
Formal Methods in Systems Design manuscript No.
(will be inserted by the editor)

Template Polyhedra and Bilinear Optimization.

Jessica Gronski · Mohamed-Amin
Ben Sassi · Stephen Becker · Sriram
Sankaranarayanan

Received: January 22, 2018 / Accepted: date

Abstract In this paper, we study the template polyhedral abstract domain
using connections to bilinear optimization techniques. The connections be-
tween abstract interpretation and convex optimization approaches have been
studied for nearly a decade now. Specifically, data flow constraints for numeri-
cal domains such as polyhedra can be expressed in terms of bilinear constraints.
Algorithms such as policy and strategy iteration have been proposed for the
special case of bilinear constraints that arise from template polyhedra wherein
the desired invariants conform to a fixed template form. In particular, policy
iteration improves upon a known post-fixed point by alternating between solv-
ing for an improved post-fixed point against finding certificates that are used
to prove the new fixed point.

In the first part of this paper, we propose a policy iteration scheme that
changes the template on the fly in order to prove a target reachability prop-
erty of interest. We show how the change to the template naturally fits inside
a policy iteration scheme, and thus, propose a scheme that updates the tem-
plate matrices associated with each program location. We demonstrate that
the approach is effective over a set of benchmark instances, wherein, starting
from a simple predefined choice of templates, the approach is able to infer
appropriate template directions to prove a property of interest. However, it is
well known that policy iteration can end up “stuck” in a saddle point from
which future iterations cannot make progress.

In the second part of this paper, we study this problem further by empiri-
cally comparing policy iteration with a variety of other approaches for bilinear
programming. These approaches adapt well-known algorithms to the special

Becker, Gronski and Sankaranarayanan
University of Colorado, Boulder, USA.
E-mail: firstname.lastname@colorado.edu

Ben Sassi
Mediterranean Institute of Technology, Tunis, Tunisia.
E-mail: mohamed.bensassi@medtech.tn

2 Jessica Gronski et al.

case of bilinear programs as well as using off-the-shelf tools for nonlinear pro-
gramming. Our initial experience suggests that policy iteration seems to be the
most advantageous approach for problems arising from abstract interpretation,
despite the potential problems of getting stuck at a saddle point.

1 Introduction

In this paper, we exploit the connections between inferring post-fixed points
(inductive invariants) for numerical domains and the process of solving non-
linear constraints to provide a template polyhedral domain that can modify
the templates on-the-fly as the analysis progresses. In a template abstract do-
main, we fix the left-hand side expressions of the invariant properties of interest
and use abstract interpretation to compute valid right-hand side constants so
that the resulting inequalities form an inductive invariant [60]. Template do-
mains generalize a host of popular, “weakly domains” such as intervals [24],
octagons [47,48], octahedra [20], pentagons [45], linear templates [60], and
quadratic templates [3]. These domains have been well studied and proven to
be effective for proving safety of runtime assertions in software [34,13,12,28,
46,67]. Template domains have given rise to specialized approaches such as
policy iteration [22,30] for improving post-fixed points, and strategy iteration
for computing the least fixed point [32,31].

Policy iteration starts from a known post-fixed point, and alternates be-
tween finding a “policy” that certifies the current solution versus finding the
best solution under the current “policy”. This approach was originally pro-
posed by Costan et al. for the interval domain [22] and generalized to arbitrary
templates subsequently [30]. Extensions have been proposed for quadratic tem-
plates [3]. On the other hand, strategy iteration approach works in a bottom
up fashion starting from the bottom of the lattice and exploiting the “mono-
tonicity” property in the dataflow equations for the template domain [31].
Specifically, the system of data flow equations are linearized around the cur-
rent solution, and a fixed point of the linearized system is obtained as the next
solution.

The paper is divided into two parts. In the first part, we exploit the con-
nection between policy iteration approach and classic bilinear optimization
problems to design approaches that can vary the template on-the-fly. This
is done by adapting policy iteration, which is a variant of the popular alter-
nating coordinate descent that has been used widely in the control systems
and optimization communities [33]. Using this connection, we notice that the
alternation between solutions and multipliers can be extended to update the
templates on the fly, as the iteration proceeds. Significantly, the update to the
templates can be made property-directed in a simple manner. By combining
these observations, we arrive at a policy iteration approach that can start from
initial, user-defined templates and update them on the fly. An implementation
of the approach and evaluation over a set of small benchmarks shows that
the approach of updating the policies on the fly is an effective solution to in-

Template Polyhedra and Bilinear Optimization. 3

ferring appropriate templates in a property directed manner. However policy
iteration is not guaranteed to converge to a globally optimal solution, which
would correspond to the least fixed point solution in the abstract domain. In
practice, the technique gets stuck in a local minimum, yielding a suboptimal
solution.

In the second part, starting in Section 7, we empirically compare policy
iteration approach against other related approaches to local and global opti-
mization problems [15,1,10,68,56,66]. A result by Helton and Merino on more
general biconvex programs suggests that the alternating minimization almost
never converges to a local minimum (technically a solution satisfying the KKT
conditions) [39]. Adjé et al. demonstrate an approach that computes an op-
timal solution for systems which are nonexpansive [4]. However, the general
applicability of this result is unclear.

Thus, given evidence that policy iteration (or alternating minimization)
may not be a good method, we explore alternatives, and run numerical exper-
iments in Section 9, even proposing our own new variant. Our results suggest
that, at least on our benchmark problems, alternating minimization is in fact
by far the best method, even compared with global optimization solvers. Fur-
thermore, our implementation uses floating point, not exact arithmetic, and
still achieves acceptable accuracy. Finally, although we do not focus on run-
time, we do note that alternating minimization, in floating point arithmetic,
is also one of the fastest solvers. The conclusion is that although alternating
minimization can have difficulties with saddle points, because it exploits the
specific structure of the problem, it may still be the best choice in many cases.

1.1 Related Work

Colón et al. were the first to discover the connection between linear invariant
synthesis problems and bilinear constraints through the use of Farkas lemma in
linear programming [21]. These constraints were solved using specialized quan-
tifier elimination techniques, but restricted to small problems [69]. Sankara-
narayanan et al. explored the use of heuristic approaches to solve bilinear
constraints [59]. These approaches were generalized by Cousot, as instances of
Lagrangian relaxations [23]. Additionally, Cousot’s work uses numerical opti-
mization tools to prove total correctness properties of programs. His approach
relies on formulating the constraints as Linear or Bilinear Matrix inequalities
(LMI/BMI). However, the use of numerical solvers requires rigorous symbolic
verification of the results. Recent experiences reveal surprising pitfalls, includ-
ing erroneous invariants obtained, even when the error tolerances are quite
low [55,62]. In fact, one of the advantages of policy iterations lies in the use of
exact arithmetic LP solvers to avoid floating point errors. Other approaches
to solving the resulting constraints have restricted the multiplier variables to
finite domains, enabling linear arithmetic solvers [38].

Template polyhedra and their generalization to support functions have
proven useful for constructing reachable sets of linear and nonlinear hybrid sys-

4 Jessica Gronski et al.

tems [58,37,29,17]. The problem of inferring template directions has also been
studied in this context. Many heuristics were proposed by Sankaranarayanan
et al. in their paper on linear templates, including the use of expressions found
in programs, “increasing”/ “decreasing” expressions, and preconditions of al-
ready added template expressions [60]. However, none of these are guaranteed
to be relevant to the property. Adjé et al. use the idea of Lyapunov-like func-
tions to effectively infer templates that are shown to be effective in proving
bounds on variables [2].

The idea of updating templates on the fly was previously proposed by Ben
Sassi et al. for analyzing the largest invariant region of a dynamical system [61].
The approach searches for a polytope whose facets are transverse to the flow,
failing which, the facet directions are adjusted and tested again. The approach
to adjusting facets is based on a local sensitivity analysis to obtain the invariant
region around an equilibrium (which facilitates basin of attraction analysis for
dynamical systems). Compared to the present work, the differences include
the treatment of multiple program locations and transitions, the use of policy
iteration, and a property-directed approach that seeks to prove a property
rather than find a largest invariant region.

Abraham et al. propose effective heuristics to guide the choice of directions
for constructing reachable sets of linear hybrid systems [18]. Recently, Bogo-
molov et al. propose a counter-example guided approach for inferring facets
of template polyhedra for hybrid systems reachability analysis [14]. The key
differences include: (a) we are interested in computing a single polyhedron
per location whereas flowpipe construction approaches use a disjunction of
polytopes, and (b) we seek to compute time-unbounded invariants, whereas
flowpipes are typically time bounded. Another interesting approach by Amato
et al. uses principal component analysis (PCA) over concrete states reached
by execution traces to design templates [5].

2 Motivating Example

Consider a simple system over two real-valued variables (x1, x2) ∈ R2, initial-
ized to (x1, x2) ∈ [−1, 1]× [−1, 1]. The system executes the following action

if (x1, x2) ∈ [−8, 8]2 then

[(
x1
x2

)
:= M

(
x1
x2

)]
else

[(
x1
x2

)
:=

(
x1
x2

)]

whereinM =

(
0.92 0.18
0.18 0.92

)
. Our goal is to prove that the set U : {(x1, x2) | x2−

x1 ≥ 2.1} is never reached by any execution of the system. In order to prove
the property using a template domain, the user specifies a template matrix [60,
30]:

T :

1 0
−1 0
0 1
0 −1

 ,

(∗ 1x1 + 0x2 ∗)
(∗ − 1x1 + 0x2 ∗)
(∗ 0x1 + 1x2 ∗)
(∗ 0x1 − 1x2 ∗)

Template Polyhedra and Bilinear Optimization. 5

(a) (b) (c)

Fig. 1 Invariants synthesized for the three steps of the policy iteration with property di-
rected template modification. The simulation traces are shown in red. Note: each figure is
drawn to a different scale.

wherein the rows represent the expressions x1,−x1, x2,−x2, respectively. The
template domain analysis seeks to find an invariant of the form Tx ≤ c by
discovering the unknown constants c that represent the RHS of the template.
For the example shown above, the best possible invariant is obtained as c :(

8.8 8.8 8.8 8.8
)T

, yielding the range [−8.8, 8.8] × [−8.8, 8.8] for (x1, x2). In
fact, given our instance on using the template T , this is the best invariant
possible (see Fig. 1(a) to verify this).

For this example, the policy iterative scheme presented in this paper is
successful in choosing a new template:

T̂ :

−1 1
1 −0.1957

0.1957 −1
−1 1

 ,

(∗ − x1 + x2 ∗)
(∗ x1 − 0.1957x2 ∗)
(∗ 0.1957x1 − x2 ∗)
(∗ − x1 + x2 ∗)

Along with this policy, we compute a tighter invariant shown in Fig. 1(c),
that establishes the invariant x2 − x1 ≤ 2, and thus proving U unreachable.
We note that (a) the choice of templates is directed by the property, and (b)
unlike the original policy iteration approach proposed by Gaubert et al. [30],
this approach does not guarantee that the iterates are strictly descending. In
fact, the iterates obtained are often incomparable.

3 Preliminaries

Let R denote the set of real numbers and R+ : R ∪ ±∞ denote the extended
reals with infinity. We first define the transition system model used throughout
this paper. Let X be a set of real-valued variables and Π[X] represent a
language of assertions over these variables, drawn from a suitable fragment of
the first order logic over the reals. For any assertion ϕ ∈ Π[X], we denote its
corresponding set of models by JϕK. For convenience, the set of variables X
are arranged as a column vector, written as x.

6 Jessica Gronski et al.

`1 `2

τ1 :

[
x1 ≥ 0→
x := A1x

]
τ2 : x1 ≤ 0

τ3 : x1 ≥ 0

τ4 :

[
x1 ≤ 0 →
x := A2x

]

A1 =

[
1 −1

0.5 0

]
A2 =

[
0.5 0
−0.5 0.5

]

Fig. 2 Example of a transition system with two variables x1, x2, two locations `1, `2 and
four transitions shown as arrows.

Definition 1 (Transition System) A (numerical) transition system is a
tuple 〈X,L, T , `0, Θ〉, wherein
1. X : {x1, . . . , xn} represents a set of real-valued program variables,
2. L : {`1, . . . , `m} represents a set of program locations,
3. T : {τ1, . . . , τk} represents a set of transitions, wherein each transition τi

is a tuple 〈`i,mi, ψi, gi〉, wherein,
(a) `i,mi ∈ L are the pre and the post locations, respectively.
(b) ψi ∈ Π[X], an assertion over X, represents the guard of the transition.
(c) gi : Rn → Rn, an update function, represents the (simultaneous) as-

signment: (x1, . . . , xn) := gi(x1, . . . , xn).
4. `0 is the initial location, and Θ ∈ Π[X] is an assertion over X representing

the initial valuations of the program variables.

