
Symbolic-Numeric Reachability Analysis of Closed-Loop
Control Software

Aditya Zutshi Sriram Sankaranarayanan
University of Colorado, Boulder

aditya.zutshi,srirams@colorado.edu

Jyotirmoy V. Deshmukh and Xiaoqing Jin
Toyota Technical Center, USA

firstname.lastname@tema.toyota.com

ABSTRACT
We study the problem of falsifying reachability properties of real-
time control software acting in a closed-loop with a given model of
the plant dynamics. Our approach employs numerical techniques
to simulate a plant model, which may be highly nonlinear and hy-
brid, in combination with symbolic simulation of the controller
software. The state-space and input-space of the plant are systemat-
ically searched using a plant abstraction that is implicitly defined
by “quantization” of the plant state, but never explicitly constructed.
Simultaneously, the controller behaviors are explored using a sym-
bolic execution of the control software. On-the-fly exploration of
the overall closed-loop abstraction results in abstract counterexam-
ples, which are used to refine the plant abstraction iteratively until a
concrete violation is found. Empirical evaluation of our approach
shows its promise in treating controller software that has precise, for-
mal semantics, using an exact method such as symbolic execution,
while using numerical simulations to produce abstractions of the
underlying plant model that is often an approximation of the actual
plant. We also discuss a preliminary comparison of our approach
with techniques that are primarily simulation-based.

Keywords
Reachability; Hybrid Systems; Falsification; Program Analyses

1. INTRODUCTION
In this paper, we study the problem of searching for potential

safety violations in real-time controller software by performing a
closed-loop symbolic execution of the software in conjunction with
a model of the plant dynamics being controlled. Such a closed-loop
exploration is quite valuable as it incorporates controller software
implementations rather than abstract, hybrid-automata-based models
commonly used in formal reachability analysis tools. This allows
us to model software centric issues such as fixed point arithmetic,
overflows, division by zero and buffer overflows. At the same time,
our approach uses a model of the plant dynamics that assures us that
bugs found in this process are potentially realizable when deploying
the control system.

However, closed-loop symbolic exploration of a controller with
its accompanying plant model is quite challenging. Plant models are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HSCC’16, April 12-14, 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-3955-1/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2883817.2883819

often nonlinear, and may exhibit hybrid behaviors due to discrete
changes in the operating mode. Most modern controller software
systems have different control regimes that are chosen based on the
environmental conditions, which leads to several control-flow paths
in the control code. Exhaustive exploration of all possible combi-
nations of control-flow paths in the controller and plant dynamics
can become prohibitively complex. Furthermore, in the control
system development process, the control software is an artifact that
is deployed in the final system. The plant model, on the other hand,
is typically an (unsound) approximation of the actual physical en-
vironment, which is hard to characterize exactly. Plant models are
often created for the purposes of evaluation and testing of specific
aspects of the closed-loop system. Therefore, a precise treatment of
the controller semantics is a desirable goal in control verification.
However, a similar precise approach to the plant semantics is often
prohibitively expensive. Finally, our approach focuses primarily on
falsification– a best effort search for counterexamples, rather than
proving the correctness of closed loop systems.

In this work, we consider the control software to be architected as
a set of tasks operating at a fixed rate, where, in each run, the con-
troller reads inputs from the sensors, computes a control value and
outputs this to the plant. We call the period at which the controller
software runs as the controller sampling period. The value output
by the controller is held constant (zero-order hold) for the controller
sampling period, before the controller updates it. The plant model
is provided as a black box specified as a function SIM(x,u, τ) that
simulates the plant model for time τ > 0 starting from a current
state x and under an input u. The underlying plant itself can be
a nonlinear hybrid system, or even a data-driven model such as a
neural network that maps a current state to a next state. We assume
that the n-dimensional state of the plant is fully observable by our
testing framework. We propose an abstraction of the closed-loop
system where: (a) the set of states of the controller is represented by
a formula in a suitable logical theory (such as real arithmetic with
linear constraints), and (b) the plant is abstracted using a cell-to-cell
mapping defined by quantizing real-valued plant states into a finite
representation obtained by a quantization operator [30]. The plant
abstraction is defined as a standard existential abstraction between
quantized states and explored using numerical simulations. The
controller abstraction is exact, as the operation of the controller is
modeled as symbolic execution on the given set of controller states.
As a result, our approach treats the controller semantics precisely
while potentially missing out on possible plant behaviors. However,
any “robust” behavior of the plant can be discovered by increasing
the number of simulations used to build the plant abstraction [30].

