
Discriminating Traces with Time

?

Saeid Tizpaz-Niari, Pavol Černý, Bor-Yuh Evan Chang,
Sriram Sankaranarayanan, and Ashutosh Trivedi

University of Colorado Boulder, USA
{saeid.tizpazniari, pavol.cerny, evan.chang,

srirams, ashutosh.trivedi}@colorado.edu

Abstract. What properties about the internals of a program explain the
possible di↵erences in its overall running time for di↵erent inputs? In this
paper, we propose a formal framework for considering this question we
dub trace-set discrimination. We show that even though the algorithmic
problem of computing maximum likelihood discriminants is NP-hard,
approaches based on integer linear programming (ILP) and decision tree
learning can be useful in zeroing-in on the program internals. On a set
of Java benchmarks, we find that compactly-represented decision trees
scalably discriminate with high accuracy—more scalably than maximum
likelihood discriminants and with comparable accuracy. We demonstrate
on three larger case studies how decision-tree discriminants produced by
our tool are useful for debugging timing side-channel vulnerabilities (i.e.,
where a malicious observer infers secrets simply from passively watching
execution times) and availability vulnerabilities.

1 Introduction

Di↵erent control-flow paths in a program can have varying execution times.
Such observable di↵erences in execution times may be explainable by information
about the program internals, such as whether or not a given function or functions
were called. How can a software developer (or security analyst) determine what
internals may or may not explain the varying execution times of the program?
In this paper, we consider the problem of helping developers and analysts to
identify such explanations.

We identify a core problem for this task—the trace-set discrimination prob-
lem. Given a set of execution traces with observable execution times binned (or
clustered) into a finite set of labels, a discriminant (or classifier) is a map re-
lating each label to a property (i.e., a Boolean formula) satisfied by the traces
assigned to that label. Such a discriminant model can then be used, for example,
to predict a property satisfied by some trace given the timing label of that trace.

This problem is, while related, di↵erent than the profiling problem. In perfor-
mance profiling, the question is given an execution trace, how do the various parts
of the program contribute to the overall execution time? The trace-set discrim-
ination problem, in contrast, looks for distinguishing features among multiple
traces that result in varying execution times.

? This research was supported by DARPA under agreement FA8750-15-2-0096.

Crucially, once we can explain the timing di↵erences in terms of properties of
traces (e.g., what functions are called only in traces with long execution time),
the analyst can use the explanation to diagnose the possible timing side-channel
and potentially find a fix for the vulnerability. Section 2 shows on an example
how a security analyst might use the tool for debugging information leaks.

In this paper, we consider the discriminating properties of traces to be
Boolean combinations of a given set of atomic predicates. These atomic pred-
icates correspond to actions that can be observed through instrumentation in
a training set of execution traces. Examples of such predicates are as follows:
(1) Does the trace have a call to the function f in the program? (2) Does the trace
have a call to the sort function with an array of more than a 1000 numbers? In
our case study, we consider atomic predicates corresponding to the number of
times each function is called.

Concretely, our overall approach is to first obtain a set of execution traces
with information recorded to determine the satisfiability of the given atomic
predicates along with corresponding execution times. Then, we cluster these
training traces based on their overall execution times to bin them into timing
labels. Finally, we learn a trace-set discriminant model from these traces (using
various techniques) to capture what is common amongst the traces with the
same timing labels and what is di↵erent between traces with di↵erent labels.

In particular, we make the following contributions:

– We formalize the problem of trace-set discrimination with timing di↵erences
and show that the algorithmic problem of finding the maximum likelihood
conjunctive discriminant is NP-hard (Section 3).

– We describe two methods for learning trace-set discriminants: (1) a direct
method for inferring the maximum likelihood conjunctive discriminant using
an encoding into integer linear programming (ILP) and (2) by applying
decision tree learning that each o↵er di↵erent trade-o↵s (Section 4). For
instance, decision tree algorithms are designed to tolerate noisy labels and
work e↵ectively on large data sets but do not have formal guarantees. On
a set of microbenchmarks, we find that the methods have similar accuracy
but decision tree learning appears more scalable.

– We present three case studies in identifying and debugging timing side-
channel and availability vulnerabilities, armed with a prototype tool Dis-
criminer that performs label clustering and decision tree-discriminant
learning (Section 5). These case studies were conducted on medium-sized
Java applications, which range in size from approximately 300 to 3,000 meth-
ods and were developed by a third party vendor as challenge problems for
identifying and debugging such side-channel vulnerabilities. We show that
the decision trees produced by Discriminer are useful for explaining the
timing di↵erences amongst trace sets and performing this debugging task.

In our approach, we need to execute both an instrumented and an uninstru-
mented version of the program of interest on the same inputs. This is because a
trace of the instrumented program is needed to determine the satisfiability of the
atomic predicates, while the execution time of interest is for the uninstrumented

program. Therefore we need to assume that the program is deterministic. Since
timing observations are noisy due to many sources of non-determinism, each
trace is associated with a distribution over the labels. For instance, a trace may
have a label `1 with probability 0.9 and label `2 with probability 0.1.