A state of the transition system is a tuple 〈`,x〉 wherein ` ∈ L is the control
location and x ∈ Rn represents a set of valuations for the program variable.
Given a transition system, its executions are a finite/infinite sequence of states:

(`0,x0)
τ1−→ (`1,x1)

τ2−→ · · · τi−→ (`i,xi) · · · ,

such that: (a) `0 is the initial location and x0 ∈ JΘK; (b) `i−1, `i are the
pre/post locations (respectively) of the transition τi for all i ≥ 1; (c) xi−1 ∈
JψiK for all i ≥ 1 wherein ψi is the guard corresponding to the transition τi;
and (d) xi = gi(xi−1) for all i ≥ 1, wherein gi is the update function for τi.

Example 1 Figure 2 shows an example of a transition system withX : {x1, x2},
L : {`1, `2} and T : {τ1, τ2, τ3, τ4}. The guards and updates of the transitions
are as shown in Fig. 2. The identity update x := x is not shown, however.
The initial location is `1 and the initial condition on x is (x1, x2) ∈ [0.5, 1.5]×
[0.5, 1].

A state (`,x) is reachable if there is an execution that reaches the state.
For this paper, we study linear transition systems. A linear expression is

of the form e : aTx for vector a ∈ Rn. A linear inequality is of the form
aTx ≤ b and a linear assertion is a finite conjunction of linear inequalities
(aT1 x ≤ b1 ∧ · · · ∧ aTk x ≤ bk) conveniently written in matrix form as Ax ≤ b.

Definition 2 (Linear Transition Systems) A linear transition system (LTS)
is a transition system with the following restrictions:

Template Polyhedra and Bilinear Optimization. 7

1. The initial conditions and transition guards are all linear assertions over
X

2. The update function for each transition is an affine function: gi(x) : Uix +
vi.

Throughout this paper, we will tackle linear transition systems. An error
specification is written as 〈`, ψ〉 for a location ` and a linear assertion ψ.
The goal is to prove that no reachable state for location ` satisfies ψ. I.e, all
reachable states x at location ` satisfy x 6∈ JψK. To prove a given specification,
we use an inductive invariant.

Definition 3 (Inductive Invariant Map) An inductive invariant map η :
L → Π[X] maps each location ` ∈ L to an assertion η(`) such that the
following conditions hold:

– Initial Condition: At the initial location `0, the entailment Θ |= η(`0)
holds.

– Consecution Condition: For each transition τ : 〈`1, `2, ψi, gi〉, the following
consecution condition holds:

η(`1) ∧ ψi ∧ x′ = gi(x) |= η(`2)[x′] .

The condition states that starting from any state x ∈ Jη(`1)K, a single step
of the transition τ , if enabled, yields a state x′ ∈ Jη(`2)K.

Let η be an inductive assertion map and 〈`, ψ〉 be an error specification.

Theorem 1 If the conjunction η(`) ∧ ψ is unsatisfiable, then for every reach-
able state (`,x), it follows that x 6∈ JψK.

Proof The proof first establishes that for any reachable state 〈`,x〉 of the
system, we have that x ∈ Jη(`)K. In other words, the inductive invariants
characterize all reachable states. Therefore, if η(`) ∧ ψ is unsatisfiable, then
no state can be reachable and satisfy ψ.

The problem therefore consists of finding inductive assertion maps that
can prove a given error specification.

3.1 Abstract Interpretation

Abstract interpretation provides a framework for systematically computing
inductive assertions using a pre-specified lattice of assertions called an abstract
domain [26,25]. The key insight lies in characterizing inductive assertion maps
as post-fixed points of a monotone operator over sets of states.

In this section, we briefly sketch the basics of abstract interpretation, and
the Kleene iteration using widening to compute post-fixed points.

The concrete domain Σ is a lattice whose elements are first order assertions
over X, ordered by entailment |=. The logical disjunction ∨ is the join operator
and conjunction ∧ is the meet operator in this lattice. The bottom element is
false and the top element is true. We define the post condition operation over
sets of states and a transition τ .

8 Jessica Gronski et al.

Definition 4 (Post-Condition) Given a set ψ ∈ Σ, its post condition with
respect to a transition τ : 〈`1, `2, ϕ, g〉 is the set of all states reachable from
some state in JψK in one step by executing the transition τ :

post(ψ, τ) : (∃ y) ψ(y) ∧ ϕ(y) ∧ x = g(y) .

We consider assertion maps η : L → Σ and let N be the set of all such
maps. We lift the |= operator from assertions to maps: η1 |= η2 iff for all ` ∈ L,
η1(`) |= η2(`). Thus, N forms a lattice with the lifted |= as the inclusion. Next,
we define a monotone operator F : N → N as

F(η)(`) :

{
Θ ∨

∨
τ :〈m,`,ϕ,g〉 post(η(m), τ) ` = `0∨

τ :〈m,`,ϕ,g〉 post(η(m), τ) otherwise

An assertion map η is a post fixed point of F iff

F(η) |= η .

Theorem 2 An assertion map is inductive if and only if it is a post fixed
point of F .

Proof The proof is available in most textbooks on static analysis [49]. A proof
of this statement using the same notation as this section is available in the
PhD thesis of Sankaranarayanan [57] (Lemma 3.2).

To compute a post-fixed point, we start with the bottom element of N , an
assertion map η⊥ such that η⊥(`) = false for all ` ∈ L. We define the Kleene
iteration as the sequence obtained by iterating F over η⊥.

η(i) :

{
F(ηi−1) i ≥ 1

η⊥ i = 0
.

The process is stopped whenever η(i+1) |= η(i), in which case, we can show that
η(i+1) ≡ η(i) is the least fixed point. However, the iteration may go on forever
even for simple programs. To make matters worse, each step potentially yields
larger and more complex formulas, making the computation of post , ∨ and |=
prohibitively expensive.

To counter this, abstract interpretation defines an abstract domain which
is a lattice 〈A,v,t,u,⊥,>〉 with inclusion v, join operator t, meet operator
u, a bottom element ⊥ and top element > wherein each element a ∈ A is
linked to the concrete domain through the concretization function γ(a) ∈ Σ.
Likewise, each assertion ψ ∈ Σ is linked to A through the abstraction function
α(γ) ∈ A. Together, the pair α, γ form a Galois connection:

(∀a ∈ A, ϕ ∈ Σ) a v α(ϕ) iff γ(a) |= ϕ .

The abstract post condition operation is defined as p̂ost(a, τ) with a sound-
ness condition:

(∀a ∈ A) post(γ(a), τ) |= γ(p̂ost(a, τ)) .

Template Polyhedra and Bilinear Optimization. 9

Once again, we lift the domain A to a lattice over maps N : L → A. The
abstract operator G is now defined analogous to the concrete operator F .

G(η̂)(`) :

{
α(Θ) t

⊔
τ :〈m,`,ϕ,g〉 p̂ost(η̂(m), τ) ` = `0⊔

τ :〈m,`,ϕ,g〉 p̂ost(η̂(m), τ) otherwise

A map η̂ is an abstract fixed point iff G(η̂) v η̂. The following theorem
summarizes the core soundness property of abstract interpretation.

Theorem 3 η̂ is an abstract post fixed point iff γ ◦ η̂ is an inductive assertion
map.

The proof is available from most expositions of abstract interpretation [49,
26]. For a proof using the notation introduced in this section, we refer the
reader to Theorem 3.1 of Sankaranarayanan’s PhD thesis [57].

Once again, the abstract Kleene iteration can be applied to compute a post
fixed point in the abstract domain.

η̂(i) :

{
G(η̂i−1) i ≥ 1

η̂⊥ i = 0
.

If the lattice A has the ascending chain condition property, then the process
is guaranteed to converge, yielding an inductive assertion map. Otherwise, the
process can still continue for ever. In this case, we use a widening operator to
guarantee convergence. Formally, the widening operator ∇ : A × A → A has
the following properties:

1. a t b v a∇b for all a, b ∈ A.
2. For any non-decreasing sequence

a0 v a1 v · · ·

the corresponding widened sequence

b0 : a0, b1 : b0∇a1, · · · bi+1 : bi∇ai+1 · · ·

always converges in finitely many steps to yield bi+1 v bi.

In practice, widening causes an unacceptable loss in precision that is improved
using a narrowing iteration. A narrowing operator ∆ is used to terminate a
descending sequence of lattice elements:

b0 w b1 w b2 · · · .

It satisfies the key property that if a w b then a w (a∆b) w b, and furthermore,
the narrowed descending iteration

c0 : b0, c1 : (c0∆b1), c2 : (c1∆b2), · · · , cj+1 : (cj∆bj+1) · · · ,

terminates in finitely many steps.

10 Jessica Gronski et al.

3.2 Template Domains

The rest of this paper will focus on the abstract domain of template polyhe-
dra [60]. Let S : 〈L, X, T , `0, Θ〉 be a linear transition system. Let x represent
the system variables in X as a vector and n = |X|.

A template associates each location ` ∈ L with a m` × n matrix T`. We
drop the subscript ` from the template matrix if the location ` is clear from
the context. A m× n template T defines a lattice A(T):

A(T) : {c ∈ Rm+}, wherein, γ(c) : Tx ≤ c .

In other words, each element of the template abstract domain is a possible
valuation c to the RHS of inequalities Tx ≤ c. Note that the entries in c can
include ±∞. Naturally, we define the linear inequality e ≤ ∞ to be synony-
mous with true and e ≤ −∞ is synonymous with false.

Given an assertion ϕ over x, its abstraction c : α(ϕ) is computed as a
vector whose ith entry ci is the solution to the optimization problem:

ci : max Tix s.t. ϕ(x) .

Since the abstraction is often computed for linear assertions ϕ, this is a linear
programming (LP) problem.

For each template element, its canonical representative can(c) is defined as
the instantiation d, whose ith entry di is the solution to the following LP:

di : max Tix s.t. Tx ≤ c .

Note that the solution to an unbounded problem is taken to be +∞ and an
infeasible problem to be −∞. Note that the template polyhedron defined by
Tx ≤ c is identical to the polyhedron Tx ≤ can(c). A template element c is
canonical in A(T) if and only c = can(c).

The inclusion operator v in A(T) is defined as

c1 v c2 iff can(c1) ≤ can(c2) ,

wherein ≤ operation over vectors compares elements entrywise. The join oper-
ator c1 t c2 is simply the entrywise maximum max(c1, c2). Likewise, the meet
operator is the canonical entry wise minimum.

Let T` be the template associated with location ` and Tm with location m.
The abstract post with respect to a transition 〈`,m, ϕ : Ax ≤ b, g : Ux + v〉
is an operator p̂ost : A(T`) × T → A(Tm). Given c ∈ A(T`), the result
d : p̂ost(c, τ) is a vector wherein di is given as the solution to the following
LP:

di :

max Tm,ix
s.t. T`y ≤ c

Ay ≤ b
x = Uy + v

Widening and narrowing operators for the template domain are defined by

extensions of the standard interval widening operator [60].

Template Polyhedra and Bilinear Optimization. 11

The template domain is a convenient numerical abstract domain that uses
linear programming solvers as a primitive for implementing the domain opera-
tions. However, a common critique of the template approach is that it requires
users to specify the template T . In practice, users default to popular choices
such as intervals, octagons and pentagons which avoid repeated calls to LP
solvers by using special properties of the constraints in these templates. We
proceed by assuming that an initial template has been specified for each loca-
tion using one of the schemes outlined above. Our approach can change this
template as part of the solution scheme.

4 Bilinear Constraints and Policy Iteration

In this section, we consider the data flow equations for template abstract do-
main, connecting them to a class of nonconvex optimization problems called bi-
linear optimization problem (BOP). We present the policy iteration approach,
proposed by Gaubert et al. as a technique for solving such bilinear inequalities
that alternates between solving linear programs [30]. Once again we fix a linear
transition system S and assume for simplicity that each location ` is labeled
with the same m × n matrix T . The approach can be easily extended to the
case where the template matrices differ between locations.

We will make use of Farkas’ lemma, a standard result in linear program-
ming. Let ϕ : Ax ≤ b be a linear assertion with m × n matrix A and m × 1
vector b, ψ : cTx ≤ d be a given linear inequality.

Theorem 4 (Farkas Lemma) If ϕ is satisfiable, then ϕ |= ψ iff there exists
nonnegative multipliers λ ∈ Rm such that

ATλ = c ∧ bTλ ≤ d ∧ λ ≥ 0 . (1)

Furthermore, ϕ is unsatisfiable if and only if there exists multipliers λ ∈
Rm such that

ATλ = 0 ∧ bTλ ≤ −1 ∧ λ ≥ 0 .

