages of policy iterations lies in the use of exact arithmetic LP
solvers to avoid floating point errors. Other approaches to solving the resulting
constraints have restricted the multiplier variables to finite domains, enabling
linear arithmetic solvers [26].

Template polyhedra and their generalization to support functions have proven
useful for constructing reachable sets of linear and nonlinear hybrid systems [34,
25, 19, 8]. The problem of inferring template directions has also been studied in
this context. Many heuristics were proposed by Sankaranarayanan et al. in their
paper on linear templates, including the use of expressions found in programs,
“increasing”/ “decreasing” expressions, and preconditions of already added tem-
plate expressions [36]. However, none of these are guaranteed to be relevant to
the property. Adjé et al. use the idea of Lyapunov-like functions to effectively
infer templates that are shown to be effective in proving bounds on variables [1].

The idea of updating templates on the fly was previously proposed by Ben
Sassi et al. for analyzing the largest invariant region of a dynamical system [37].
The approach searches for a polytope whose facets are transverse to the flow,
failing which, the facet directions are adjusted and tested again. The approach
to adjusting facets is based on a local sensitivity analysis to obtain the invariant
region around an equilibrium (which facilitates basin of attraction analysis for
dynamical systems). Compared to the present work, the differences include the
treatment of multiple program locations and transitions, the use of policy iter-
ation, and a property-directed approach that seeks to prove a property rather
than find a largest invariant region.

Abraham et al.. propose effective heuristics to guide the choice of directions
for constructing reachable sets of linear hybrid systems [9]. Recently, Bogomolov
et al. propose a counter-example guided approach for inferring facets of tem-
plate polyhedra for hybrid systems reachability analysis [7]. The key differences
include: (a) we are interested in computing a single polyhedron per location
whereas flowpipe construction approaches use a disjunction of polytopes, and
(b) we seek to compute time-unbounded invariants, whereas flowpipes are typi-
cally time bounded. Another interesting approach by Amato et al. uses principal
component analysis (PCA) over concrete states reached by execution traces to
design templates [4].

2 Motivating Example

Consider a simple system over two real-valued variables (x1, x2) ∈ R2, initialized
to (x1, x2) ∈ [−1, 1]× [−1, 1]. The system executes the following action

if (x1, x2) ∈ [−8, 8]2 then

[(
x1
x2

)
:= M

(
x1
x2

)]
else

[(
x1
x2

)
:=

(
x1
x2

)]

wherein M =

(
0.92 0.18
0.18 0.92

)
. Our goal is to prove that the set U : {(x1, x2) | x2−

x1 ≥ 2.1} is never reached by any execution of the system. In order to prove the



(a) (b) (c)

Fig. 1. Invariants synthesized for the three steps of the policy iteration with property
directed template modification. The simulation traces are shown in red. Note: each
figure is drawn to a different scale.

property using a template domain, the user specifies a template matrix [36, 20]:

T :


1 0
−1 0
0 1
0 −1

 ,

(∗ 1x1 + 0x2 ∗)
(∗ − 1x1 + 0x2 ∗)
(∗ 0x1 + 1x2 ∗)
(∗ 0x1 − 1x2 ∗)

wherein the rows represent the expressions x1,−x1, x2,−x2, respectively. The
template domain analysis seeks to find an invariant of the form Tx ≤ c by
discovering the unknown constants c that represent the RHS of the template.
For the example shown above, the best possible invariant is obtained as c :(

8.8 8.8 8.8 8.8
)T

, yielding the range [−8.8, 8.8]× [−8.8, 8.8] for (x1, x2). In fact,
given our instance on using the template T , this is the best invariant possible
(see Fig. 1(a) to verify this).

For this example, the policy iterative scheme presented in this paper is suc-
cessful in choosing a new template:

T̂ :


−1 1
1 −0.1957

0.1957 −1
−1 1

 ,

(∗ − x1 + x2 ∗)
(∗ x1 − 0.1957x2 ∗)
(∗ 0.1957x1 − x2 ∗)
(∗ − x1 + x2 ∗)

Along with this policy, we compute a tighter invariant shown in Fig. 1(c),
that establishes the invariant x2 − x1 ≤ 2, and thus proving U unreachable.
We note that (a) the choice of templates is directed by the property, and (b)
unlike the original policy iteration approach proposed by Gaubert et al. [20], this
approach does not guarantee that the iterates are strictly descending. In fact,
the iterates obtained are often incomparable.



`1 `2

τ1 :

[
x1 ≥ 0→
x := A1x

]
τ2 : x1 ≤ 0

τ3 : x1 ≥ 0

τ4 :

[
x1 ≤ 0 →
x := A2x

]

A1 =

[
1 −1

0.5 0

]
A2 =

[
0.5 0
−0.5 0.5

]

Fig. 2. Example of a transition system with two variables x1, x2, two locations `1, `2
and four transitions shown as arrows.