Like with profiling, we also assume the test inputs that drive the program of
interest to expose interesting behavior are given. It is a separate problem to get
such interesting inputs: whether the analyst has logged some suspicious inputs
from a deployment or whether the developer generates tests using random or
directed test-case generation.

2 Timing Side-Channel Debugging with Discriminer

In this section, we demonstrate by example how Discriminer can be useful in
identifying timing side-channel vulnerabilities and suggesting ways to fix them.
We use an application called SnapBuddy1 as an example. SnapBuddy is a Java
application with 3,071 methods, implementing a mock social network in which
each user has their own page with a photograph.

Identifying a Timing Side-Channel with Clustering. The analyst inter-
acts with the application by issuing download requests to the pages of various
users to record execution times. Figure 1 shows a scatter plot of the running
times of various traces with each trace represented by a point in the figure. The
running times are clustered into 6 di↵erent clusters using a standard k-means
clustering algorithm and shown using di↵erent colors. We see that for some users,
the download times were roughly 15 seconds, whereas for some others they were
roughly 7.5 seconds. This significant time di↵erential suggests a potential timing
side-channel if the di↵erence can be correlated with sensitive program state and
thus this di↵erential should be investigated further with Discriminer.

To see how such a time di↵erential could be a timing side-channel, let us
consider an attacker that (a) downloads the public profile pages of all users
and learns each download time, and (b) can observe timing between packets by
sni�ng the network tra�c between legitimate users. If the attacker observes user
Alice downloading the page of another user whose identity is supposed to be a
secret and sees that the download took approximately 7.5 seconds, the attacker
can infer that Alice downloaded the page of one of the six users corresponding
to the six squares (with time close to 7.5 seconds) in Figure 1. The timing
information leak thus helped the attacker narrow down the possibilities from
hundreds of users to six.

Debugging Timing Side-Channels with Decision Tree Learning. How
can the analyst go about debugging the SnapBuddy application to eliminate
this timing side-channel? We show how Discriminer can help. Recall that the
analyst downloaded pages of all the users. Now the same download queries are

1 From DARPA STAC (www.darpa.mil/program/space-time-analysis-for-cybersecurity).

www.darpa.mil/program/space-time-analysis-for-cybersecurity

Fig. 1. Cluster running times from the
SnapBuddy to produce labels. The scat-
ter plot shows a di↵erential correspond-
ing to a possible timing side-channel.

Fig. 2. Snippet of a decision-tree discrimi-
nant learned from SnapBuddy traces using
the timing labels from Figure 1.

executed over an instrumented version of the SnapBuddy server to record the
number of times each method in the application is called by the trace. As a
result, we obtain a set of traces with their (uninstrumented) overall running
times and set of corresponding method calls.

Then Discriminer uses the standard CART decision tree learning algo-
rithm [5] to infer a decision tree that succinctly represents a discriminant us-
ing atomic predicates that characterize whether or not the trace invoked a
particular method (shown in Figure 2). For instance, the cluster representing
the longest running time (around 15 seconds) is discriminated by the prop-
erty snapservice.model.Filter.filter^image.OilFilter.filterPixels, indicat-
ing that the two methods are both invoked by the trace. Likewise, the clus-
ter representing the running time around 7.5 seconds is discriminated by the
property snapservice.model.Filter.filter ^ ¬image.OilFilter.filterPixels ^
image.ChromeFilter.filter, indicating that image.OilFilter.filterPixels must
not be invoked while the other two must be.

The analyst might now suspect what is going on: the timing di↵erences are
caused by the filters that each user chooses to apply to their picture. Note
that the analyst running Discriminer did not need to know that the filters
are important for causing this time di↵erential, or even that they existed. The
tool discovers them simply because the trace contains all method calls, and the
decision tree learning algorithm produces a useful discriminant.

A possible fix now suggests itself: make sure that the execution of each type
of filter takes the same amount of time (though of course an implementation of
such a fix still requires development e↵ort). Overall, the example demonstrates
how the decision tree produced by Discriminer can be used to debug (and
potentially fix) side-channel vulnerabilities.

3 Trace-Set Discrimination Problem

A discrete probability distribution, or just distribution, over a finite set L is a
function d : L![0, 1] such that

P
`2L

d(`) = 1. Let D(L) denote the set of all
discrete distributions over L.

Let p1, . . . , pm represent a set of atomic predicates over traces. Each predicate
evaluates to a Boolean value over a given trace. Therefore, for simplicity, we
represent a trace simply by the truth valuations of the predicates over the trace.
In addition to atomic predicates, traces are associated with a distribution over
labels. These distributions are generated by first measuring the execution time
t of the trace. The execution time is obtained as the average over some fixed
number of measurements M > 0. Therefore, the timing is taken to be a Gaussian
random variable with mean t and a standard deviation �

t

. Using this information,
we derive a discrete distribution d 2 D(L) over the set of labels in L.

Definition 1 (Traces, Predicates and Label Distributions). An execution

trace T of the program is a tuple h⌧, di wherein ⌧ = h⇢1, . . . , ⇢mi represents the

truth valuations to the predicates p1, . . . , pm, respectively and d 2 D(L) is the

associated label distribution over the finite set of labels L.

We define a trace discriminant as a tuple of Boolean formulae that predict
the labels of the traces given the truth valuations in the following fashion.