The constraints can be seen as encoding the entailment ϕ |= 0Tx ≤ −1.

A proof can be found in most textbooks that deal with linear optimiza-
tion [19]. Given a system of constraints ϕ : Ax ≤ b, the form in Eq. (1) is
often referred to as the dual. Furthermore, the multipliers λ are often referred
to as as the dual variables or dual multipliers.

Note that Farkas lemma handles the entailment of a single linear inequality.
However, for a polyhedron Cx ≤ d, we may encode the entailment Ax ≤ b |=
Cx ≤ d as a series of single inequality entailments: Ax ≤ b |= Cjx ≤ dj for
each row j of C,d. The resulting constraints can be collectively written as:

ATΛ = C, ΛTb ≤ d, Λ ≥ 0 .

All equalities and inequalities between matrices are interpreted entrywise. Here
Λ is a matrix with as many rows as A and as many columns as the number

12 Jessica Gronski et al.

of rows in C. The jth column of Λ contains the multipliers corresponding to
the inequality Cjx ≤ dj . This notation will be used throughout the rest of the
paper.

Using Farkas’ lemma, we may now derive a system of constraints corre-
sponding to the data flow equations for the template domain. Let T be a
m× n template matrix. We associate each location ` with an unknown vector
c(`) ∈ A(T) such that the assertion map η(`) : Tx ≤ c(`) is inductive.

We wish to encode the constraints for initiation:

Θ |= Tx ≤ c(`0) , (2)

and for each transition τ : 〈`,m, ϕ, g〉, we wish to model consecution:

Tx ≤ c(`) ∧ ϕ ∧ x′ = g(x) |= Tx′ ≤ c(m) . (3)

Initiation: Let Θ : A0x ≤ b0 be the assertion for the initial condition. Using
Farkas’ lemma for the entailment in Eq. (2), we obtain the condition:

AT0 Λ0 = T ∧ ΛT0 b0 ≤ c(`0) ∧ Λ0 ≥ 0 . (4)

Here Λ0 is a k×m matrix wherein k is the number of rows in A0 and m is the
number of rows in T . We write Λ0 ≥ 0 to indicate that all entries in Λ0 are
non-negative.

Consecution: Let τ be a transition with guard Aτx ≤ bτ and update
g(x) : Uτx+vτ . The consecution condition in Eq. (3) can be rewritten through
substitution of x′ and arranged as follows:

Λτ → Tx ≤ c(`)
Γτ → Aτx ≤ bτ
|= TUτx ≤ c(m)− Tvτ

The notation above shows the constraints and the associated dual multipliers
with each block of constraints. Furthermore, we have substituted x′ = Uτx +
vτ . This is dualized using Farkas’ lemma to yield the following constraints:

TTΛτ +ATτ Γτ = TUτ
ΛTτ c(`) + ΓTτ bτ ≤ c(m)− Tvτ

Λτ , Γτ ≥ 0
(5)

Note that Eq. (4) for the initiation yields a system of linear constraints
involving c(`0) and unknown multipliers in Λ0. However, the consecution con-
straints in Eq. (5) for each transition τ involve the product ΛTτ c(`) both of
which are unknown. This makes the constraints for consecution fall into a spe-
cial class called bilinear constraints. I.e., for a fixed Λτ these constraints are
linear in the remaining variables c(`), Γτ . Similarly, for fixed values of c(`),
these constraints are linear in the variables Λτ , Γτ . Figure 3 summarizes the
constraints obtained at a glance. Note that the multipliers Λτ are called bi-
linear multipliers since they are multiplied with the unknowns c(`) to form

Template Polyhedra and Bilinear Optimization. 13

TemplateVars : c(`), ` ∈ L
BilinearMults : Λτ , τ ∈ T
LinearMults : Λ0, Γτ , τ ∈ T

Constraints : AT0 Λ0 = T`0 (* Initiation *)
ΛT0 b0 ≤ c(`0)
TTl Λτ +ATτ Γτ = TmUτ (* Consecution τ : 〈l,m, ϕ, g〉 *)
ΛTτ c(`) + ΓTτ bτ ≤ c(m)− Tmvτ
Λ0, Λτ , Γτ ≥ 0 (* Nonnegative multipliers *)

Fig. 3 Bilinear system of constraints at a glance. The constraints are generalized to allow
for possibly different templates T` at each location.

the nonlinear terms in the constraints. On the other hand, note that Λ0, Γτ
variables are not multiplied with other unknowns.

Connection with Min-Policies: The original “min-policy” approach of
Costan et al. [22] considers data flow equations of the form:

c ≥ min(aTi,1c, . . . ,a
T
i,kc) , i = 1, . . . ,M, k = 1, . . . , N . (6)

We will demonstrate that the equations shown in Figure 3 can be equivalently
expressed in this form. For simplicity, we consider the case for a single location
` with template T and unknown template RHS variables c. All transitions are
assumed to be self-loops around this location. From eq. (5), a given solution
c satisfies the consecution for transition τ iff there exist Λτ , Γτ such that

c ≥ ΛTτ c + ΓTτ bτ + Tvτ (7)

TTΛτ +ATτ Γτ = TUτ (8)

Λτ , Γτ ≥ 0 (9)

Let us define a polyhedron P (Λτ , Γτ) defined by collecting the constraints in
lines (8), (9) above. We may rewrite the constraints equivalently as:

c ≥ min
(Λτ ,Γτ)∈P

(
ΛTτ c + ΓTτ bτ + Tvτ

)
(10)

Note that P is a polyhedron. Let us assume that it is defined by N vertices:

(Λ1, Γ1) , . . . , (ΛN , ΓN) .

The min in eq. (10) can be equivalently written as a minimization over the
finite set of vertices of P :

c ≥
N

min
j=1

(
ΛTj c + ΓTj bτ + Tvτ

)
(11)

We note that this form arises from the specific structure of the data flow
equations for the template abstract domain. In particular, not all bilinear
constraints satisfy this property.

14 Jessica Gronski et al.

4.1 Policy Iteration

We now describe policy iteration as an alternation between solving for un-
known c(`) for each ` ∈ L and solving for the unknown bilinear multipliers
Λτ . Policy iteration starts from a known sound solution c0(`) and successively
improves the solution to obtain better solutions (smaller in the lattice) until
no further improvements can be obtained. The initial solution may be ob-
tained by using Kleene iteration with widening. For simplicity, we will assume
that c0(`) 6= ⊥, for each ` ∈ L. If this were the case, then the location ` is
unreachable, and can be removed from the system.

The overall scheme alternates between (I) solving for the unknown mul-
tipliers Λτ , Γτ , Λ0 given a fixed value of c, and (II) solving for the unknown
template RHS c(`) given Λτ , Γτ and Λ0. Since Γτ and Λ0 are not involved in
any bilinear term, we do not fix them to specific values when solving for c(`).

Solving for Multipliers: Given the values for the current solution c(i)(`) at
each location, we simply plug in these values and solve the system in Figure 3.

Lemma 1 The constraints shown in Fig. 3 become linear if we replace c(`)
at each location by fixed (constant) values.

Proof Proof is by inspection. We run through each inequality and note that
the constraints are linear in the variables c(i)(`) and the multipliers Λ0, Λτ ,
and Γτ .

The remaining constraints are linear over Λ0, Λτ and Γτ for each transition
τ , and can be thus solved using a LP solver. The following lemma guarantees
that the constraints will always yield a feasible solution provided the values
c(i) are a valid post-fixed point.

Lemma 2 If the solution c(i)(`) for each ` ∈ L is a post-fixed point, the
constraints in the Fig. 3 are feasible for the remaining multipliers, when c(`)
is replaced by c(i)(`).

Proof Let us assume that the solutions c(i)(`) yield a post-fixed point over
the template polyhedra domain. We now wish to show that the constraints in
Fig. 3 are feasible when we replace each c(`) by c(i)(`).

The proof is obtained by combining two facts: (a) because c(i)(`) form a
post-fixed point, the initiation condition (Eq. (2)) and consection conditions
for each transition τ ∈ T (Eq. (3)) for inductive invariance hold. (b) Because
these entailments hold, we can apply Farkas’ lemma to each of them and derive
the existence of multipliers for Eq. (4) and Eq. (5). However, the constraints
in Figure 3 are just a conjunction of these constraints. Therefore, we conclude
that there exist values of the multipliers that satisfy these constraints when
we substitute c(i)(`) for each c(`).

Let Λ
(i)
τ be the resulting values of the bilinear multipliers returned by the

LP solver when we replace c : c(i). These are also called policies [30].

Solving for Template RHS: Next, let us assume that the variables Λτ for

each transition are set to constants Λ
(i)
τ .

Template Polyhedra and Bilinear Optimization. 15

Lemma 3 If we set Λτ for each τ to constants Λ
(i)
τ for the constraints in

Figure 3, the resulting problem is linear over c(`) for each ` ∈ L and the
linear multipliers Γτ , Λ0.

Proof Proof is once again by inspection of each constraint in Figure 3.

Once we set Λτ to specific values, the resulting system is once again a linear
program. Let us call this problem Ci.

Lemma 4 The LP Ci is always feasible.

Proof To see this, we note that c(`) = c(i) is already a solution to this LP due

to how the values of Λ
(i)
τ were obtained in the first place. We call the resulting

values c(i+1)(`).

The overall policy iteration scheme alternates between solving for c(`) and
solving for Λτ variables. Gaubert et al. show that the number of policies needed
is finite (but large), and thus the process is guaranteed to yield a stable solution
such that c(i+1)(`) = c(i)(`).

5 Policies with Template Update

In this section, we extend policy iteration process to achieve two goals simul-
taneously: (a) be goal-directed towards a specific property and (b) allow the
template T at each location to be updated.

Let (`, ψ) be a error specification at location ` that we wish to prove un-
reachable. Our goal is to compute an inductive assertion map η such that at
location `, the conjunction η(`) ∧ ψ is unsatisfiable. Once again, we will first
assume for the sake of exposition that the same template matrix T is used at
each location.

Using Farkas’ lemma, the invariant Tx ≤ c(`) proves the unreachability of
the error specification ψ : Px ≤ q iff there exist multipliers λs,γs ≥ 0 s.t.

T ᵀλs + PTγs = 0, c(`)Tλs + qTγs ≤ −1︸ ︷︷ ︸
I

, λs,γs ≥ 0 . (12)

However, if the invariant fails to prove the property, we will be unable to
find suitable multipliers λs,γs ≥ 0. Since, our procedure will involve interme-
diate solutions that do not satisfy the property, we will consider the following
optimization-based formulation by moving the inequality labeled “I” in (12)
to the objective, as follows:

min c(`)Tλs + qTγs
s.t. TTλs + PTγs = 0

1Tλs = 1 (* normalization constraint *)
λs,γs ≥ 0

(13)

16 Jessica Gronski et al.

Note that we have added a normalization constraint requiring that the sum
of the multipliers λs equal 1. Without such a constraint, the problem always
has a trivial solution 0 by setting all the multipliers (λs,γs) to 0, which is
undesirable for the policy iteration scheme to be discussed subsequently.

Lemma 5 Suppose Ti = −Pj for row i of matrix T , row j of matrix P , and
c(`)i <∞ then the optimization problem in Eq. (13) is feasible.

Furthermore, its objective value is strictly negative iff Tx ≤ c(`) proves the
specification (`, ψ : Px ≤ q).

Proof Given that Ti = −Pj , we then choose λs(i) = 1 and the rest of entries
to zero. Likewise, γs(j) = 1 and the remaining entries of γs are set to 0. We
can now verify that this will satisfy the constraints, thus providing a feasible
solution.

Note that if we find a solution (λs,γs) such that the objective value is
ε < 0, then (λs

|ε| ,
γs
|ε|) satisfy the constraints in Eq. (12). The rest follows from

Farkas’ lemma.

Thus, we will use the optimization formulation as an objective function
that measures how “far away” the current solution at ` is from proving the
property of interest.

5.1 Updating Templates

Next, we allow the template T to change at each step to a new template
T (i+1) : T (i) + ∆, starting with the initial template T (0) = T , wherein ∆ is
the unknown change in the template. As a result, our analysis explores a series
of templates:

T (0), T (1), . . . , T (N) .

In doing so, we update the constraints to introduce an unknown change
∆. However, allowing arbitrary changes to the template will not work since
choosing ∆ = −T (i) immediately makes the template trivial, and not useful
for our purposes. Therefore, we specify upper and lower limits to the change
in the template. These limits can be set using different strategies that we will
explore in the experimental evaluation section. Let L be the lower limit and
U be the upper limit so that L ≤ T (i) + ∆ ≤ U . As a technical condition,
we require T (i) ∈ [L,U], i.e., the option to keep the current template T (i)

unchanged is allowed at each step.
Figure 4 shows the bilinear optimization problem

B ((c(`), ∆`), (Λτ ,λs)) ,

obtained when the change in the template variables is also considered. Here
note that ` ranges over all location, τ over all transitions and finally, λs per-
tains to the property to be checked which is assumed to be relevant to a single
location in the program. We note that the variables involved in the bilinear
terms are once again separated into two sets, represented in different colors
for convenience.