3 Preliminaries

Let R denote the set of real numbers and R+ : R∪±∞ denote the extended reals
with infinity. We first define the transition system model used throughout this
paper. Let X be a set of real-valued variables and Π[X] represent a language of
assertions over these variables, drawn from a suitable fragment of the first order
logic over the reals. For any assertion ϕ ∈ Π[X], we denote its corresponding
set of models by JϕK. For convenience, the set of variables X are arranged as a
column vector, written as x.

Definition 1 (Transition System). A (numerical) transition system is a tu-
ple 〈X,L, T , I, `0, Θ〉, wherein
1. X : {x1, . . . , xn} represents a set of real-valued program variables,
2. L : {`1, . . . , `m} represents a set of program locations,
3. T : {τ1, . . . , τk} represents a set of transitions, wherein each transition τi is

a tuple 〈`i,mi, ψi, gi〉, wherein
(a) `i,mi ∈ L are the pre and the post locations, respectively.
(b) ψi ∈ Π[X], an assertion over X, represents the guard of the transition.
(c) gi : Rn → Rn, an update function, represents the (simultaneous) assign-

ment: (x1, . . . , xn) := gi(x1, . . . , xn).
4. `0 is the initial location, and Θ ∈ Π[X] is an assertion over X representing

the initial valuations of the program variables.

A state of the transition system is a tuple 〈`,x〉 wherein ` ∈ L is the control
location and x ∈ Rn represents a set of valuations for the program variable.
Given a transition system, its executions are a finite/infinite sequence of states:

(`0,x0)
τ1−→ (`1,x1)

τ2−→ · · · τi−→ (`i,xi) · · · ,

such that: (a) `0 is the initial location and x0 ∈ JΘK; (b) `i−1, `i are the pre/post
locations (respectively) of the transition τi for all i ≥ 1; (c) xi−1 ∈ JψiK for
all i ≥ 1 wherein ψi is the guard corresponding to the transition τi; and (d)
xi = gi(xi−1) for all i ≥ 1, wherein gi is the update function for τi.

Example 1. Figure 2 shows an example of a transition system with X : {x1, x2},
L : {`1, `2} and T : {τ1, τ2, τ3, τ4}. The guards and updates of the transitions



are as shown in Fig. 2. The identity update x := x is not shown, however. The
initial location is `1 and the initial condition on x is (x1, x2) ∈ [0.5, 1.5]× [0.5, 1].

A state (`,x) is reachable if there is an execution that reaches the state.
For this paper, we study linear transition systems. A linear expression is

of the form e : aTx for vector a ∈ Rn. A linear inequality is of the form
aTx ≤ b and a linear assertion is a finite conjunction of linear inequalities
(aT1 x ≤ b1 ∧ · · · ∧ aTk x ≤ bk) conveniently written in matrix form as Ax ≤ b.

Definition 2 (Linear Transition Systems). A linear transition system (LTS)
is a transition system with the following restrictions:
1. The initial conditions and transition guards are all linear assertions over X
2. The update function for each transition is an affine function: gi(x) : Uix+vi.

Throughout this paper, we will tackle linear transition systems. An error
specification is written as 〈`, ψ〉 for a location ` and a linear assertion ψ. The
goal is to prove that no reachable state for location ` satisfies ψ. I.e, all reachable
states x at location ` satisfy x 6∈ JψK. To prove a given specification, we use an
inductive invariant.

Definition 3 (Inductive Invariant Map). An inductive invariant map η :
L → Π[X] maps each location ` ∈ L to an assertion η(`) such that the following
conditions hold:

– Initial Condition: At the initial location `0, the entailment Θ |= η(`0) holds.
– Consecution Condition: For each transition τ : 〈`1, `2, ψi, gi〉, the following

consecution condition holds:

η(`1) ∧ ψi ∧ x′ = gi(x) |= η(`2)[x′] .

The condition states that starting from any state x ∈ Jη(`1)K, a single step
of the transition τ , if enabled, yields a state x′ ∈ Jη(`2)K.

Let η be an inductive assertion map and 〈`, ψ〉 be an error specification.

Theorem 1. If the conjunction η(`) ∧ ψ is unsatisfiable, then for every reach-
able state (`,x), it follows that x 6∈ JψK.

The problem therefore consists of finding inductive assertion maps that can
prove a given error specification.

Abstract interpretation provides a framework for systematically computing
inductive assertions using a pre-specified lattice of assertions called an abstract
domain [17, 16]. The key insight lies in characterizing inductive assertion maps
as post-fixed points of a monotone operator over sets of states.