Definition 2. Given a set of labels L = {`1, . . . , `K} and predicates P =
{p1, . . . , pm}, a discriminant is a tuple h'1, . . . ,'K

i of Boolean formulae

where each formula '

i

is over the predicates in P and corresponds to a label `

i

.

A trace h⌧, di receives a label `
k

under trace discriminant = h'1, . . . ,'K

i, and
we write Label(h⌧, di ,) = `

k

, if k is the smallest index 1 i K such that
⌧ |= '

i

, i.e. '
i

evaluates to true for the truth valuation ⌧ . Formally,

Label(h⌧, di ,) =

8
>>>><

>>>>:

`1 if ⌧ |= '1, else

`2 if ⌧ |= '2, else
...

...

`

K

if ⌧ |= '

K

.

Definition 3. Given a set of predicates {p1, . . . , pm}, set of labels {`1, . . . , `K},
and a set of traces {h⌧1, d1i , . . . , h⌧N , d

N

i}, the trace set discriminant prob-

lem (TDLP) is to learn a trace discriminant = h'1, . . . ,'K

i.

In general, there are numerous possible discriminants that can be inferred for
a given instance of the tdlp. We consider two approaches in this paper: (a) a
formal maximum likelihood learning model over a structured set of discriminants
and (b) an informal decision tree learning approach to maximize accuracy while
minimizing the discriminant size.

3.1 Maximum Likelihood Learning

Given a discriminant and a set of traces, we define the likelihood of the
discriminant as the probability that each trace h⌧

i

, d

i

i receives the label
Label(h⌧

i

, d

i

i ,) dictated by the discriminant.

Definition 4. The likelihood �() of a discriminant over a set of traces

{h⌧1, d1i , . . . , h⌧N , d

N

i} is given by �() =
Q

N

i=1 di (Label(h⌧i, dii ,)) .

Themaximum likelihood discriminant
ml

is defined as the discriminant amongst
all possible Boolean formulae that maximizes �(), i.e.

ml

= argmax

(�()).
This maximization runs over the all possible tuples ofK Boolean formulae overm

atomic predicates, i.e, a space of (K!)
�22m

K

�
possible discriminants! In particular,

Hyafil and Rivest [11] show that the problem of learning optimal decision trees is
NP-hard. Therefore, for our formal approach, we consider the following simpler
class of discriminants by restricting the form of the Boolean formulae '

j

that
make up the discriminants to monotone conjunctive formulae.

Definition 5 (Conjunctive Discriminants). A monotone conjunctive for-

mula over predicates P = {p1, . . . , pm} is a finite conjunction of the formV
r

j=1 pij such that 1 i1, . . . , ir m. A discriminant = h'1, . . . ,'K

i is

a (monotone) conjunctive discriminant if each '

i

is a monotone conjunctive

formula for 1 i K. In order to make a traces discriminant exhaustive, we

assume '

K

to be the formula true.

The number of conjunctive discriminants is (K � 1)!
� 2m

K�1

�
. However, they can

be easily represented and learned using SAT or ILP solvers, as shown subse-
quently. Moreover, working with simpler monotone conjunctive discriminants is
preferable [8] in the presence of noisy data, as using formal maximum likelihood
model to learn arbitrary complex Boolean function would lead to over-fitting.
The problem of maximum likelihood conjunctive discriminant is then naturally
defined. We refine the result of [11] in our context to show that the problem of
learning (monotone) conjunctive discriminants is already NP-hard.

Theorem 1. Given an instance of tdlp, the problem of finding the maximum

likelihood conjunctive discriminant is NP-hard.

Proof. We prove the NP-hardness of the problem of finding maximum likeli-
hood conjunctive discriminant by giving a reduction from the minimum weight

monotone SAT problem that is already known to be NP-hard. Recall that a
monotone Boolean formula is propositional logic formula where all the literals
are positive. Given a monotone instance of SAT � =

V
n

j=1 Cj

over the set of
variable X = {x1, . . . , xm

}, the minimum weight monotone SAT problem is to
find a truth assignment satisfying � with as few variables set to true as possible.

Consider the trace-set discrimination problem P

�

where there is one predicate
p

i

per variable x

i

2 X of �, two labels `1 and `2, and the set of traces such that

– there is one trace h⌧
j

, d

j

i per clause C

j

of � such that predicate p

i

evaluates
to true in the trace ⌧

j

if variable x

i

does not occur in clause C

j

, and the
label distribution d

j

is such that d
j

(`1) = 0 and d

j

(`2) = 1.
– there is one trace h⌧ i, dii per variable x

i

of � such that only the predicate
p

i

evaluates to false in the trace ⌧ i and the label distribution d

i is such that
d

i(`1) = 1� " and d

i(`2) = " where 0 < " <

1
2 .