Template Polyhedra and Bilinear Optimization. 17

Vars : c(`), ` ∈ L (* Template RHS *)
∆`, ` ∈ L (* Template update *)
Λτ , τ ∈ T (* Bilinear mult.*)
λs (* Error Spec.*)
Λ0, Γτ , τ ∈ T (* Linear Mults. *)
γs (* Error Spec.*)

min : c(`)Tλs + qT γs

s.t. AT0 Λ0 = T
(i)
`0

+∆`0 (* Initiation *)

ΛT0 b0 ≤ c(`0)

(T
(i)
` +∆`)

TΛτ +ATτ Γτ = (T
(i)
m +∆m)Uτ (* Consecution τ : 〈`,m, ϕ, g〉 *)

Λτ T c(`) + ΓTτ bτ ≤ c(m)− (T
(i)
m +∆m)vτ

(T
(i)
` +∆`)

Tλs + PT γs = 0 (* Error spec. `, ψ : Px ≤ q *)
1Tλs = 1
Λ0, Λτ ,λs, Γτ , γs ≥ 0 (* Nonnegative multipliers *)

L` ≤ T
(i)
` ∆` ≤ U` (* Limits on template change *)

Fig. 4 Bilinear system of constraints with objective function and template update variables

∆l. The current template after the ith iteration at location m ∈ L is denoted T
(i)
m .

5.2 Template Updates and Policy Iteration

We now update the policy iteration process to consider the change in tem-

plates, as shown in Fig. 4. Let c(0) be an initial value such that T
(0)
` x ≤ c(0)(`)

is inductive. The initial template T
(0)
` is specified by the user, and furthermore,

the initial inductive invariant is assumed to be computed by abstract inter-

pretation. The initial update ∆
(0)
` = 0 for each location `.

Note: For convenience, we will assume that (c(0(`))i 6= ±∞. Indeed, if any

entry of c
(i)
` is −∞, then the location ` is deemed unreachable and removed

from the transition system. Also, if any entry of c
(i)
` is +∞, we will simply

remove the corresponding template row from our analysis.

Multiplier Update: At each iteration i, the multiplier update uses c(i), ∆(i)

to obtain values of Λ
(i)
τ ,λ

(i)
s . Formally, we consider the problem

Mi : B
(

(c(i)(`), ∆
(i)
`), (Λτ ,λs)

)
Lemma 6 The following are true:

1. Mi is a linear program over unknown multipliers Λτ ,λs, Γτ ,γs, Λ0.

2. It is feasible iff the map η(i) formed by the assertions (T
(i)
` +∆

(i)
`)x ≤ c(i)(`)

for ` ∈ L, is an inductive assertion map.
3. The value of the objective function cannot increase, i.e., for i > 1,

c(i)(`)Tλ(i)
s + qTγ(i)

s ≤ c(i)(`)Tλ(i−1)
s + qTγ(i−1)

s .

4. The value of the objective is negative iff η(i) proves the specification (`, ψ).

18 Jessica Gronski et al.

Proof (1) First, to see thatMi is a linear program, we inspect the constraints
in Figure 4. Each constraint is linear in the unknowns (Λτ ,λs).
(2) The proof is identical to that of Lemma 2. Suppose, the map η : ` →
(T

(i)
` + ∆

(i)
`)x ≤ c(i)(`) foreach ` ∈ L, forms an inductive assertion map. We

note that η satisfies the conditions for initiation (4) and consecution (5) with

the template T
(i)
` replaced by T

(i+1)
` : T

(i)
` +∆

(i)
` . Dualizing the initiations and

consecution conditions using Farkas lemma yields the constraints in Fig. 4. As

a result, we note that when we substitute values ∆
(i)
` for each ∆` and c(i)(`) for

each c(`), the multipliers have a feasible solution provided by Farkas’ lemma.

(3) We note that λ
(i−1)
s ,γ

(i−1)
s form (part of a) feasible solution for Mi and

furthermore, λ
(i)
s and γ

(i)
s form part of the optimal solution for the same.

Since, we are minimizing the objective, the optimal objective must be less
than or equal to any feasible solution.
(4) The value of the objective is negative iff η(i) proves the specification (`, ψ).

The result of multiplier update yields values for the variables (Λτ ,λs) :

(Λ
(i)
τ ,λ

(i)
s).

Template Update: Given the current values (Λ
(i)
τ ,λ

(i)
s) for the multipliers,

we derive new values c(i+1)(`), ∆
(i+1)
` for the template variables by solving the

problem

Ci+1 : B
(

(c(`), ∆`), (Λ
(i)
τ ,λ(i)

s)
)
.

Lemma 7 The following facts hold:
1. Ci+1 is a linear program over the unknown template variables c(`), ∆` and

unknown linear multipliers Γτ ,γs, Λ0.
2. It is always feasible provided T (i) ∈ [L`, U`] at each location at each itera-

tion.
3. The assertion map η(i+1) formed by the solution

(T
(i)
` +∆

(i+1)
`)x ≤ c(i+1)(`) for ` ∈ L ,

is inductive.
4. The value of the objective function cannot increase, i.e., for i ≥ 0,

c(i+1)(`)Tλ(i)
s + qTγ(i+1)

s ≤ c(i)(`)Tλ(i)
s + qTγ(i)

s .

5. The value of the objective function c(i+1)(`)Tλ
(i)
s + qTγ

(i+1)
s is negative iff

the η(i+1) proves the property.

Proof Proof is entirely analogous to Lemma 6.
(1) We note that Ci is a linear program since each constraint in Figure 4 is
linear in the unknowns (c(`), ∆`).
(2) We note that setting ∆` = 0, c(`) = c(i)(`) yields a feasible solution for
Ci.
(3) We note that the assertion map η(i+1) formed by the solution

(T
(i)
` +∆

(i+1)
`)x ≤ c(i+1)(`) for ` ∈ L ,

Template Polyhedra and Bilinear Optimization. 19

satisfies the dual of the initiation and consecution constraints due to the ex-
istence of the multipliers, and thus by Farkas lemma satisfies the conditions
themselves.
(4) We note that c(i)(`), ∆` = 0 is already feasible for Ci. Therefore, the
objective value achieved by the optimal solution must be less than or equal to
that achieved by any feasible solution.
(5) This follows directly from Lemma 5.

The overall scheme alternates between updating the multipliers and the
template variables, until no more changes can occur. We also observe that
starting from a valid inductive invariant, the solutions obtained during the
policy iteration continue to remain inductive or post-fixed points. However,

they are post-fixed points over the lattice A(T
(i)
` + ∆

(i)
` , ` ∈ L), which is

different from the original lattice. As observed already in the motivating ex-
ample (section 2), these invariants can be mutually incomparable. However, we
show that at each step, the value of the objective function measuring progress
towards proving the specification cannot increase.

5.3 Discussion

We now focus on issues such as convergence and the complexity of each step.

Convergence: In general, the known results about the convergence of alter-
nating minimization schemes for bilinear optimization problems indicate that
the process seldom converges to a global optimal value [39]. Often, these it-
erations get “stuck” in a local saddle point, from which no further progress is
possible. Nevertheless, our goal here is not to converge to a global optimum but
to a good enough solution whose objective function value is strictly negative,
thus proving the property of interest.

Example 2 The following example taken from Adjé et al [4] demonstrates the
fundamental difficulties of using policy iteration to calculate a “good” invari-
ant.

var x initially 0 <= x <= 1
while (x <= 100)

x := (1 - x)
end

The program can be written in the formalism of this paper as a single
location ` representing the head of the while loop and a single transition τ
with guard x ≤ 100 and update x′ = 1− x.

Since the program has a single variable, the “best” template possible using
linear expressions is equivalent to the interval domain.

Policy iteration does not converge to the best solution 0 ≤ x∧x ≤ 1, unless
it is directly initialized to this invariant. For example, starting from the initial
solution 0 ≤ x ≤ 100, it converges instead to −99 ≤ x ≤ 100. �.

20 Jessica Gronski et al.

By allowing template updates to the process, the problem is worsened in
a sense. It is no longer clear that the process will necessarily converge (even
if it converges to a saddle point) in finitely many steps. It is entirely possible
that the value of the objective function remains unchanged but the process

produces a new template T
(i)
` +∆

(i)
` at each step. Depending on how the limits

to the template change L`, U` are specified, this process may produce a fresh
new template at each step.

Nevertheless, we note that the lack of convergence does not pose a serious
hurdle to an application of template update to policy iteration. It is possible
to iterate while each step provides at least ε > 0 decrease in the value of the
objective function, and stop otherwise.

Complexity: At each step, we solve a linear programming problem. For a
transition system with n variables, |L| locations, |T | transitions, k template
rows at each step, the size of each LP in terms of number of variables +
constraints is O

(
|L|kn+ |T |k2

)
. Although this is polynomial, the process can

be prohibitively expensive for large programs. In our future work, we wish
to exploit the block structure of these constraints in order to allow us to
solve the LPs using standard approaches such as Benders or Danzig-Wolfe
decomposition techniques [19]

Collecting Invariants: Finally, we note that each step yields an invariant
map η(i) that is not necessarily comparable to the invariant obtained in the
next step η(i+1). However, we note that the finite conjunction

η(0) ∧ · · · ∧ η(N) ,

over all the iterations of this process can be a stronger invariant than each of
them. This is already demonstrated by the motivating example in Section 2.

6 Evaluating Policies with Template Updates

We present a preliminary experimental evaluation of the ideas presented thus
far using a prototype implementation.

Prototype Implementation: A prototype implementation was developed
in Python, using the exact arithmetic LP solver QSOptEx. The QSOptEx
solver provides a fast and convenient interface to an optimized Simplex im-
plementation in exact arithmetic. Our implementation allows the specification
of a transition system and supports a few additional features on top of those
presented in the paper including location invariants. We also support the op-
tion to specify different templates at various program locations. During the
template update, our approach considers independent updates to the template
at each location.

Specifying Template Changes: We consider a simple approach to spec-
ifying the limits L`, U` to the change in template at each location `. First,
the option for ∆` = 0 must be allowed, secondly, ∆` = −T must be disal-
lowed. For each T`(i, j) = 0, we specify corresponding limits L`(i, j) = −z and

Template Polyhedra and Bilinear Optimization. 21

Table 1 Description of the benchmarks used and the sizes in terms of (# variables, #
locations, # transitions)

ID Size Remark
1 (4,2,2) Switched linear system with 4 state variables.
2 (2,2,4) Example in Fig. 2.
3 (2,1,1) Linear System with 1 location and transition.
4 (2,1,1) Motivating example from Section 2.
5 (3,1,4) Adjé et al. [2].
6 (2,35,169) Grid-based piecewise linearization of Van Der Pol oscillator.
7 (4,5,54) A piecewise linear dynamical system.
8 (5,1,12) Piecewise linear dynamical system.
9 (8,1,7) A platoon of two cars with controller maintaining distance.

Fig. 5 Sequence of iterates for benchmark id 2 culminating in the final invariants shown
shaded in blue and green. The property x2 ≥ 0.8 is shown unreachable at the green location
by the final iterate.

U`(i, j) = z for a fixed constant z > 0 (taken as 1000 in our experiments).
For T`(i, j) 6= 0, we allow ∆ to range between 1

2T`(i, j) and 2T`(i, j) in our
experiments.

Benchmark Examples: We consider a set of 9 benchmark examples that
are illustrative of applications that we encounter in the verification of discrete-
time affine hybrid systems. Table 1 briefly describes each benchmark example.

Experimental Comparison: Table 2 shows the comparison between ab-
stract interpretation using Kleene iteration and policy iteration with template
update. Likewise, the performance for policy iteration without template up-
date is shown in Table 3. Finally, Table 4 shows a comparison with the poly-
hedral abstract domain using the Parma Polyhedron Library (PPL) [9,8].

The table reports the objective value of the initial solution obtained after
the Kleene iteration (using widening/narrowing) terminates. A non-negative
value of the objective function indicates the failure to prove the property.
Overall, we see that policy iteration with template update is effective in these
benchmarks in proving properties in 5 out of the 9 cases, whereas without
template update we prove the property in just 2 out of 9. The polyhedral
domain proves 3 out of the 9.