An abstract domain is defined by a latticeA : 〈A,v,t,u,⊥,>〉 with inclusion
v, join operator t, meet operator u, a bottom element ⊥ and top element >.
Each element a ∈ A represents a correponding set of states (technically, an
element of the concrete domain) through the concretization function γ(a), and



likewise, for every set of states S (element of the concrete domain), we define a
corresponding abstraction α(S).

The theory of abstract interpretation defines a set of operations including the
abstract post condition b : p̂ost(a, τ), that given a ∈ A and transition τ results
in an abstract element b ∈ A such that γ(b) over approximates the reachable
states obtained by starting from some state in γ(a) and applying the transition
τ . Other useful abstract domain operations include t for merging sets of states,
u for handling conditional branches, ⊥ for the empty set of states, > for the
universal set of states, v to test containment between abstract elements and a
special operation called widening ∇ that enforces termination. We will omit a
detailed presentation of abstract interpretation from this paper. The interested
reader may obtain these from standard references [17, 16, 32].

3.1 Template Domains

The rest of this paper will focus on the abstract domain of template polyhe-
dra [36]. Let S : 〈L, X, T , `0, Θ〉 be a linear transition system. Let x represent
the system variables in X as a vector and n = |X|.

A template associates each location ` ∈ L with a m` × n matrix T`. We
drop the subscript ` from the template matrix if the location ` is clear from the
context. A m× n template T defines a lattice A(T ):

A(T ) : {c ∈ Rm+}, wherein, γ(c) : Tx ≤ c .

In other words, each element of the template abstract domain is a possible valu-
ation c to the RHS of inequalities Tx ≤ c. Note that the entries in c can include
±∞. Naturally, we define the linear inequality e ≤ ∞ to be synonymous with
true and e ≤ −∞ is synonymous with false.

Given an assertion ϕ over x, its abstraction c : α(ϕ) is computed as a vector
whose ith entry ci is the solution to the optimization problem:

ci : max Tix s.t. ϕ(x) .

Since the abstraction is often computed for linear assertions ϕ, this is a linear
programming (LP) problem.

For each template element, its canonical representative can(c) is defined as
the instantiation d, whose ith entry di is the solution to the following LP:

di : max Tix s.t. Tx ≤ c .

Note that the solution to an unbounded problem is taken to be +∞ and an
infeasible problem to be −∞. Note that the template polyhedron defined by
Tx ≤ c is identical to the polyhedron Tx ≤ can(c). A template element c is
canonical in A(T ) if and only c = can(c).

The inclusion operator v in A(T ) is defined as

c1 v c2 iff can(c1) ≤ can(c2) ,



wherein≤ operation over vectors compares elements entrywise. The join operator
c1tc2 is simply the entrywise maximum max(c1, c2). Likewise, the meet operator
is the canonical entry wise minimum.

Let T` be the template associated with location ` and Tm with location m.
The abstract post with respect to a transition 〈`,m, ϕ : Ax ≤ b, g : Ux+ v〉 is an
operator p̂ost : A(T`)× T → A(Tm). Given c ∈ A(T`), the result d : p̂ost(c, τ)
is a vector wherein di is given as the solution to the following LP:

di :


max Tm,ix
s.t. T`y ≤ c

Ay ≤ b
x = Uy + v


Widening and narrowing operators for the template domain are defined by

extensions of the standard interval widening operator [36].
The template domain is a convenient numerical abstract domain that uses

linear programming solvers as a primitive for implementing the domain opera-
tions. However, a common critique of the template approach is that it requires
users to specify the template T . In practice, users default to popular choices such
as intervals, octagons and pentagons which avoid repeated calls to LP solvers
by using special properties of the constraints in these templates. We proceed by
assuming that an initial template has been specified for each location using one
of the schemes outlined above. Our approach can change this template as part
of the solution scheme.

4 Bilinear Constraints and Policy Iteration

In this section, we consider the data flow equations for template abstract do-
main, connecting them to a class of nonconvex optimization problems called
bilinear optimization problem (BOP). We present the policy iteration approach,
proposed by Gaubert et al. as a technique for solving such bilinear inequalities
that alternates between solving linear programs [20]. Once again we fix a linear
transition system S and assume for simplicity that each location ` is labeled
with the same m×n matrix T . The approach can be easily extended to the case
where the template matrices differ between locations.

We will make use of Farkas’ lemma, a standard result in linear programming.
Let ϕ : Ax ≤ b be a linear assertion with m× n matrix A and m× 1 vector b,
ψ : cTx ≤ d be a given linear inequality.