Observe that for every truth assignment (x⇤
1, . . . , x

⇤
m

) to variables in X, there is
a conjunctive discriminant ^

x

⇤
i =1pi such that if the clause C

j

is satisfied then
the trace h⌧

j

, d

j

i receives the label `2. This implies that the likelihood of the
discriminant is non-zero only for the discriminant corresponding to satisfying
valuations of �. Moreover, for every variable x

i

receiving a true assignment, the
trace h⌧ i, dii receives the label `2 with " contributed to the likelihood term and
for every variable x

i

receiving false assignment, the trace h⌧ i, dii receives the
label `1 with 1� " being contributed to the likelihood. This construction implies
that a maximum likelihood discriminant should give label `2 to all of the traces
h⌧

j

, d

j

i and label `1 to as many traces in
�
⌧

i

, d

i

as possible. It is easy to verify

that there exists a truth assignment of size k for � if and only if there exists a
conjunctive discriminant in P

�

with likelihood
Q

k

i=1 " ·
Q

m�k

i=1 (1� "). ut

3.2 Decision Tree Learning

As noted earlier, the max likelihood approach over structured Boolean for-
mulae can be prohibitively expensive when the number of traces, predicates
and labels are large. An e�cient alternative is to consider decision tree learn-
ing approaches that can e�ciently produce accurate discriminants while keep-
ing the size of the discriminant as small as possible. The weighted accuracy
of a discriminant over traces h⌧

i

, d

i

i , i = 1, . . . , N is defined additively as

↵() : 1
N

P
N

i=1 di (Label(h⌧i, dii ,)). This accuracy is a fraction between [0, 1]
with higher accuracy representing a better discriminant.

A decision tree learning algorithm seeks to learn a discriminant as a decision
tree over the predicates p1, . . . , pm and outcome labels `1, . . . , `K . Typically, al-
gorithms will maximize ↵() while keeping the description length | | as small as
possible. A variety of e�cient tree learning algorithms have been defined includ-
ing ID3 [16], CART [6], CHAID [12] and many others [15, 19]. These algorithms
have been supported by popular machine learning tools such as Scikit-learn
python library (http://scikit-learn.org/stable/) and RapidMiner [2].

4 Discriminant Analysis

In this section, we provide details of max likelihood and decision tree approaches,
and compare their performances over a scalable set of micro-benchmarks.

4.1 Maximum Likelihood Approach

We now present an approach for inferring a conjunctive discriminant using
integer linear programming (ILP) that maximizes the likelihood �() for given
predicates p1, . . . , pm, labels `1, . . . , `K and traces h⌧1, d1i, . . ., h⌧N , d

N

i. This
problem was already noted to be NP-hard in Theorem 1.

We first present our approach for the special case ofK = 2 labels. Let `1, `2 be
the two labels. Our goal is to learn a conjunctive formula '1 for `1. We use binary
decision variables x1, . . . , xm

wherein x

i

= 1 denotes that '1 has the predicate

http://scikit-learn.org/stable/

p

i

as a conjunct, whereas x
i

= 0 denotes that p
i

is not a conjunct in '1. Also we
add binary decision variables w1, . . . , wN

corresponding to each of the N traces,
respectively. The variable w

i

= 1 denotes that the trace h⌧
i

, d

i

i receives label `2
under '1 and w

i

= 0 indicates that the trace receives label `1. The likelihood

of the discriminant can be given as �()
def
=

Q
N

i=1

⇢
d

i

(`1) if wi

= 0
d

i

(`2) if wi

= 1
. Rather

than maximize �(), we equivalently maximize log(�())

log(�()) =
NX

i=1

⇢
log(d

i

(`1)) if wi

= 0
log(d

i

(`2)) if wi

= 1
.

Let r

i

:= d

i

(`1) = 1 � d

i

(`2), and simplify the expression for log(�()) asP
N

i=1(1� w

i

) log(r
i

) + w

i

log(1� r

i

).
Next, the constraints need to relate the values of x

i

to each w

i

. Specifically,
let for each trace h⌧

i

, d

i

i, R
i

✓ {p1, . . . , pm} denote the predicates that are valued
false in the trace. We can verify that if w

i

= 0, then none of the predicates in
R

i

can be part of '1, and if w
i

= 1, at least one of the predicates in R

i

must
be part of '1. This is expressed by the following inequality 1

|Ri| (
P

pk2Ri
x

k

)
w

i

P

pk2Ri
x

k

. If any of the p

k

2 R

i

is included in the conjunction, then the

LHS of the inequality is at least 1
|Ri| , forcing w

i

= 1. Otherwise, if all p
k

are not
included, the RHS of the inequality is 0, forcing w

i

= 0.
The overall ILP is given by

max
P

N

i=1(1� w

i

) log(r
i

) + w

i

log(1� r

i

)

s.t. 1
|Ri| (

P
pk2Ri

x

k

) w

i

i = 1, . . . , N

w

i

P

pk2Ri
x

k

i = 1, . . . , N

x

j

2 {0, 1}, w

i

2 {0, 1} i = 1, . . . , N, j = 1, . . . ,m (1)

Theorem 2. Let x

⇤
1, . . . , x

⇤
m

denote the solution for ILP (1) over a given TDLP

instance with labels {`1, `2}. The discriminant = h'1, truei wherein '1 =V
x

⇤
i =1 pi maximizes the likelihood �() over all conjunctive discriminants.