22 Jessica Gronski et al.

Table 2 Experimental results for policy iteration with template update. All experiments
were run on a Macbook Air laptop with 1.8 GHz Intel processor, 8GB RAM running
OSX10.12. All timings are in seconds. Legend: Succ.: whether the property was success-
fully proved, if not, the objective value is reported, |BOP|: size of the bilinear problem (#
bilinear template variables, # bilinear mult. variables, # linear mult. variables), # I: #
policy iterations - A (*) next to this number indicates that the iteration was stopped due
to 5 consecutive steps with same objective value. TO indicates time out of 1 hour.

id Init. Templ. Kleene Policy Iteration
Type, |T | Time Succ. |BOP| Time # I Succ.

1 Interval, 8 0.12 N(0.2) (240, 1176, 1249) 0.55 5(*) N (0.2)
3 Octagon, 8 0.04 N(0.5) (24, 72, 161) 0.05 2 Y
4 Interval, 4 0.02 N(15.5) (12, 20, 33) 0.02 2 Y
5 Pentagon, 10 1.5 N(2.83) (40, 410, 681) 0.3 2 Y
6 Interval, 4 2.5 N(0.75) (168, 836, 2033) 2.9 5(*) N(0.75)
7 Pentagon, 22 3.1 N(0.2) (500, 10020, 8332) 2.4 3 Y
8 Pentagon, 22 2.6 N(43) (126, 5313, 6311) TO - N
9 Interval, 16 2.2 N(9500) (286,4758,9501) 2.4 2 Y

Table 3 Experimental results for policy iteration without template update. See Table 2
for the legend.

id Init. Templ. Kleene Policy Iteration
Type, |T | Time Succ. |BOP| Time # I Succ.

1 Interval, 8 0.12 N (0.2) (52,1176, 1249) 0.19 2 N(0.2)
2 Octagon, 8 0.15 N (0.2) (16, 264, 353) 0.1 2 N(0.2)
3 Octagon, 8 0.04 N(0.5) (8, 72, 161) 0.02 1 N(0.5)
4 Interval, 4 0.02 N(15.5) (4,20,33) 0.01 1 N(15.5)
5 Pentagon, 10 1.5 N(2.83) (10, 410, 681) 0.3 2 Y
6 Interval, 4 2.5 N(0.75) (140, 836, 2033) 1.5 5(*) N(0.75)
7 Pentagon, 22 3.1 N(0.2) (110, 10020, 8322) 15.3 5(*) N(0.2)
8 Pentagon, 22 2.6 N(43) (22, 5313, 6311) 16.9 5(*) N(38.8)
9 Interval, 16 2.2 N(9500) (16, 4758, 9501) 2.3 2 Y

Figure 5 shows the sequence of iterates at the two locations for the transi-
tion system shown in Fig. 2 corresponding to benchmark number 2. The goal
is to establish the unreachability of x2 ≥ 0.8 at location `2. The final invariant
for `2 is shown in green, proving the specification.

Thus, we provide preliminary evidence that the bilinear approach is ef-
fective in cases where Kleene or policy iteration fail. At the same time, we
notice that the size of the bilinear problem, though polynomial in the original
transition system and template size, is often large with thousands of variables.
However, the problems are sparse with each constraint involving just a tiny
fraction of these variables. This points out the need for simplification tech-
niques and approaches to solving bilinear problems that exploit this sparsity
to make the approach more efficient.

Template Polyhedra and Bilinear Optimization. 23

Table 4 Experimental results using the polyhedral abstract domain and comparison of
outcome against policy iter with template change in column TC (recalled from Tab. 2).

id Time(s) Succ. TC
1 0.6 N N
2 0.03 Y Y
3 0.02 Y Y
4 0.02 Y Y
5 0.3 N Y
6 1.7 N N
7 2.7 N Y
8 TO > 1h N N
9 TO > 1h N Y

7 Bilinear Programming Problems

Thus far, we have studied the problem of abstract interpretation of programs
using the template domain. As noted earlier, the data flow constraints char-
acterizing the fixed points of the problem correspond to a class of non-convex
optimization problems known as bilinear programs (BLP). In this section, we
study the basic structure of the bilinear programs, abstracting from the struc-
ture of the optimization problem presented in Figure 4.

Our problem of interest is the following generic Bilinear Program (BLP):

min
x,y

xTC0y + aT0 x + bT0 y + cT0 z

subject to xTCiy + aTi x+ bTi y + cTi z ≤ ri i ∈ I
xTCjy + aTj x + bTj y + cTj z = rj j ∈ E
lx ≤ x ≤ ux, ly ≤ y ≤ uy, lz ≤ z ≤ uy

(14)

where x ∈ Rn, y ∈ Rm, z ∈ Rk and lx,ux, ly,uy, lz,uz represent lower and
upper bounds on x,y and z, respectively. I and E are the inequality and
equality index sets for the constraints, respectively.

The bilinear program in (14) is separable. By fixing the variables x to
definite values, we obtain a linear program over the remaining variables (y, z),
and likewise, fixing the variables y, we obtain a LP over (x, z).

Lemma 8 The dataflow constraints obtained in Figure 4 form a bilinear pro-
gram (BLP) with the variables x denoting the template variables ∆` and c(`)
for ` ∈ L and the y denoting the “bilinear multiplier variables” Λτ and z
representing the “linear multiplier variables” λs, Λ0, Γτ .

It is easy to see that the feasible region for a BLP is nonconvex in general.
Also, finding if a BLP is feasible is NP-hard.

Theorem 5 Checking if there exists (x,y, z) ∈ Rn+m+k that satisfy the con-
straints of a BLP (14) is NP-hard.

24 Jessica Gronski et al.

Proof We reduce from 3-CNF SAT problem that consists of n Boolean vari-
ables p1, . . . , pn and m clauses, each clause Ci consisting of a subset of literals
Ci ⊆ {p1, . . . , pn, p1, . . . , pn}.

We introduce variables xi, yi corresponding to each proposition pi, with
the goal that xi = 1, yi = 0 will denote assigning pi to true and xi = 0, yi = 1
will denote assigning pi to false. To ensure that these are the only possible
values, we write the constraints

xiyi ≤ 0,
xi + yi = 1,

xi ∈ [0, 1]
yi ∈ [0, 1]

(15)

Note that the constraint xiyi ≤ 0 is a bilinear inequality. The remaining are
linear inequalities. Also, note that the only feasible solutions are (xi, yi) ∈
{(0, 1), (1, 0)}.

Next, for each clause Cj involving some literals, we add the constraint∑
pi∈Cj

xi +
∑
pi∈Cj

yi ≥ 1 . (16)

Now consider the system of constraints obtained by collecting (15) for
i ∈ {1, . . . , n} and (16) for j ∈ {1, . . . ,m}. We can verify that the system
forms the constraints for a BLP with x : (x1, . . . , xn)T , y : (y1, . . . , yn)T and
z as the empty vector.

Next, we note that for any satisfying assignment to the original problem,
the corresponding assignment to (xi, yi) as described above will satisfy the
constraints for the BLP. Similarly, we have proven that if the BLP is satisfiable,
then for each (xi, yi), we can set the corresponding proposition pi = true if
xi = 1 and false otherwise. Due to constraint (16), each clause has at least
one literal that will be true.

This completes the reduction and the proof of NP-hardness.

7.1 Policy Iteration: Alternating Minimization

We have already observed that if we could fix x to concrete values in the
BLP (14), we obtain an LP in terms of the remaining variables (y, z) and like-
wise for y. A simple strategy is to perform alternating minimization wherein,
we find an initial feasible solution (x0,y0, z0) and improve the current solution
(xi,yi, zi) at each iteration by carrying out two steps: (a) Fixing x : xi, solve
the resulting LP to obtain (yi+1, z); and (b) fixing y : yi+1, solve the result-
ing LP to obtain (xi+1, zi+1). Combining the two steps, we obtain the next
solution (xi+1,yi+1). We continue this process until no more improvements
are possible. There are two basic questions posed by this algorithm: (a) does
it terminate? and (b) if it terminates, then how does the result compare with
the optimal solution to the problem?

First, it is easy to formulate an example that illustrates non-termination.

Template Polyhedra and Bilinear Optimization. 25

0 1 2 3 4
0

1

2

3

4

xy ≤ 2

xy ≥ 1

x

y

0 1 2 3 4
0

1

2

3

4

xy ≤ 2

xy − x
3
≥ 1

x

y

Fig. 6 Examples showing nontermination of alternating minimization.

Example 3 (Nontermination of Alternating Minimization) Consider the prob-
lem below illustrated in Figure 6 (left).

max x− y
xy ≥ 1
xy ≤ 2
x, y ≥ 0

(17)

Starting with the initial solution (x0 = 1, y0 = 1), we note that the sequence
of iterates obtained using alternating minimization are

(x1 = 2, y1 =
1

2
), (x2 = 4, y2 =

1

4
), · · · , (xj = 2j , yj = 2−j) · · ·

The process continues forever without termination with each LP producing a
bounded result although the original BLP is unbounded.

In fact, alternating minimization may fail to terminate even if the feasible
region of the BLP is bounded.

Example 4 (Nontermination of Alternating Minimization: Bounded Case) Con-
sider the problem below illustrated in Figure 6 (right).

max x− y
xy ≤ 2
x(y − 1

3) ≥ 1
x, y ≥ 0

(18)

The reader may verify that starting with (x0 = 1, y0 = 1), the approach
iterates to obtain (xi+1 = 6xi

3+xi
, yi+1 = 3+xi

3xi
). As i → ∞, the process con-

verges to x∗ = 3, y∗ = 2
3 , which can be verified as the optimal solution to the

problem by graphing the constraints.

26 Jessica Gronski et al.

−6 −4 −2 0 2 4 6

−5

0

5

x

y

Fig. 7 BLP with saddle point at (−1, 1). The red path shows how an interior point solver
can solve the problem whereas the simplex approach shown in blue can be stuck in a saddle
point.

Finally, we illustrate so-called saddle points, wherein the process converges
(xi+1, yi+1) = (xi, yi), but the solution is not a KKT point (a local optimum)
of the original BLP.

Example 5 (Saddle Points) Consider the problem instance shown below illus-
trated in Figure 7.

min
x,y

x

subject to xy ≤ 1

xy ≥ −1

− 5 ≤ x ≤ 5

− 5 ≤ y ≤ 5

(19)

The point (−1, 1) is a saddle point of the problem. Fixing x = −1 yields
the optimization problem

min 0 s.t. − 1 ≤ y ≤ 1 , (20)

which can yield either y = −1 or y = 1 if a Simplex-based LP solver is
used. Assuming that the solver results in y = 1, we obtain no further change
in the values (x, y). If y = −1 were chosen by the solver, instead, the very
next step yields the desired saddle point. The point (−1, 1) is not a local
optimum for the problem. For instance the descent direction (∆x,∆y) : (−1, 1)
can maintain feasibility while providing a step that decreases the objective
value. Unfortunately, alternating minimization is unable to find the descent
direction since it is restricted to finding directions with ∆x = 0 or ∆y = 0.
Unfortunately, such directions do not exist at the saddle point.

We also note that if a simplex solver were not used, it is theoretically
possible that an “interior point” solver can choose y = 0 as the solution to

Template Polyhedra and Bilinear Optimization. 27

the LP (20). Subsequently, we can solve for x and obtain a globally optimal
solution.

In the context of saddle point, the key problem is that of moving the iter-
ation past the saddle point to continue improving the solution? This problem
has remained mostly open thus far. We summarize some of the difficulties en-
countered. First, we note that alternating minimization is a form of coordinate
descent wherein the solution improvement direction for the problem in (14),
wherein starting from a current solution (x,y, z) that is feasible, we seek a
new solution (x +∆x,y +∆y, z +∆z), such that (a) (x +∆x,y +∆y, z +∆z)
is feasible and

f(x +∆x,y +∆y, z +∆z) < f(x,y, z) ,

wherein f(x,y, z) : xTC0y + aT0 x + bT0 y + cT0 z is the objective function
shown for the problem (14). However, it is immediate that the search for
such feasible directions (∆x, ∆y, ∆z) requires solving a bilinear problem with
a similar structure as the original problem (14) in the first place. Thus, linearity
is forced through coordinate descent wherein either ∆x = 0 or ∆y = 0. Thus,
the problem of “escaping” from local saddle points is an open problem that
limits alternating minimization approaches.