Theorem 2 (Farkas Lemma). If ϕ is satisfiable, then ϕ |= ψ iff there exists
nonnegative multipliers λ ∈ Rm such that

ATλ = c ∧ bTλ ≤ d ∧ λ ≥ 0 .

Furthermore, ϕ is unsatisfiable if and only if there exists multipliers λ ∈ Rm
such that

ATλ = 0 ∧ bTλ ≤ −1 ∧ λ ≥ 0 .

The constraints can be seen as encoding the entailment ϕ |= 0Tx ≤ −1.



Note that Farkas lemma handles the entailment of a single linear inequality.
However, for a polyhedron Cx ≤ d, we may encode the entailment Ax ≤ b |=
Cx ≤ d as a series of single inequality entailments: Ax ≤ b |= Cjx ≤ dj for
each row j of C,d. The resulting constraints can be collectively written as:

ATΛ = C, ΛT b ≤ d, Λ ≥ 0 .

All equalities and inequalities between matrices are interpreted entrywise. Here
Λ is a matrix with as many rows as A and as many columns as the number
of rows in C. The jth column of Λ contains the multipliers corresponding to
the inequality Cjx ≤ dj . This notation will be used throughout the rest of the
paper.

Using Farkas’ lemma, we may now derive a system of constraints correspond-
ing to the data flow equations for the template domain. Let T be a m×n template
matrix. We associate each location ` with an unknown vector c(`) ∈ A(T ) such
that the assertion map η(`) : Tx ≤ c(`) is inductive.

We wish to encode the constraints for initiation:

Θ |= Tx ≤ c(`0) , (1)

and for each transition τ : 〈`,m, ϕ, g〉, we wish to model consecution:

Tx ≤ c(`) ∧ ϕ ∧ x′ = g(x) |= Tx′ ≤ c(m) . (2)

Initiation: Let Θ : A0x ≤ b0 be the assertion for the initial condition. Using
Farkas’ lemma for the entailment in Eq. (1), we obtain the condition:

AT0 Λ0 = T ∧ ΛT0 b0 ≤ c(`0) ∧ Λ0 ≥ 0 . (3)

Here Λ0 is a k ×m matrix wherein k is the number of rows in A0 and m is the
number of rows in T . We write Λ0 ≥ 0 to indicate that all entries in Λ0 are
non-negative.

Consecution: Let τ be a transition with guard Aτx ≤ bτ and update
g(x) : Uτx+ vτ . The consecution condition in Eq. (2) can be rewritten through
substitution of x′ and arranged as follows:

Λτ → Tx ≤ c(`)
Γτ → Aτx ≤ bτ
|= TUτx ≤ c(m)− Tvτ

The notation above shows the constraints and the associated dual multipliers
with each block of constraints. Furthermore, we have substituted x′ = Uτx+vτ .
This is dualized using Farkas’ lemma to yield the following constraints:

TTΛτ +ATτ Γτ = TUτ
ΛTτ c(`) + ΓTτ bτ ≤ c(m)− Tvτ

Λτ , Γτ ≥ 0
(4)



TemplateVars : c(`), ` ∈ L
BilinearMults : Λτ , τ ∈ T
LinearMults : Λ0, Γτ , τ ∈ T

Constraints : AT0 Λ0 = T`0 (* Initiation *)
ΛT0 b0 ≤ c(`0)
TTl Λτ +ATτ Γτ = TmUτ (* Consecution τ : 〈l,m, ϕ, g〉 *)
ΛTτ c(`) + ΓTτ bτ ≤ c(m)− Tmvτ
Λ0, Λτ , Γτ ≥ 0 (* Nonnegative multipliers *)

Fig. 3. Bilinear system of constraints at a glance. The constraints are generalized to
allow for possibly different templates T` at each location.

Note that Eq. (3) for the initiation yields a system of linear constraints involv-
ing c(`0) and unknown multipliers in Λ0. However, the consecution constraints
in Eq. (4) for each transition τ involve the product ΛTτ c(`) both of which are
unknown. This makes the constraints for consecution fall into a special class
called bilinear constraints. I.e., for a fixed Λτ these constraints are linear in the
remaining variables c(`), Γτ . Similarly, for fixed values of c(`), these constraints
are linear in the variables Λτ , Γτ . Figure 3 summarizes the constraints obtained
at a glance.