With the approach using the ILP in Eq. (1), we can tackle an instance with
K > 2 labels by recursively applying the two label solution. First, we learn a
formula '1 for `1 and L \ `1. Next, we eliminate all traces that satisfy '1 and
eliminate the label `1. We then recursively consider L̂ : L \ `1 as the new label
set. Doing so, we obtain a discriminant : h'1,'2, . . . ,'K�1, truei.

In theory, the ILP in (1) has N + m variables, which can be prohibitively
large. However, for the problem instances considered, we drastically reduced the
problem size through standard preprocessing/simplification steps that allowed
us to resolve the values of x

i

, w

j

for many of the variables to constants.

4.2 Decision Tree Learning Appraoch

In order to discriminate traces, Discriminer employs decision tree learning
to learn classifiers that discriminate the traces. Given a set of N traces on a

dependent variable (labels) L that takes finitely-many values in the domain
{`1, . . . , `K} and m feature variables (predicates) F = {f1, . . . , fm}, the goal
of a classification algorithm is to produce a partition the space of the feature
variables into K disjoint sets A1, . . . , AK

such that the predicted value of L is
i if the F -variables take value in A

i

. Decision-tree methods yield rectangular
sets A

i

by recursively partitioning the data set one F variable at a time. CART
(Classification and Regression Trees) is a popular and e↵ective algorithm to learn
decision-tree based classifiers. It constructs binary decision trees by iteratively
exploring features and thresholds that yield the largest information gain (Gini
index) at each node. For a detailed description of the CART, we refer to [5].

4.3 Performance Evaluation

We created a set of micro-benchmarks—containing a side-channel in time—
to evaluate the performance of the decision-tree discriminator computed using
scikit-learn implementation of CART and the maximum likelihood conjunctive
discriminant using an ILP implementation from the GLPK library.

These micro-benchmarks consist of a set of programs that take as an input a
sequence of binary digits (say a secret information), and perform some computa-
tion whose execution time (enforced using sleep commands) depends on some
property of the secret information. For the micro-benchmark series LSB0 and
MSB0, the execution time is a Gaussian-distributed random variable whose mean
is proportional to the position of least significant 0 and most significant 0 in the
secret, respectively. In addition, we have a micro-benchmark series Pat

d

whose
execution time is a random variable whose mean depends upon the position of
the pattern d in the input. For instance, the micro-benchmark Pat101 takes a
20-bit input data and the leftmost occurrence i of the pattern 101 executes three
methods F

i

, F

i+1, Fi+2 with mean exec. time of a method F

j

being 10⇤j ms.
In our experiments with micro-benchmarks, we generate the dataset by ran-

domly generating the input. For each input, we execute the benchmark programs
10 times to approximate the mean and the standard deviation of the observation,
and log the list of method called for each such input. For a given set of execution
traces, we cluster the execution time based on their mean and assign weighted
labels to each trace according to Gaussian distribution. We defer the details of
this data collection to Section 5. Our dataset consists of trace id, label, weight,
and method calls for every execution trace. We use this common dataset to both
the decision-tree and the maximum likelihood algorithms.

Table 1 shows the performance of the decision-tree classifiers and the max-
likelihood approach for given micro-benchmarks. The table consists of bench-
mark scales (based on the number of methods and traces), the accuracy of
approaches, time of computing decision tree and max-likelihood discriminant,
the height of decision tree, and the maximum number of conjuncts among all
learned discriminants in the max-likelihood approach. In order to compute the
performance of both models and avoid overfitting, we train and test data sets
using group k-fold cross-validation procedure with k set to 20.

Table 1. Micro-benchmark results for decision-tree discriminators learned using deci-
sion tree and the max-likelihood approach. Legend: #M: number of methods, #N:
number of traces, T: computation time in seconds, A: accuracy,H: decision-tree height,
M: max. discriminant size (Max. # of conjuncts in discriminants), ✏ < 0.1 sec.

Decision Tree Max-Likelihood
Benchmark ID # M #N T A H T A M

LSB0 10 188 ✏ 100% 7 ✏ 100 % 10
MSB0 10 188 ✏ 100% 7 ✏ 100 % 10
Pat101 20 200 ✏ 100% 13 0.2 89.4% 20
Pat1010 50 500 ✏ 98.4% 22 1.3 93.6% 50
Pat10111 80 800 0.1 97.8% 37 8.1 94.8% 72
Pat10101 100 1000 0.2 92.9% 43 9.8 87.9% 86
Pat10011 150 1500 0.5 89.2% 44 45.0 91.5% 118
Pat101011 200 2000 0.8 92.1% 50 60.2 90.9% 156
Pat1010101 400 4000 4.2 88.6% 111 652.4 92.9% 294

Table 1 shows that both decision tree and max-likelihood approaches have
decent accuracy in small and medium sized benchmarks. On the other hand,
decision tree approach stands out as highly scalable: it takes only 4.2 seconds for
the decision-tree approach to building a classifier for the benchmark Pat1010101
with 400 methods and 4000 traces, while it takes 652.4 seconds for the max-
likelihood approach to constructing the discriminants. Table 1 shows that the
discriminants learned using decision tree approach are simpler than the ones
learned using max-likelihood approach requiring a fewer number of tests.