7.2 Bilinear Problems and QCQPs

There exists a natural encoding of BLPs to Quadratically-Constrained Quadratic
Programs (QCQPs) of a higher dimensional space. That is, any BLP can be
reformulated as the QCQP and numerous approaches to solving QCQPs can
be applied to BLPs, as well. Specifically, we can encode (14) as the QCQP

min
x̃

x̃T C̃0x̃ + ãT0 x̃

subject to x̃T C̃ix̃ + ãTi x̃ ≤ ri i ∈ I

x̃T C̃ix̃ + ãTi x̃ = ri i ∈ E
l̃ ≤ x̃ ≤ ũ

(21)

where x̃ =

x
y
z

 ∈ Rm+n, C̃0 =
1

2

0 C0 0
CT0 0 0
0 0 0

, ã0 =

a0

b0

c0

, l̃ =

lx
ly
lz

,

ũ =

ux
uy
uz

, and ∀i ∈ I ∪E , C̃i =
1

2

0 Ci 0
CTi 0 0
0 0 0

, ãi =

ai
bi
ci

. Note that in the

QCQP, the matrices C̃0 and C̃i are symmetric, whereas the matrices C0 and
Ci in the BLP may not even be square.

Conversely, for any QCQP there exists an encoding into a BLP. We can see
this by replacing all terms of the form x̃T C̃ix̃ with x̃T C̃iỹ and embedding the
constraint x̃ = ỹ into the problem. However, the resulting BLP has equality

28 Jessica Gronski et al.

constraints x̃ = ỹ. Although it seemingly maintains the “separability” prop-
erty, it is immediately clear that solving it via policy iteration (also referred
to as “alternating minimization” in this section) is useless; that is, if we fix x̃
and solve for ỹ, the constraint x̃ = ỹ means the method stagnates.

Rewriting the BLP as a QCQP in order to solve it numerically is not
always a good idea, since the new QCQP is much larger, but it motivates us
to consider some particular QCQP methods and their application to BLPs.
Notice that there is no other requirement on C̃i other than symmetry.

If we further assume that each C̃i is positive semidefinite for i ∈ {0} ∪ I,

and C̃i = 0 for i ∈ E , then the problem is convex. This is generally not the case
for problems arising from program analysis, and therefore, we do not assume
our QCQPs are convex.

Because neither the general QCQPs nor BLPs are convex, most nonlinear
solvers can only produce a stationary point, which may be either a local min-
imizer (and possibly a global minimizer) or a saddle point. While ideally one
wants a global rather than local minimizer, a secondary goal is to find a local
minimizer rather than a saddle point. We focus on this second problem, and
note that it has been the subject of much recent attention in machine learning,
where it is sometimes argued that all local minimizers are “good enough” and
thus one only needs to avoid saddle points [27].

Various relaxations for solving nonconvex QPs have been proposed includ-
ing lift-and-project cutting plane algorithms, reformulation-linearization tech-
niques (RLT), semi-definite programming (SDP) relaxations, matrix-cut algo-
rithms, and semi-infinite linear programs [7,44,53,70,64,52].

Convex Relaxation Techniques: Relaxations for QCQPs based on SDPs
or RLTs lift the original problem into a higher dimension by implementing
a nonlinear change of variables that puts all the nonconvexity into a single
constraint, and then drops the nonconvex constraint in order to relax the
original problem to a convex program. Both the SDP and RLT relaxations are
invariant to an invertible affine transformation of the original variables. One of
the commonly used change of variables is x → xxT = X, lifting the problem
from x ∈ Rn to X ∈ Sn+, and replacing quadratic terms with matrix inner
products using the trace operator: xTCx = Tr(xTCx) = Tr(CxxT) = C ·X.

min
x̃,X

C̃0 ·X + ãT0 x̃

subject to C̃i ·X + ãTi x̃ ≤ ri i ∈ I
Ci ·X + ãTi x̃ = ri i ∈ E
X = x̃x̃T

l̃ ≤ x̃ ≤ ũ

(22)

Along with the constraints X = x̃x̃T , this reformulation does not change
the problem, and is still nonconvex, though all terms except the X = x̃x̃T

constraint are linear. To get a relaxation, the equality constraint X = x̃x̃T is
relaxed to X � x̃x̃T where � is the Loewner ordering where Y � 0 means

Template Polyhedra and Bilinear Optimization. 29

Y is a symmetric positive semi-definite matrix. This new inequality defines a
convex set, and the relaxation is a convex program and in particular a SDP.

The reformulation-linearization technique follows the same procedure of
employing auxiliary variables in place of the product terms, x̃ix̃j = Xij , but
rather than imposing a positive semidefinite constraint, RLTs add the prod-
uct of bound-factors (ũi − x̃i)(x̃j − l̃j) ≥ 0 for any or all pairs of variables

x̃i, i ∈ {1, . . . , n}, where ũi and l̃j denote the finite upper and lower bounds
on variables x̃i and x̃j , respectively. Furthermore, RLT constraints can include
the products of equality constraints with monomials Πjx̃j and inequality con-
straints with themselves as well as the bound-factors mentioned above. While
these extra constraints may be redundant, after a round of reformulation and
linearization they lead to a tighter convex relaxation.

Previous work on combining RLTs and SDP relaxations to remove a sub-
stantial portion of the feasible region was explored in [6] with provable results.
Sherali et al. [64] investigated the effects of enhancing the RLT formulations
with semi-definite cuts on QPs without quadratic constraints. They verify em-
pirically that combining certain aspects from each formulation leads to better
results. Other convex relaxations for specific problem structures, including
Second-Order Conic Programs, have been proposed to speed up computation
while preserving accuracy [41,63].

In addition to SDP and RLT relaxations, McCormick Envelopes provide
a convex relaxation for bilinear programs commonly used to solve Mixed In-
teger NonLinear Programs (MINLPs). They are designed to guarantee con-
vexity while keeping the bounds on the original problem sufficiently tight.
The method behind McCormick Envelopes is to replace distinct products of
variables, i.e. bilinear terms, with auxiliary variables and append bound con-
straints which form convex over- and under-estimators of the bilinear terms.
The essence of the method is similar to that of the reformulation-linearization
technique; however, the goal of McCormick Envelopes is to replace all bilin-
ear terms with appropriately bounded auxiliary variables whereas the goal of
RLTs is to append additional, potentially redundant, constraints in order to
minimize the set of candidate solutions to the relaxed problem.

In the context of proving program properties, relaxation-based approaches
are less useful since they focus on proving lower bounds for the optimal value
of a minimization problem. Therefore, in the setting of this paper, it is possible
to use relaxation methods to establish that no linear invariant involving a fixed
number of conjunctions can prove a property. However, unless the relaxation
is exact, these methods do not directly find invariants to establish a property
since the solution obtained by the relaxation may not be feasible.

7.3 Augmented Lagrangian Approaches

Augmented Lagrangian methods are a promising approach to solving con-
strained optimization problems through a series of related unconstrained prob-
lems [50]. The constraints are incorporated into the objective function via a

30 Jessica Gronski et al.

quadratic penalty plus a pseudo-Lagrangian term. By increasing the effect of
the penalty parameter, the sequence of iterates tend to a local solution of the
original constrained problem.

We now present a method to solve BLPs using the Augmented Lagrangian
framework. Augmented Lagrangian methods naturally handle equality con-
straints. To handle inequality constraints, there are several variants, and we
follow the variant that converts inequality constraints into equality constraints
via a slack variable s, but keeps all box constraints (including those on the
slack) explicit. We reformulate (14) as follows

min
x,y,s

xTC0y + aT0 x + bT0 y︸ ︷︷ ︸
f(x,y)

subject to xTCiy + aTi x + bTi y − ri︸ ︷︷ ︸
ci(x,y)

+si = 0 i ∈ I ∪ E

lx ≤ x ≤ ux, ly ≤ y ≤ uy,

si ≥ 0 ∀i ∈ I, si = 0 ∀i ∈ E

(23)

For convenience, the z variables are assumed to be nonexistent in our expo-
sition. However, the approach described can be readily extended to include
linear z variables, as well. We will denote the box constraints concisely as
(x,y, s) ∈ X × Y × S. Since ci(x,y) + si = 0 for any feasibly points, we can
see that for any µ > 0, (23) is equivalent to

min
(x,y,s)∈X×Y×S

f(x,y, z) +
µ

2

∑
i∈E∪I

(ci(x,y, z) + si)
2

subject to ci(x,y, z) + si = 0 i ∈ I ∪ E
(24)

The Augmented Lagrangian method then applies subgradient ascent with re-
spect to the dual variable λ on the Lagriangian of (24). Starting at some
λ0 ∈ R|I∪E|, and defining the augmented Lagrangian LA as

LA(x,y, s;λ)
def
= f(x,y)−

∑
i∈E∪I

λi · (ci(x,y) + si) +
µ

2

∑
i∈E∪I

(ci(x,y) + si)
2

the method iterates for k = 1, 2, . . .,

(xk,yk, sk)← argmin
(x,y,s)∈X×Y×S

LA(x,y, s;λk) (25)

λk+1
i ← λki − µ

(
ci(x

k,yk) + ski
)

(26)

While the Augmented Lagriangian method has been applied generically to
non-convex non-linear programs, as in the PENNON package [42], here we can
specialize it to take advantage of the structure of BLP problems. Note that
(25) can be written as

min
x∈X

(
min

(y,s)∈Y×S
LA(x,y, s;λk)

)
︸ ︷︷ ︸

ϕ(x)

(27)

Template Polyhedra and Bilinear Optimization. 31

and evaluating ϕ(x)—that is, finding the minimizing points (yx, sx)—requires
solving a convex quadratic program, which can be done efficiently (our imple-
mentation uses the MATLAB software CVX and Gurobi). Furthermore, ∇ϕ can
be calculated using the following lemma. This lemma is similar to Danskin’s
Theorem [11] but the proof is distinct since we minimize rather than maximize,
and do not assume compact constraints.

Lemma 9 Assume (yx, sx) are the unique minimizers of LA(x,y, s;λk) over
(y, s) ∈ Y × S and lx,ux, ly,uy are real-valued (i.e, they do not have ±∞
entries) . Then ∇ϕ(x) = ∇xLA(x,yx, sx;λk).

Proof The main tool is Thm. 10.58 in [54]. Let ϕ(x) = min(y,s) LA(x,y, s;λk)

and Φ(x) = argmin(y,s)LA(x,y, s;λk) denote the optimal value and the opti-

mal solution set, respectively. Since LA(x,y, s;λk) is continuous, proper, and
level-set bounded in (y, s) uniformly locally in x, ϕ(x) is proper, and con-
tinuous and for each x ∈ dom(ϕ) the set of minimizers Φ(x) = {(yx, sx)} is
nonempty and compact. Moreover, there exists a compact neighborhood B of
x such that the image x under Φ is a compact set for all x ∈ B. For each
(y, s) ∈ Φ(B) the function LA(y,s) := LA(·,y, s) is continuously differentiable
on the interior of B. Let O := int(B). Then ϕ(x) = min(y,s)∈Y×S LA(y,s)(x)
is continuously differentiable on O.

Level-set bounded in (y, s) uniformly locally in x means that for each
x ∈ X and α ∈ R there is a neighborhood V of x and bounded set B ⊂ Y ×S
such that the level-sets {(y, s)|LA(x,y, s;λk) ≤ α} ⊂ B for all x ∈ V , that is,
the level-sets are bounded. The uniform level boundedness assumption allows
us to find a neighborhood V of x satisfying the criteria for ϕ(x) to be lower
semi-continuous which is a weaker statement than continuity, but sufficient for
the original proof of Thm. 10.58 in [54].

Given a means to calculate ∇ϕ(x), we can minimize ϕ over x ∈ X using
gradient-based method such as L-BFGS-B [16]. Our motivation for pursuing
gradient-based approaches, rather than alternating minimization approaches,
is due to a very recent body of literature showing that gradient descent is
(under certain conditions) “unlikely” to be trapped at saddle points. In par-
ticular, Jin et al [40] show that small infrequent random perturbations are
sufficient to prevent gradient descent from converging to a saddle point, while
[43] shows that random initializations prevent convergence to a saddle point.
This formulation allows for bilinear optimization where x and y can be treated
separately without the disjoint treatment of alternating minimization.

8 Solvers Used for Empirical Comparisons

In this section, we review a set of solvers beyond alternating minimization that
are used as a basis of comparison over the benchmark problems discussed in
Section 6. A brief description of each tool is provided. We used our own imple-
mentations of alternating minimizations and augmented Lagrangian methods

32 Jessica Gronski et al.

Solver Solver Type
Alternating Minimization Local

FMINCON Local
BONMIN Global

COUENNE Global
IPOPT Local
BARON Global

Augmented Lagrangian Local

Table 5 Solvers used in the numerical experiments.

as described subsequently. All the solvers are implemented using floating point
arithmetic and thus the soundness of the results obtained from these solvers
in the context of abstract interpretation is an issue that is not addressed here.
However, if a solution approach is deemed promising, then approaches to sur-
mount the issues caused by floating point arithmetic will be well motivated
for future work.

8.1 Alternating Minimization

The implementation described in section 6 used an exact arithmetic LP solver.
Here we examined two efficient floating point LP solvers for alternating mini-
mization. One approach used the dual simplex solver implemented inside the
Gurobi tool. Another approach used a floating point primal dual interior point
method using the Sedumi solver.