Connection with Min-Policies: The original “min-policy” approach of
Costan et al. [13] considers data flow equations of the form:

c ≥ min(aTi,1c, . . . ,a
T
i,kc) , i = 1, . . . ,M, k = 1, . . . , N . (5)

We will demonstrate that the equations shown in Figure 3 can be equivalently
expressed in this form. For simplicity, we consider the case for a single location
` with template T and unknown template RHS variables c. All transitions are
assumed to be self-loops around this location. From eq. (4), a given solution c
satisfies the consecution for transition τ iff there exist Λτ , Γτ such that

c ≥ ΛTτ c+ ΓTτ bτ + Tvτ (6)

TTΛτ +ATτ Γτ = TUτ (7)

Λτ , Γτ ≥ 0 (8)

Let us define a polyhedron P (Λτ , Γτ ) defined by collecting the constraints in
lines (7), (8) above. We may rewrite the constraints equivalently as:

c ≥ min
(Λτ ,Γτ )∈P

(
ΛTτ c+ ΓTτ bτ + Tvτ

)
(9)

Note that P is a polyhedron. Let us assume that it is defined by N vertices:

(Λ1, Γ1) , . . . , (ΛN , ΓN ) .



The min in eq. (9) can be equivalently written as a minimization over the finite
set of vertices of P :

c ≥
N

min
j=1

(
ΛTj c+ ΓTj bτ + Tvτ

)
(10)

We note that this form arises from the specific structure of the data flow equa-
tions for the template abstract domain. In particular, not all bilinear constraints
satisfy this property.

4.1 Policy Iteration

We now describe policy iteration as an alternation between solving for unknown
c(`) for each ` ∈ L and solving for the unknown bilinear multipliers Λτ . Policy
iteration starts from a known sound solution c0(`) and successively improves
the solution to obtain better solutions (smaller in the lattice) until no further
improvements can be obtained. The initial solution may be obtained by using
Kleene iteration with widening. For simplicity, we will assume that c0(`) 6= ⊥,
for each ` ∈ L. If this were the case, then the location ` is unreachable, and can
be removed from the system.

The overall scheme alternates between (I) solving for the unknown multipliers
Λτ , Γτ , Λ0 given a fixed value of c, and (II) solving for the unknown template
RHS c(`) given Λτ , Γτ and Λ0. Since Γτ and Λ0 are not involved in any bilinear
term, we do not fix them to specific values when solving for c(`).

Solving for Multipliers: Given the values for the current solution c(i)(`) at
each location, we simply plug in these values and solve the system in Figure 3.

Lemma 1. The constraints shown in Fig. 3 become linear if we replace c(`) at
each location by fixed (constant) values.

The remaining constraints are linear over Λ0, Λτ and Γτ for each transition
τ , and can be thus solved using a LP solver. The following lemma guarantees
that the constraints will always yield a feasible solution provided the values c(i)

are a valid post-fixed point.

Lemma 2. If the solution c(i)(`) for each ` ∈ L is a post-fixed point, the con-
straints in the Fig. 3 are feasible for the remaining multipliers, when c(`) is
replaced by c(i)(`).

Let Λ
(i)
τ be the resulting values of the bilinear multipliers returned by the LP

solver when we replace c : c(i). These are also called policies [20].

Solving for Template RHS: Next, let us assume that the variables Λτ for

each transition are set to constants Λ
(i)
τ .

Lemma 3. If we set Λτ for each τ to constants Λ
(i)
τ for the constraints in Fig-

ure 3, the resulting problem is linear over c(`) for each ` ∈ L and the linear
multipliers Γτ , Λ0.



Once we set Λτ to specific values, the resulting system is once again a linear
program. Let us call this problem Ci.

Lemma 4. The LP Ci is always feasible.

To see this, we note that c(`) = c(i) is already a solution to this LP due to how

the values of Λ
(i)
τ were obtained in the first place. We call the resulting values

c(i+1)(`).
The overall policy iteration scheme alternates between solving for c(`) and

solving for Λτ variables. Gaubert et al. show that the number of policies needed
is finite (but large), and thus the process is guaranteed to yield a stable solution
such that c(i+1)(`) = c(i)(`).

5 Policies with Template Update

In this section, we extend policy iteration process to achieve two goals simul-
taneously: (a) be goal-directed towards a specific property and (b) allow the
template T at each location to be updated.

Let (`, ψ) be a error specification at location ` that we wish to prove unreach-
able. Our goal is to compute an inductive assertion map η such that at location
`, the conjunction η(`) ∧ψ is unsatisfiable. Once again, we will first assume for
the sake of exposition that the same template matrix T is used at each location.

Using Farkas’ lemma, the invariant Tx ≤ c(`) proves the unreachability of
the error specification ψ : Px ≤ q iff there exist multipliers λs,γs ≥ 0 s.t.