5 Case Study: Understanding Traces with Decision Trees

The data on microbenchmarks suggest that the decision tree learning approach
is more scalable and has comparable accuracy as the max-likelihood approach.
Therefore, we consider three case studies to evaluate whether the decision tree
approach produces useful artifacts for debugging program vulnerabilities.

Research Question. We consider the following question:

Does the learned discriminant pinpoint code fragments that explain dif-
ferences in the overall execution times?

We consider this question to be answered positively if we can identify an
explanation for timing di↵erences (which can help debug to side channel or
availability vulnerabilities) through Discriminer2.

Methodology. We consider the discriminant analysis approach based on deci-
sion tree learning from Section 4. Table 2 summarizes the particular instantia-
tions for the discriminant analysis that we consider here.

Attributes: Called Methods. For this case study, we are interested in seeing
whether the key methods that explain the di↵erences in execution time can

2 https://github.com/cuplv/Discriminer

be pinpointed. Thus, we consider attributes corresponding to the called meth-
ods in a trace. In order to collect information regarding the called methods,
we instrumented Java bytecode applications using Javassist analysis framework
(http://jboss-javassist.github.io/javassist/).

Class Label: Total Execution Time Ranges. To identify the most salient at-
tributes, we fix a small number of possible labels, and cluster traces according
to total execution time. Each cluster is defined by a corresponding time interval.
The clusters and their intervals are learned using k-means clustering algorithm.

We consider the execution time for each trace to be a random variable and
assume a normal distribution. We obtain the mean and variance through 10
repeated measurements. We apply clustering to the mean execution times of each
trace to determine the class labels. Henceforth, when we speak of the execution
time of a trace, we refer to the mean of the measurements for that trace.

A class label (or cluster) can be identified by the mean of all execution times
belonging to that cluster. Then, considering the class labels sorted in increasing
order, we define the lower boundary of a bucket for classifying new traces by
averaging the maximum execution time in the previous bucket and the minimum
execution time in this bucket (and analogously for the upper boundary).

Weighted Labeling of Traces. Given a set of time ranges (clusters), we define
a weighted labeling of traces that permits a trace to be assigned to di↵erent
clusters with di↵erent weights. For a given trace, the weights to clusters are
determined by the probability mass that belongs to the time range of the cluster.
For example, consider a sample trace whose execution-time distribution straddles
the boundary of two clusters C0 and C1, with 22% area of the distribution
intersecting with cluster C0 and 78% with cluster C1. In this case, we assign the
trace to both clusters C0 and C1 with weights according to their probability mass
in their respective regions. Note that this provides a smoother interpretation of
the class labels rather than assigning the most likely label.

Decision Tree Learning. From a training set with this weighted labeling, we
apply the weighted decision tree learning algorithm CART described in Sec. 4.
We use Discriminer both for clustering in the time domain as described above
to determine the class labels and weights of each trace and for learning the clas-
sification model. We use group k-fold cross validation procedure to find accuracy.

Table 2. Parameters for trace set discriminant analysis, which predicts a class label
based on attributes. Here, we wish to discriminate traces to predict the total execution
time of the trace based on the methods called in the trace and the number of times
each method is called. To consider a finite number of class labels, we fix a priori n
possible time ranges based on choosing the best number of clustering.

attributes (1) the methods called in the trace (Boolean)
(2) the number of times each method is called in a trace (integer)

class label a time range for the total execution time of the trace

number of classes 6, 6, and 2 for SnapBuddy, GabFeed, and TextCrunchr

http://jboss-javassist.github.io/javassist/

total total observed
program methods traces methods

(num) (num) (num)

SnapBuddy 3071 439 160
GabFeed 573 368 30
TextCrunchr 327 180 35

total 3971 987 225

Objects of Study. We consider
three programs drawn from bench-
marks provided by the DARPA
STAC project. These medium-sized
Java programs were developed to be
realistic applications that may po-
tentially have timing side-channel
or availability security vulnerabili-
ties. SnapBuddy is a web applica-
tion for social image sharing. The profile page of a user includes their picture
(with a filter). The profile page is publicly accessible. GabFeed is a web applica-
tion for hosting community forums. Users and servers can mutually authenticate
using public-key infrastructure. TextCrunchr is a text analysis program capable
of performing standard text analysis including word frequency, word length, and
so on. It uses sorting algorithms to perform the analysis.

In the inset table, we show the basic characteristics of these benchmarks. The
benchmarks, in total, consist of 3,971 methods. From these programs, we gener-
ated 987 traces by using a component of each applications web API (scripted via
curl). In these recorded traces, we observed 225 distinct methods called. Note
that some methods are called thousands to millions of times.

Decision Trees Produced by Discriminer. In Fig. 3(b)–(d)–(f), we show the
decision tree learned from the SnapBuddy, GabFeed, and TextCrunchr traces,
respectively. As a decision tree is interpreted by following a path from the root
to a leaf where the leaf yields the class label and the conjunction of the internal
nodes describes the discriminator, one can look for characteristics of discrimi-
nated trace sets by following di↵erent paths in the tree. The class labels at leaves
are annotated with the bucket’s mean time. For example, in (b), the label 15.7
shows that the path to this label which calls image.OilFilter.filterPixels
takes 15.7 seconds to execute. The colors in bars in the leaves represent the ac-
tual labels of the training traces that would be classified in this bucket according
to the learned discriminator. Multiple colors in the bars mean that a discrimi-
nator, while not perfectly accurate on the training traces, is also able to tolerate
noise. The height of the bar gives an indication of the number of training traces
following this discriminator. The scatter plots in (a)–(c)–(e) show the time of
each trace, with the color indicating the corresponding cluster.