8.2 FMINCON

fmincon is a built-in MATLAB nonlinear programming solver. It attempts to
return feasible stationary points to problems of the form

min
x

f(x)

subject to c(x) ≤ 0

ceq(x) = 0

Aix ≤ bi

Aex = be

lx ≤ x ≤ ux

where both the objective and constraints can be nonlinear functions. The
method makes no attempt to find a global optimal point. In order to apply
fmincon to (14), we reformulate the problem into (21) as mentioned above.
Since the problems we will be comparing are sparse, with a few examples being
large scale, we use the solver’s primal-dual interior-point algorithm and supply
the gradient function. Other supplied algorithms include Trust Region Reflec-
tive, Active Set, and Sequential Quadratic Programming; however, Active Set

Template Polyhedra and Bilinear Optimization. 33

and SQP are not large scale algorithms and the problems considered do not
meet the required conditions to apply the Trust Region Reflective algorithm.

8.3 BONMIN

BONMIN (Basic Open-source Nonlinear Mixed INteger programming) is an
open source software for solving mixed-integer non-linear programs (MINLPs)
of the form

min
x

f(x)

subject to gi(x) ≤ 0 i = 1 . . .m

lx ≤ x ≤ ux

xi ∈ Z, i ∈ I ⊆ {1, . . . , n}
xi ∈ R, i /∈ I

(28)

where f and g are assumed to be twice continuously differentiable. The soft-
ware is distributed by the Computational Infrastructure for Operations Re-
search (COIN-OR). BONMIN is equipped with several nonlinear programming
algorithms based on branch-and-bound, branch-and-cut, and outer-approximation
techniques. The branch-and-bound approach considers polyhedral subsets of
the state space and solves a continuous relaxation of the problem contain-
ing only a subset of the variables in search for an improvement on the lower
bound of the approximation. The branch-and-cut technique uses the same
approach to infer an optimal set of candidate solutions but further refines
the estimate of the lower bound by implementing nonlinear lift-and-project
cutting plane methods to tighten the corresponding relaxation. BONMIN uses
COIN-ORs NLP interior-point solver IPOPT, which we introduce below, for its
branch-and-bound algorithm. The outer-approximation method is a technique
for recasting the original MINLP into an equivalent, and relaxed linear repre-
sentation by removing any nonlinearities from the objective and adding their
linearized variants to the constraint set. It is an iterative procedure that ap-
pends newly computed bound constraints found at each iteration to tighten the
relaxation. It implements IPOPT to solve each NLP and COIN-ORs branch-
and-cut algorithm Cbc to solve each MILP. The final algorithm offered by
BONMIN is a hybrid outer-approximation based branch-and-cut algorithm. If
either or both f and g are nonconvex then the algorithms are only meant to
be heuristics [15]. Thus there is no guarantee of a global optimal point, but un-
like fmincon which returns as soon as it has found an approximate stationary
point, the BONMIN solver attempts to find a global optimal point. For all nu-
merical comparisons in Section 9 we implemented each of BONMINs four solvers
and achieved similar results; therefore, the results reported are the results of
the hybrid solver.

34 Jessica Gronski et al.

8.4 COUENNE

COUENNE (Convex Over and Under ENvelopes for Nonlinear Estimation) is an
open source software primarily developed by Pietro Belotti to solve MINLPs of
the form (28), where f and gi are possibly nonconvex [1]. The software is also
distributed by COIN-OR. COUENNE is a RLT-based spatial branch-and-bound
algorithm, meaning that the nonconvex terms are replaced with their convex
envelopes and branching can occur on either integer or continuous variables.
It ensures global optimal solutions of convex MINLPs and aims to find global
optima of nonconvex MINLPS. COUENNE is built on top of BONMIN and utilizes
many of the same options and solvers. More generally, it is a branch and cut
algorithm that implements linearization, branching, MINLP heuristics to find
feasible solutions, and bound reduction techniques [10]. We emphasize that
the software attempts to find a global solution, and thus is naturally slower
than methods like fmincon.

8.5 IPOPT

IPOPT (Interior Point Optimizer) is an open source software package for large-
scale nonlinear optimization that is distributed by COIN-OR. IPOPT supports
the same general framework as COUENNE; however, it further requires that f
and all gi be sufficiently smooth (at least continuously differentiable). More-
over, IPOPT aims to find local solutions to (28), like fmincon, as opposed to
global solutions like COUENNE. The IPOPT algorithm implements a primal-dual
interior-point method that uses line searches based on filter methods. Filter
methods offer an alternative to merit functions in that iterates are accepted if
they either improve the objective function or improve the constraint violation
as opposed to a combination of the two [68].

8.6 BARON

BARON (Branch-And-Reduce Optimization Navigator) is a global optimiza-
tion software for solving MINLPs that was developed by Nikolaos Sahinidis
at the University of Illinois-Urbana Champaign. It is a branch-and-bound al-
gorithm that has the ability to employ other solvers to solve appropriate sub-
problems. Given a BLP, BARON generates McCormick Envelopes to relax and
provide a lower bound for the original problem. Further measures are then
taken to improve the accuracy of the computed variables by transforming
the relaxed problem into an SDP. BARON also employs linear approximations,
including outer-approximations, to speed up the computation of the relaxed
problem. While this is only a high-level description that is by no means com-
plete, it provides a brief explanation of the general methods employed by BARON

for solving BLPs. BARON requires that all nonlinear variables and expressions
be bounded from above and below to guarantee global optimality. If bounds
are not provided, it utilizes appropriate algorithms to infer bounds [56,66].

Template Polyhedra and Bilinear Optimization. 35

Solver Solver Type Method(s) Employed for Experimental Results
Alt Min - GUROBI Local Dual-Simplex
Alt Min - SeDuMi Local Primal-Dual IP

FMINCON Local Primal-Dual IP
BONMIN Global Hybrid OA/BnC

COUENNE Global RLT-based Spatial BnB
IPOPT Local Primal-Dual IP
BARON Global McCormick Envelope/SDP

Augmented Lagrangian Local Gradient-Based/Dual-Simplex

Table 6 Solvers used in the numerical experiments.

9 Experimental Results

In this section, we apply the algorithms mentioned in the previous section
to a series of benchmarks that include Example 2 discussed previously and
benchmarks 2-5 in Table 1. Benchmarks 1 and 6-9 are not included in the
numerical comparisons since the algorithms implemented do not scale well
with the size of the problems. All algorithms were implemented in MATLAB

R2016b. The COIN-OR source code and binaries provided for COUENNE and
IPOPT have interfaces in AMPL, which can be interfaced through MATLAB. For the
alternating minimization procedure we used the MATLAB software CVX [35,36]
with the simplex solver Gurobi [51] and the interior-point solver Sedumi [65].
For each instance, we report the optimal objective reported by the solver
along with the feasibility gaps that are given by the largest absolute violation
of equality constraints and largest inequality constraint violation to deduce
feasibility of the resulting solution.

Dominant Eigenvector: A Toy Problem.

As a toy example used to test the various approaches, we begin by com-
puting the dominant eigenvector of a positive semidefinite operator, C ∈ S4+.
Computing the dominant eigenvector of a positive semidefinite operator can
be phrased as the following optimization program:

max
x

xTCx

subject to ||x||2 ≤ 1,
(29)

or equivalently,

min
x

− xTCy

subject to ||y||2 ≤ 1

x = y

(30)

where || · ||2 is the `2-norm of a vector, ||x||2 =
√∑

i x
2
i . By imposing the

additional constraint x = y we can convert the quadratic objective of (29)
to the bilinear one in (30). While this form does not match the general form
of a BLP we can still employ the solvers listed above to get an idea of the

36 Jessica Gronski et al.

Method Status Normalized Residual
FMINCON Solved 9.750e-09
BONMIN Solved 4.999e-09

COUENNE Solved 4.000e-03
IPOPT Solved 3.156e-10
BARON Solved 2.270e-05
Aug Lag Solved 5.100e-05

Table 7 Results of dominant eigenvector program (30).

Method Obj Value max{|ceq(x)|} max{cineq(x)} Status
Alt Min Gurobi 1.000e+00 0.000e+00 0.000e+00 Solved
Alt Min Sedumi 1.970e+02 0.000e+00 1.421e-14 Solved
FMINCON 1.000e+00 0.000e+00 -1.603e-08 Solved
BONMIN 1.000e+00 2.675e-08 1.020e-06 Solved
COUENNE 1.000e+00 8.963e-09 5.108e-07 Solved
IPOPT 1.000e+00 1.749e-08 1.011e-06 Solved
BARON 1.000e+00 5.845e-09 7.437e-09 Solved
Aug Lag 2.75e+02 9.925e-07 -8.074e-08 Timed Out

Table 8 Results on Example 2, m=2, n=6, NumCons=4.

expected solver accuracy. For the Augmented Lagrangian formulation we re-
move the slack variable s and replace the LP solve via CVX with the closed-form
projection

yx =

{
x̂, for ||x̂||2 ≤ 1
x̂
||x̂||2 , otherwise

(31)

where x̂ = − 1
µ (Cxk+λk)+xk. Table 7 summarizes the performance of various

solvers n terms of the final solution status and the normalized residuals. The
table does not include alternating minimization, since every feasible point is
also a saddle point for this problem.

Example 6 Table 8 applies these approaches to the relatively small problem
obtained from the program shown in Example 2. The objective in this example
is set to c1−c2, wherein the invariant that we seek has the form x1 ≤ c1 ∧ x1 ≥
c2. Starting with the initial solution c1 = 100, c2 = 0, alternating minimization
using an interior point solver and 5 other approaches compute the best solution
c1 − c2 = 1.

Tables 8, 9, 10, 11, and 12 compare the performance of various algorithms
over benchmark IDs 2-5 from Table 1. In each table, the highlighted entries
indicate “desirable results” in terms of a negative solution and correspond-
ing feasibility gaps of 10−7 or less. Due to the different types of solvers and
the use of Matlab interfaces, we will not compare the time taken by each ap-
proach. The key conclusion is that alternating minimization approach is by
far the best in terms of solving these benchmarks with acceptable feasibility
gaps. This is surprising given the propensity of this approach to get “stuck”

Template Polyhedra and Bilinear Optimization. 37

Method Obj Value max{|ceq(x)|} max{cineq(x)} Status
Alt Min Gurobi -3.175e-02 3.980e-11 4.818e-14 Solved
Alt Min Sedumi -9.344e-01 1.632e+01 7.915e-01 Infeasible
FMINCON -7.064e+06 7.502e-02 2.984e-01 Timed Out
BONMIN -1.022e+21 NA NA Failed
COUENNE NA NA NA Timed Out
IPOPT -3.265e+12 1.962e+08 5.258e+07 Timed Out
BARON -2.375e+07 4.475e+09 4.096e+13 Timed Out
Aug Lag 3.950e+02 1.140e-01 1.432e-01 Stagnant

Table 9 Benchmark # 2 from Table 1, m=48, n=264, p=353, NumCons=123.

Method Obj Value max{|ceq(x)|} max{cineq(x)} Status
Alt Min Gurobi -2.066e-01 1.137e-13 4.441e-16 Solved
Alt Min Sedumi -2.286e-01 2.220e-09 5.754e-09 Solved
FMINCON 8.386e+01 2.536e-11 -2.560e-05 Timed Out
BONMIN -6.298e+08 NA NA Failed
COUENNE NA NA NA Timed Out
IPOPT -3.805e+08 1.087e+08 1.547e+11 Timed Out
BARON -1.102e+13 3.148e+12 1.786e+11 Timed Out
Aug Lag 3.310e+00 1.029e-05 5.331e-06 Stagnant

Table 10 Benchmark # 3 from Table 1, m=24, n=72, p=161, NumCons=51.

Method Obj Value max{|ceq(x)|} max{cineq(x)} Status
Alt Min Gurobi -1.000e-01 1.138e-14 1.213e-13 Solved
Alt Min Sedumi -1.000e-01 2.064e-13 -5.174e-14 Solved
FMINCON 1.208e+00 2.211e-02 7.211e-02 Infeasible
BONMIN -5.641e+09 NA NA Failed
COUENNE NA NA NA Timed Out
IPOPT 3.741e+10 2.799e+10 5.144e+12 Timed Out
BARON -7.834e+13 1.454e+11 7.509e+15 Infeasible
Aug Lag 2.000e+00 7.380e-07 5.306e-07 Solved

Table 11 Benchmark # 4 from Table 1, m=12, n=20, p=33, NumCons=27.

in a saddle point. Furthermore, floating point alternating minimization ap-
proaches achieve acceptable feasibility gaps and the approach itself lends to
exact arithmetic implementation as shown in Section 6.