T ᵀλs + PTγs = 0, c(`)Tλs + qTγs ≤ −1︸ ︷︷ ︸
I

, λs,γs ≥ 0 . (11)

However, if the invariant fails to prove the property, we will be unable to
find suitable multipliers λs,γs ≥ 0. Since, our procedure will involve interme-
diate solutions that do not satisfy the property, we will consider the following
optimization-based formulation by moving the inequality labeled “I” in (11) to
the objective, as follows:

min c(`)Tλs + qTγs
s.t. TTλs + PTγs = 0

1Tλs = 1 (* normalization constraint *)
λs,γs ≥ 0

(12)

Note that we have added a normalization constraint requiring that the sum of
the multipliers λs equal 1. Without such a constraint, the problem always has a
trivial solution 0 by setting all the multipliers (λs,γs) to 0, which is undesirable
for the policy iteration scheme to be discussed subsequently.

Lemma 5. Suppose Ti = −Pj for row i of matrix T , row j of matrix P , and
c(`)i <∞ then the optimization problem in Eq. (12) is feasible.

Furthermore, its objective value is strictly negative iff Tx ≤ c(`) proves the
specification (`, ψ : Px ≤ q).



Vars : c(`), ` ∈ L (* Template RHS *)
∆`, ` ∈ L (* Template update *)
Λτ , τ ∈ T (* Bilinear mult.*)
λs (* Error Spec.*)
Λ0, Γτ , τ ∈ T (* Linear Mults. *)
γs (* Error Spec.*)

min : λs
T c(`) + γTs q

s.t. AT0 Λ0 = T`0 +∆`0 (* Initiation *)
ΛT0 b0 ≤ c(`0)
(Tl +∆l)

TΛτ +ATτ Γτ = (Tm +∆m)Uτ (* Consecution τ : 〈l,m, ϕ, g〉 *)
Λτ

T c(`) + ΓTτ bτ ≤ c(m)− (Tm +∆m)vτ
(T` +∆`)

Tλs + PTγs = 0 (* Error spec. ψ : Px ≤ q *)
Λ0, Λτ ,λs, Γτ ,γs ≥ 0 (* Nonnegative multipliers *)
Ll ≤ ∆l ≤ Ul (* Limits on template change *)

Fig. 4. Bilinear system of constraints with objective function and template update
variables ∆l.

Proof. Given that Ti = −Pj , we then choose λs(i) = 1 and the rest of entries
to zero. Likewise, γs(j) = 1 and the remaining entries of γs are set to 0. We
can now verify that this will satisfy the constraints, thus providing a feasible
solution.

Note that if we find a solution (λs,γs) such that the objective value is ε < 0,
then (λs|ε| ,

γs
|ε| ) satisfy the constraints in Eq. (11). The rest follows from Farkas’

lemma.

Thus, we will use the optimization formulation as an objective function that
measures how “far away” the current solution at ` is from proving the property
of interest.

5.1 Updating Templates

Next, we allow the template T to change at each step to a new template T +∆,
wherein ∆ is the unknown change in the template. In doing so, we update the
constraints to introduce an unknown change ∆. However, allowing arbitrary
changes to the template will not work since choosing ∆ = −T immediately makes
the template trivial, and not useful for our purposes. Therefore, we specify upper
and lower limits to the change in the template. These limits can be set using
different strategies that we will explore in the experimental evaluation section.
Let L be the lower limit and U be the upper limit so that L ≤ ∆ ≤ U . As a
technical condition, we require 0 ∈ [L,U ], i.e., the option to keep T unchanged
is allowed.

Figure 4 shows the bilinear optimization problem

B ((c(`), ∆`), (Λτ ,λs)) ,



obtained when the change in the template variables is also considered. We note
that the variables involved in the bilinear terms are once again separated into
two sets, represented in different colors for convenience.

5.2 Template Updates and Policy Iteration

We now update the policy iteration process to consider the change in templates,
as shown in Fig. 4. Let c(0) be an initial value such that Tx ≤ c(0)(`) is inductive.

The initial update ∆
(0)
` = 0 for each location `.

Multiplier Update: At each iteration i, the multiplier update uses c(i), ∆(i)

to obtain values of Λ
(i)
τ ,λ

(i)
s . Formally, we consider the problem

Mi : B
(

(c(i)(`), ∆
(i)
` ), (Λτ ,λs)

)
Lemma 6. 1. Mi is a linear program over unknown multipliers Λτ ,λs, Γτ ,γs, Λ0.

2. It is feasible iff the map η(i) formed by the assertions (T` +∆
(i)
` )x ≤ c(i)(`)

for ` ∈ L, is an inductive assertion map.
3. The value of the objective function cannot increase, i.e., for i > 1,

c(i)(`)Tλ(i)
s + qTγ(i)

s ≤ c(i)(`)Tλ(i−1)
s + qTγ(i−1)

s .

4. The value of the objective is negative iff η(i) proves the specification (`, ψ).

The result of multiplier update yields values for the variables (Λτ ,λs) :

(Λ
(i)
τ ,λ

(i)
s ).