Findings for SnapBuddy. For SnapBuddy, the traces exercise downloading
the public profile pages of all user from a mock database. We have explained in
Sec. 2 how clustering (in Fig. 3(a)) helps to identify a timing side-channel, and
how the decision tree (in Fig. 3b) helps in debugging the vulnerability.

Findings for GabFeed. Inputs. For GabFeed, the traces exercise the authen-
tication web API by fixing the user public key and by sampling uniformly from
the server private key space (3064-bit length keys). Identifying a Timing Side-

Channel with Clustering. Considering scatter plot of GabFeed in Fig. 3c (bound-

(a) Time (s) of each trace (b) Decision tree accuracy: 99.5%

(c) Time (s) of each trace (d) Decision tree accuracy: 97.6%

(e) Time (s) of each trace (f) Decision tree accuracy: 99.1%

Fig. 3. Clustering in the time domain (a)-(c)-(e) to learn decision tree classification
models (b)-(d)-(f). The upper row corresponds to SnapBuddy traces, the middle row
corresponds GabFeed traces, while the bottom row corresponds to TextCrunchr traces.

aries show di↵erent clusters), we can see less definitive timing clusters. However,
it shows timing di↵erences that indicate a side channel. Debugging Timing Side-

Channels with Decision Tree Learning. The (part of) decision tree for GabFeed
in Fig. 3d is also less definitive than for SnapBuddy as we might expect given the
less well-defined execution time clusters. However, the part of the decision tree
discriminants OptimizedMultiplier.standardMultiply for time di↵erences.
Note that the attributes on the outgoing edge labels correspond to a range
for the number of times a particular method is called. The decision tree explains
that the di↵erent number of calls for OptimizedMultiplier.standardMultiply
leads to di↵erent time buckets. By going back to the source code, we observed

that standardMultiply is called for each 1-bit in the server’s private key. The
method standardMultiply is called from a modular exponentiation method
called during authentication. What leaks is thus the number of 1s in the private
key. A potential fix could be to rewrite the modular exponentiation method to
pad the timing di↵erences.

Findings for TextCrunchr. Inputs. For TextCrunchr, we provided four types
of text inputs to analyze timing behaviors: sorted, reverse-sorted, randomly gen-
erated, and reversed-shu✏ed arrays of characters (reverse-shu✏e is an operation
that undoes a shu✏e that TextCrunchr performs internally). It is the reverse
shu✏ed inputs that lead to high execution time. Although the input provided
to Discriminer for analyzing TextCrunchr include carefully crafted inputs (re-
versed shu✏ed sorted array), it can be argued that a system administrator in-
terested in auditing a security of a server has access to a log of previous inputs
including some that resulted in high execution time. Identifying Availability Vul-

nerabilities with Clustering. Considering scatter plot of TextCrunchr in Fig. 3e
we can see well-defined timing clusters which can potentially lead to security
issues. It shows that a small fraction of inputs takes comparably higher time of
execution in comparison to the others. Thus an attacker can execute a denial-of-
service (availability) attack by repeatedly providing the costly inputs (for some
inputs, it will take more than 600 seconds to process the text). The system ad-
ministrator mentioned above probably knew from his logs about possible inputs
with high execution time. What he did not know is why these inputs lead to
high execution time. Debugging Availability Vulnerabilities with Decision Tree

Learning. The decision tree for TextCrunchr in Fig. 3f shows that the number of
calls on stac.sort.qsPartition as the explanation for time di↵erences (out of
327 existing methods in the application). This can help identify the sorting al-
gorithm (Quicksort) used as a source of the problem and leads to the realization
that certain inputs trigger the worst-case execution time of Quicksort.

Threats to Validity. These case studies provide evidence that decision tree
learning helps in identifying code fragments that correlate with di↵erential ex-
ecution time. Clearly, the most significant threat to validity is whether these
programs are representative of other applications. To mitigate, we considered
programs not created by us nor known to us prior to this study. These applica-
tions were designed to faithfully represent real-world Java programs—for exam-
ple, using Java software engineering patterns and best practices. Another threat
concerns the representativeness of the training sets. To mitigate this threat, we
created sample traces directly using the web interface for the whole application,
rather than interposing at any intermediate layer. This interface is for any user
of these web applications and specifically the interface available to a potential
attacker. A training set focuses on exercising a particular feature of the applica-
tion, which also corresponds to the ability of an attacker to build training sets
specific to di↵erent features of the application.

6 Related Work

Machine learning techniques have been used for specification mining, that is, for
learning succinct representations of the set of all program traces. Furthermore,
machine learning techniques have been applied to learn classifiers of programs
for malware detection and for software bug detection.

Specification Mining. In [3], machine learning techniques are used to syn-
thesize an NFA (nondeterministic finite automaton) that represents all the cor-
rect traces of a program. In our setting, this would correspond to learning a
discriminant for one cluster (of correct traces). In contrast, our decision trees
discriminate multiple clusters. However, the discriminants we considered in this
paper are less expressive than NFAs. The survey [22] provides an overview of
other specification mining approaches.