10 Conclusions

To conclude, we exploit the connection between template domains and bilinear
constraints. In doing so, we show that policy iteration allows the template
directions to be updated on the fly in a property directed fashion. We present
preliminary evidence that such an approach can be effective, though many
challenges remain. Our future work will focus on techniques to make progress
when the policy iteration is stuck in a local saddle point, without sacrificing
the soundness of the approach. In this context, we are investigating strategy

38 Jessica Gronski et al.

Method Obj Value max{|ceq(x)|} max{cineq(x)} Status
Alt Min Gurobi -2.417e-01 5.994e-13 1.742e-11 Solved
Alt Min Sedumi -2.417e-01 8.652e-10 2.261e-09 Solved
FMINCON 2.546e+02 3.553e-15 -9.184e-04 Infeasible
BONMIN -6.687e+17 NA NA Failed
COUENNE NA NA NA Timed Out
IPOPT -1.764e+13 5.408e+09 2.230e+10 Timed Out
BARON 1e+51 NA NA Failed
Aug Lag 1.847e+01 1.859e-05 1.198e-06 Stagnant

Table 12 Benchmark # 5 from Table 1, m=40, n=410, p=681, NumCons=204.

iteration approaches that can incorporate the template update process [32].
Our previous work on invariant set computation for polynomial differential
equations mentioned earlier, already contains clues to such an approach [61].
As mentioned earlier, exploiting the sparsity of constraints to provide a more
scalable solver is also another fruitful future direction.

Acknowledgments
The authors gratefully acknowledge the anonymous reviewers for their valu-

able comments and suggestions. This work was funded in part by NSF under
award numbers SHF 1527075. All opinions expressed are those of the authors,
and not necessarily of the NSF.

References

1. Couenne, a solver for nonconvex minlp problems (2016),
https://www.coin-or.org/Couenne/

2. Adjé, A., Garoche, P.: Automatic synthesis of piecewise linear quadratic invariants for
programs. In: Verification, Model Checking, and Abstract Interpretation (VMCAI). pp.
99–116 (2015)

3. Adjé, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite relax-
ation to compute accurate numerical invariants in static analysis. Logical Methods in
Computer Science 8(1) (2012)

4. Adjé, A., Gaubert, S., Goubault, E.: Computing the smallest fixed point of order-
preserving nonexpansive mappings arising in positive stochastic games and static anal-
ysis of programs. Journal of Mathematical Analysis and Applications 410(1), 227 – 240
(2014)

5. Amato, G., Parton, M., Scozzari, F.: Deriving Numerical Abstract Domains via Princi-
pal Component Analysis, pp. 134–150. Springer (2010)

6. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization
technique for nonconvex quadratically constrained quadratic programming. Journal of
Global Optimization 43(2), 471–484 (2009)

7. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for non-
convex quadratically constrained quadratic programming. Mathematical Programming
87(1), 131–152 (2000)

8. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a com-
plete set of numerical abstractions for the analysis and verification of hardware and
software systems. Quaderno 457, Dipartimento di Matematica, Università di Parma,
Italy (2006)

9. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex polyhedra
and the Parma Polyhedra Library. In: Static Analysis Symposium. vol. 2477, pp. 213–
229 (2002)

Template Polyhedra and Bilinear Optimization. 39

10. Belotti, P.: Couenne: a users manual. Tech. rep., Technical report, Lehigh University
(2009)

11. Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena
Scientific (2003)

12. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X.: A static analyzer for large safety-critical software. In: Prog. Lang. Design &
Implementation. pp. 196–207. ACM Press (2003)

13. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: Design and implementation of a special-purpose static program analyzer
for safety-critical real-time embedded software (invited chapter). In: In The Essence
of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones. LNCS, vol. 2566, pp. 85–108. Springer (2005)

14. Bogomolov, S., Frehse, G., Giacobbe, M., Henzinger, T.: Counterexample-guided refine-
ment of template polyhedra (2017), to Appear

15. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D.,
Lee, J., Lodi, A., Margot, F., Sawaya, N., et al.: An algorithmic framework for convex
mixed integer nonlinear programs. Discrete Optimization 5(2), 186–204 (2008)

16. Byrd, R.H., Lu, P., Nocedal, J.: A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Stat. Comp. 16(5), 1190–1208 (1995)

17. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction for
non-linear hybrid systems. In: Real Time Systems Symposium (RTSS). pp. 183–192.
IEEE Press (2012)

18. Chen, X., Erika, Á.: Choice of directions for the approximation of reachable sets for
hybrid systems. In: EUROCAST’11. pp. 535–542. Springer-Verlag, Berlin, Heidelberg
(2012)

19. Chvátal, V.: Linear Programming. Freeman (1983)
20. Clariso, R., Cortadella, J.: The octahedron abstract domain. Science of Computer Pro-

gramming 64(1), 115 – 139 (2007)
21. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using non-

linear constraint solving. In: CAV. vol. 2725, pp. 420–433 (July 2003)
22. Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A policy iteration algo-

rithm for computing fixed points in static analysis of programs. In: Computer Aided
Verification (CAV). Lecture Notes in Computer Science, vol. 3576, pp. 462–475. Springer
(2005)

23. Cousot, P.: Proving program invariance and termination by parametric abstraction, la-
grangian relaxation and semidefinite programming. In: VMCAI. Lecture Notes in Com-
puter Science, vol. 3385, pp. 1–24. Springer (2005)

24. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In:
Proc. ISOP’76. pp. 106–130. Dunod, Paris, France (1976)

25. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing ap-
proaches to Abstract interpretation, invited paper. In: PLILP ’92. LNCS, vol. 631, pp.
269–295. springer (1992)

26. Cousot, P., Cousot, R.: Abstract Interpretation: A unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In: ACM Principles of
Programming Languages. pp. 238–252 (1977)

27. Dauphin, Y.N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y.: Identifying
and attacking the saddle point problem in high-dimensional non-convex optimization.
In: Advances in neural information processing systems. pp. 2933–2941 (2014)

28. Delmas, D., Souyris, J.: Astrée: from research to industry. In: Proc. 14th International
Static Analysis Symposium, SAS 2007. LNCS, vol. 4634, pp. 437–451. Springer, Berlin
(2007)

29. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In:
Proc. CAV’11. vol. 6806, pp. 379–395 (2011)

30. Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy iteration
on relational domains. In: European Symposium on Programming. Lecture Notes in
Computer Science, vol. 4421, pp. 237–252. Springer (2007)

40 Jessica Gronski et al.

31. Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In:
European Symposium on Programming (ESOP). Lecture Notes in Computer Science,
vol. 4421, pp. 300–315. Springer (2007)

32. Gawlitza, T.M., Seidl, H.: Solving systems of rational equations through strategy iter-
ation. ACM Trans. Program. Lang. Syst. 33(3), 11:1–11:48 (2011)

33. Ghaoui, L.E., Balakrishnan, V.: Synthesis of fixed-structure controllers via numerical
optimization. In: Proceedings of the 33rd Conference on Decision and Control(CDC).
IEEE (1994)

34. Goubault, E., Putot, S., Baufreton, P., Gassino, J.: Static analysis of the accuracy in
control systems: Principles and experiments. In: FMICS. LNCS, vol. 4916, pp. 3–20.
Springer (2008)

35. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. Recent
advances in learning and control pp. 95–110 (2008)

36. Grant, M., Boyd, S., Ye, Y.: Cvx: Matlab software for disciplined convex programming
(2008)

37. Guernic, C.L., Girard, A.: Reachability analysis of linear systems using support func-
tions. Nonlinear Analysis: Hybrid Systems 4(2), 250 – 262 (2010)

38. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving. In:
PLDI. pp. 281–292. ACM (2008)

39. Helton, J., Merino, O.: Coordinate optimization for bi-convex matrix inequalities. In:
IEEE Conf. on Decision & Control(CDC). p. 36093613 (1997)

40. Jin, C., Ge, R., Netrapalli, P., Kakade, S.M., Jordan, M.I.: How to escape saddle points
efficiently. In: ICML (2017)

41. Kim, S., Kojima, M.: Second order cone programming relaxation of nonconvex quadratic
optimization problems. Optimization methods and software 15(3-4), 201–224 (2001)

42. Kočvara, M., Stingl, M.: PENNON: A code for convex nonlinear and semidefinite pro-
gramming. Optimization methods and software 18(3), 317–333 (2003)

43. Lee, J.D., Simchowitz, M., Jordan, M.I., Recht, B.: Gradient descent only converges to
minimizers. In: Conference on Learning Theory. pp. 1246–1257 (2016)

44. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically con-
strained quadratic programs. Mathematical Programming 103(2), 251–282 (2005)

45. Logozzo, F., Fähndrich, M.: Pentagons: A weakly relational abstract domain for the
efficient validation of array accesses. In: Symposium on Applied Computing. pp. 184–
188. SAC ’08, ACM, New York, NY, USA (2008)

46. Mathworks Inc.: PolySpace design verifier, cf. http://www.mathworks.com/products/polyspace/
viewed April 2017

47. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
PADO II. vol. 2053, pp. 155–172 (May 2001)

48. Miné, A.: The octagon abstract domain. In: AST 2001 in WCRE 2001. pp. 310–319.
IEEE, IEEE CS Press (October 2001)

49. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis (1999)
50. Nocedal, J., Wright, S.: Numerical Optimization. Springer, 2nd edn. (2006)
51. Optimization, G.: Inc.,gurobi optimizer reference manual, 2017. URL: http://www.

gurobi. com (2017)
52. Park, J., Boyd, S.: General heuristics for nonconvex quadratically constrained quadratic

programming. arXiv preprint arXiv:1703.07870 (2017)
53. Qualizza, A., Belotti, P., Margot, F.: Linear programming relaxations of quadratically

constrained quadratic programs. Mixed Integer Nonlinear Programming pp. 407–426
(2012)

54. Rockafellar, R., Wets, R.: Variational Analysis. Springer Berlin Heidelberg (2009)
55. Roux, P., Voronin, Y.L., Sankaranarayanan, S.: Validating numerical semidefinite pro-

gramming solvers for polynomial invariants. In: Static Analysis Symposium (SAS). Lec-
ture Notes in Computer Science, vol. 9837, pp. 424–446. Springer (2016)

56. Sahinidis, N.V.: BARON 17.8.9: Global Optimization of Mixed-Integer Nonlinear Pro-
grams, User’s Manual (2017)

57. Sankaranarayanan, S.: Mathematical Analysis of Programs. Ph.D. thesis, Stanford Uni-
versity (7 2005)

58. Sankaranarayanan, S., Dang, T., Ivančić, F.: Symbolic model checking of hybrid systems
using template polyhedra. In: TACAS. LNCS, vol. 4963, pp. 188–202. Springer (2008)

Template Polyhedra and Bilinear Optimization. 41

59. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations anal-
ysis. In: Static Analysis Symposium (SAS 2004). vol. 3148, pp. 53–69 (August 2004)

60. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Verification, Model-Checking and Abstract-
Interpretation (VMCAI 2005). vol. 3385 (January 2005)

61. Sassi, M.A.B., Girard, A., Sankaranarayanan, S.: Iterative computation of polyhedral
invariants sets for polynomial dynamical systems. In: IEEE Conference on Decision and
Control (CDC). pp. 6348–6353. IEEE Press (2014)

62. Sassi, M.A.B., Sankaranarayanan, S., Chen, X., Ábraham, E.: Linear relaxations of poly-
nomial positivity for polynomial lyapunov function synthesis. IMA Journal of Mathe-
matical Control and Information 33, 723–756 (2016)

63. Sherali, H.D., Dalkiran, E., Liberti, L.: Reduced rlt representations for nonconvex poly-
nomial programming problems. Journal of Global Optimization 52(3), 447–469 (2012)

64. Sherali, H.D., Fraticelli, B.M.: Enhancing rlt relaxations via a new class of semidefinite
cuts. Journal of Global Optimization 22(1), 233–261 (2002)

65. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones.
Optimization methods and software 11(1-4), 625–653 (1999)

66. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global
optimization. Mathematical Programming 103, 225–249 (2005)

67. Venet, A., Brat, G.P.: Precise and efficient static array bound checking for large embed-
ded C programs. In: PLDI. pp. 231–242. ACM (2004)

68. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical programming 106(1),
25–57 (2006)

69. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and be-
yond. In: Applied Algebra and Error-Correcting Codes (AAECC) 8. pp. 85–101 (1997)

70. Zheng, X.J., Sun, X.L., Li, D.: Convex relaxations for nonconvex quadratically con-
strained quadratic programming: matrix cone decomposition and polyhedral approxi-
mation. Mathematical programming 129(2), 301–329 (2011)