Template Update: Given the current values (Λ
(i)
τ ,λ

(i)
s ) for the multipliers,

we derive new values c(i+1)(`), ∆
(i+1)
` for the template variables by solving the

problem

Ci+1 : B
(

(c(`), ∆`), (Λ
(i)
τ ,λ(i)

s )
)
.

Lemma 7. 1. Ci+1 is a linear program over the unknown template variables
c(`), ∆` and unknown linear multipliers Γτ ,γs, Λ0.

2. It is always feasible provided 0 ∈ [L`, U`] at each location.
3. The assertion map η(i+1) formed by the solution

(T` +∆
(i+1)
` )x ≤ c(i+1)(`) for ` ∈ L ,

is inductive.
4. The value of the objective function cannot increase, i.e., for i ≥ 0,

c(i+1)(`)Tλ(i)
s + qTγ(i+1)

s ≤ c(i)(`)Tλ(i)
s + qTγ(i)

s .

5. The value of the objective function c(i+1)(`)Tλ
(i)
s + qTγ

(i+1)
s is negative iff

the η(i+1) proves the property.



The overall scheme alternates between updating the multipliers and the tem-
plate variables, until no more changes can occur. We also observe that starting
from a valid inductive invariant, the solutions obtained during the policy it-
eration continue to remain inductive or post-fixed points. However, they are

post-fixed points over the lattice A(T` + ∆
(i)
` , ` ∈ L), which is different from

the original lattice. As observed already in the motivating example (section 2),
these invariants can be mutually incomparable. However, we show that at each
step, the value of the objective function measuring progress towards proving the
specification cannot increase.

5.3 Discussion

We now focus on issues such as convergence and the complexity of each step.

Convergence: In general, the known results about the convergence of alternat-
ing minimization schemes for bilinear optimization problems indicate that the
process seldom converges to a global optimal value [27]. Often, these iterations
get “stuck” in a local saddle point, from which no further progress is possible.
Nevertheless, our goal here is not to converge to a global optimum but to a good
enough solution whose objective function value is strictly negative, thus proving
the property of interest.

By allowing template updates to the process, it is no longer clear that the
process will necessarily converge (even if it converges to a saddle point) in finitely
many steps. It is entirely possible that the value of the objective function remains

unchanged but the process produces a new template T` + ∆
(i)
` at each step.

Depending on how the limits to the template change L`, U` are specified, this
process may produce a fresh new template at each step.

Nevertheless, we note that the lack of convergence does not pose a serious
hurdle to an application of template update to policy iteration. It is possible
to iterate while each step provides at least ε > 0 decrease in the value of the
objective function, and stop otherwise.

Complexity: At each step, we solve a linear programming problem. For a
transition system with n variables, |L| locations, |T | transitions, k template rows
at each step, the size of each LP in terms of number of variables + constraints is
O
(
|L|kn+ |T |k2

)
. Although this is polynomial, the process can be prohibitively

expensive for large programs. In our future work, we wish to exploit the block
structure of these constraints in order to allow us to solve the LPs using standard
approaches such as Benders or Danzig-Wolfe decomposition techniques [10]

Collecting Invariants: Finally, we note that each step yields an invariant
map η(i) that is not necessarily comparable to the invariant obtained in the next
step η(i+1). However, we note that the finite conjunction

η(0) ∧ · · · ∧ η(N) ,

over all the iterations of this process can be a stronger invariant than each of
them. This is already demonstrated by the motivating example in Section 2.



Table 1. Description of the benchmarks used and the sizes in terms of (# variables,
# locations, # transitions)

ID Size Remark

1 (4,2,2) Switched linear system with 4 state variables.
2 (2,2,4) Example in Fig. 2.
3 (2,1,1) Linear System with 1 location and transition.
4 (2,1,1) Motivating example from Section 2.
5 (3,1,4) Adjé et al. [1].
6 (2,35,169) Grid-based piecewise linearization of Van Der Pol oscillator.

6 Experimental Evaluation

We present a preliminary experimental evaluation of the ideas presented thus
far using a prototype implementation.

Prototype Implementation: A prototype implementation was developed in
Python, using the exact arithmetic LP solver QSOptEx. The QSOptEx solver
provides a fast and convenient interface to an optimized Simplex implementation
in exact arithmetic. Our implementation allows the specification of a transition
system and supports a few additional features on top of those presented in
the paper including location invariants. We also support the option to specify
different templates at various program locations. During the template update,
our approach considers independent updates to the template at each location.