Malware and Bug Detection. In malware detection, machine learning tech-
niques are used to learn classifiers that classify programs into benign and mali-
cious [1, 4, 7, 10, 13, 17, 21]. In software bug detection, the task is to learn clas-
sifiers that classify programs behaviors into faulty and non-faulty [9, 14, 18, 20].
In contrast, we consider more clusters of traces. In particular, Lo et al. [14] con-
structs a classifier to generalize known failures of software systems and to further
detect (predict) other unknown failures. First, it mines iterative patterns from
program traces of known normal and failing executions. Second, it applies a
feature selection method to identify highly discriminative patterns which distin-
guish failing traces from normal ones.
In all these works, the training set is labeled: all the programs are labeled either
benign or malicious (faulty or non-faulty). In contrast, we start with an unlabeled
set of traces, and construct their labels by clustering in the time domain.

7 Conclusion

Summary. We introduced the trace set discrimination problem as a formaliza-
tion of the practical problem of finding what can be inferred from limited run
time observations of the system. We have shown that the problem is NP-hard,
and have proposed two scalable techniques to solve it. The first is ILP-based,
and it can give formal guarantees about the discriminant that was found but
infers discriminants of a limited form. The second is based on decision trees,
infers general discriminants, but does not give formal guarantees. For three real-
istic applications, our tool produces a decision tree useful for explaining timing
di↵erences between executions.

Future Work. There are several intriguing directions for future research. First,
we will investigate the extension of our framework to reactive systems, by gen-
eralizing our notion of execution time observations to sequences of timed events.
Second, we will build up the network tra�c monitoring ability of our tool, to
make it usable by security analysts for distributed architectures.

References

1. Yousra Aafer, Wenliang Du, and Heng Yin. DroidAPIMiner: Mining API-level
features for robust malware detection in Android. In SPCN, pages 86–103, 2013.

2. Fareed Akthar and Caroline Hahne. Rapidminer 5 operator reference. Rapid-I
GmbH, 2012.

3. Glenn Ammons, Rastislav Bod́ık, and James R. Larus. Mining specifications. In
POPL, pages 4–16, 2002.

4. Michael Bailey, Jon Oberheide, Jon Andersen, Z Morley Mao, Farnam Jahanian,
and Jose Nazario. Automated classification and analysis of internet malware. In
RAID, pages 178–197, 2007.

5. L. Breiman, J. Friedman, R. Olshen, , and C. Stone. Classification and Regression
Trees. Wadsworth, Belmont, CA, 1984.

6. L. Breiman, J.H. Friedman, R.A. Olshen, and C.I. Stone. Classification and re-
gression trees. Wadsworth: Belmont, CA, 1984.

7. Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: behavior-
based malware detection system for Android. In Workshop on Security and privacy
in smartphones and mobile devices, pages 15–26, 2011.

8. Pedro Domingos. The role of Occam’s razor in knowledge discovery. Data Mining
and Knowledge Discovery, 3(4):409–425, 1999. ISSN 1573-756X.

9. Karim O Elish and Mahmoud O Elish. Predicting defect-prone software modules
using support vector machines. Journal of Systems and Software, 81(5):649–660,
2008.

10. Matt Fredrikson, Somesh Jha, Mihai Christodorescu, Reiner Sailer, and Xifeng
Yan. Near-optimal malware specifications from suspicious behaviors. In Security
and Privacy (SP), pages 45–60, 2010.

11. Laurent Hyafil and Ronald L Rivest. Constructing optimal binary decision trees
is np-complete. Information Processing Letters, 5(1):15–17, 1976.

12. G. V. Kass. An exploratory technique for investigating large quantities of categor-
ical data. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29
(2):119–127, 1980.

13. Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,
Xiao-yong Zhou, and XiaoFeng Wang. E↵ective and e�cient malware detection at
the end host. In USENIX Security, pages 351–366, 2009.

14. David Lo, Hong Cheng, Jiawei Han, Siau-Cheng Khoo, and Chengnian Sun. Classi-
fication of software behaviors for failure detection: a discriminative pattern mining
approach. In SIGKDD, pages 557–566, 2009.

15. Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Ma-
chine Learning. The MIT Press, 2012. ISBN 026201825X, 9780262018258.

16. J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
17. Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel Laskov.

Learning and classification of malware behavior. In Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 108–125. Springer, 2008.

18. Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo. A
discriminative model approach for accurate duplicate bug report retrieval. In ICSE,
pages 45–54, 2010.

19. Pang-Ning Tan, Michael Steinbach, Vipin Kumar, et al. Introduction to data min-
ing, volume 1. Pearson Addison Wesley Boston, 2006.

20. Westley Weimer and George C Necula. Mining temporal specifications for error
detection. In TACAS, pages 461–476, 2005.

21. Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu.
Droidmat: Android malware detection through manifest and api calls tracing. In
JCIS, pages 62–69, 2012.

22. Andreas Zeller. Specifications for free. In NFM, pages 2–12, 2011.

	Discriminating Traces with Time