Specifying Template Changes: We consider a simple approach to specifying
the limits L`, U` to the change in template at each location `. First, the option
for ∆` = 0 must be allowed, secondly, ∆` = −T must be disallowed. For each
T`(i, j) = 0, we specify corresponding limits L`(i, j) = −z and U`(i, j) = z for
a fixed constant z > 0 (taken as 1000 in our experiments). For T`(i, j) 6= 0, we
allow ∆ to range between 1

2T`(i, j) and 2T`(i, j) in our experiments.

Benchmark Examples: We consider a small set of benchmark examples that
are illustrative of applications that we encounter in the verification of discrete-
time affine hybrid systems. Table 1 briefly describes each benchmark example.

Experimental Comparison: Table 2 shows the comparison between ab-
stract interpretation using Kleene iteration, policy iteration without template
update and with template update for the 6 benchmarks. The table reports the
objective value of the initial solution obtained after the Kleene iteration using
widening/narrowing terminates. A non-negative value of the objective function
indicates the failure to prove the property. Overall, we see that policy iteration
with template update is effective in these benchmarks in proving properties in
4 out of the 6 cases, whereas without template update we prove the property in
just 1 out of 6. It is interesting that whenever the approaches manage to reduce
the objective value of the initial solution, they end up proving the property.
Further experiments are needed to clarify whether this represents an artifact of
the benchmarks chosen.



Fig. 5. Sequence of iterates for benchmark id 2 culminating in the final invariants
shown shaded in blue and green. The property x2 ≥ 0.8 is shown unreachable at the
green location by the final iterate.

Figure 5 shows the sequence of iterates at the two locations for the transition
system shown in Fig. 2 corresponding to benchmark number 2. The goal is to
establish the unreachability of x2 ≥ 0.8 at location `2. The final invariant for `2
is shown in green, proving the specification.

Thus, we provide preliminary evidence that the bilinear approach is effective
in cases where Kleene or policy iteration fail. At the same time, we notice that
the size of the bilinear problem, though polynomial in the original transition
system and template size, is often large with thousands of variables. However,
the problems are sparse with each constraint involving just a tiny fraction of these
variables. This points out the need for simplification techniques and approaches
to solving bilinear problems that exploit this sparsity to make the approach more
efficient.

7 Conclusions

To conclude, we exploit the connection between template domains and bilinear
constraints. In doing so, we show that policy iteration allows the template direc-
tions to be updated on the fly in a property directed fashion. We present prelim-
inary evidence that such an approach can be effective, though many challenges
remain. Our future work will focus on techniques to make progress when the pol-
icy iteration is stuck in a local saddle point, without sacrificing the soundness of
the approach. In this context, we are investigating strategy iteration approaches
that can incorporate the template update process [22]. Our previous work on in-
variant set computation for polynomial differential equations mentioned earlier,
already contains clues to such an approach [37]. As mentioned earlier, exploit-
ing the sparsity of constraints to provide a more scalable solver is also another
fruitful future direction.

Acknowledgments
The authors gratefully acknowledge the anonymous reviewers for their valu-

able comments and suggestions. This work was funded in part by NSF under



Table 2. Experimental results including a comparison between policy iteration without
template update and with template updated (shaded rows). All experiments were run
on a Macbook Air laptop with 1.8 GHz Intel processor, 8GB RAM running OSX10.12.
All timings are in seconds. Legend: T. Upd: Template updated at each iteration?
Proved?: whether the property was proved, if not, the objective value is reported,
|BOP|: size of the bilinear problem (# bilinear template variables, # bilinear mult.
variables, # linear mult. variables), # Iter: # policy iterations - A (*) next to this
number indicates that the iteration was stopped due to 5 consecutive steps with same
objective value.

id Initial Template Kleene Policy Iteration
Type, |T | Time Proved? T. Upd. |BOP| Time # Iter Proved

1 Pentagon, 26 0.37 N (0.2) N (52,1176, 1249) 0.5 2 N(0.2)
Y (240, 1176, 1249) 18.2 5(*) N (0.2)

2 Octagon, 8 0.15 N (0.2 ) N (16, 264, 353) 0.1 2 N(0.2)
Y (48, 264, 353) 0.4 6 Y

3 Octagon, 8 0.04 N(0.5) N (8, 72, 161) 0.02 1 N(0.5)
Y (24, 72, 161) 0.05 2 Y

4 Interval, 4 0.02 N(15.5) N (4,20,33) 0.01 1 N(15.5)
Y (12, 20, 33) 0.02 2 Y

5 Pentagon, 10 1.5 N(2.83) N (10, 410, 681) 0.3 2 Y
Y (40, 410, 681) 0.3 2 Y

6 Interval, 4 2.5 N(0.75) N (140, 836, 2033) 1.5 5(*) N(0.75)
Y (168, 836, 2033) 2.9 5(*) N(0.75)
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