The overall approach then explores the joint abstractions of the
controller and plant using a depth-first search or breadth-first search
strategy up to a given time horizon. If the process produces a vio-
lation of the time bounded safety property, we discover an abstract
counterexample trace. A simplistic refinement scheme that increases

I : t ≤ 0.2

F :
ẋ = 0.5 ∗ (u− x)
ṫ = 1

t ≥ 0.2→ u′ := controller(x)
t′ := 0

X0 : x ∈ [55, 75]

Xf : x ≤ 52

Figure 1: The hybrid automaton for the room-heater-thermostat
sampled data system with initial set X0 and unsafe set Xf .

the number of bits retained by the quantization operator is then used
to refine these abstract counterexample further to produce concrete
counterexamples.

We implement the overall approach through the combination
of the symbolic execution tool Pathcrawler [29] with a simula-
tion infrastructure that can handle plant specifications in a vari-
ety of formats including SimulinkTM /StateflowTM models. Using
Pathcrawler allows us to treat the control software as is, including
the ability to handle fixed point arithmetic that is commonly used in
embedded controllers. We compare our approach with simulation-
based approaches on a few challenging controller benchmarks. By
comparing our approach to the standard practice of performing
Monte Carlo simulations with uniform random sampling of the
initial states and inputs, we hope to highlight the underlying diffi-
culty of arriving at an undesirable behavior purely by chance. We
also compare our approach with S-Taliro, a falsification tool that
uses simulations guided by an optimizer attempting to minimize
the “distance” to a bug; where buggy behavior is specified using
Metric Temporal Logic (MTL), and the distance to bug is defined
using robust satisfaction semantics for MTL. We also compare with
an earlier version of our tool, called S3CAM, that is based on an
abstraction-refinement based approach where both the plant and
controller abstractions are constructed using simulations.

On one hand, we find that simulation-based approaches are often
much faster. This is because of the high overhead of symbolic execu-
tions, especially as symbolic execution tools typically use bitvector
theories to reason about arithmetic. On the other, we find examples
where corner-case behaviors in the controller software trigger reach-
ability violations that cannot be found by the other simulation-based
approaches. In doing so, we demonstrate preliminary evidence that
despite the high cost of our approach, it can be potentially valuable
in detecting corner-case violations that can be missed by approaches
primarily based on simulations.

1.1 Motivating Example
Consider the example of a room heating system regulated by

a thermostat that controls the operating mode of the heater. The
plant dynamics are modeled as a single-mode hybrid automaton
with linear dynamics as shown in Fig. 1. The controller action
encapsulated inside the reset map of this automaton, can be one
of three kinds: OFF, REGULAR HEATING, or FAST HEATING. The
control software is a C program shown in Figure 3. This code
incorporates extra control logic to prevent the heater from being
switched between different modes frequently. The controller is run
at 5 Hz (i.e, a controller time-step of 0.2 seconds). Assuming the
initial temperature of the room to be x ∈ [55, 75]◦ F, we try to find a
scenario where the temperature dips too low (x < 52◦ F) within 10s
of system operation. Our implementation runs for about 9 seconds
before discovering a violation. A setting where the initial room
temperature is set to a small range around 69.9◦F exposes the poorly
coded chatter protection. The system chatters, and the thermostat
forces the heater to be non-responsive for too long, causing the
room temperature dip too low. Using 100,000 random simulations
running for 20 minutes (about 130x longer than our approach), we

Figure 2: A plot showing around 100 biased random simulations
with T = 10s. The unsafe regions is below red line at (52◦F).
Biasing towards x ∈ [69.9, 70] helps magnify the unsafe behaviors.

find 45 violations (instances where temperature dips below 52◦F).
This corresponds to roughly a one in 1000 chance of discovering
this violation by Monte Carlo simulations with uniform random
sampling of the initial state.

2. RELATED WORK
Falsification for Hybrid Systems. In industrial-scale hybrid sys-
tems, tools based on falsification of formal safety requirements have
recently emerged as a practical alternative to verification approaches
which seldom scale well for complex systems. A key factor in this
change is that falsification techniques are typically simulation-based
and usually best-effort in nature, often providing only asymptotic or
probabilistic correctness guarantees. S-Taliro [1] and Breach [10]
are tools based on single-shooting based optimization techniques.
These tools use the robust satisfaction semantics of a given temporal
logic requirement as a cost function to guide the underlying opti-
mizer to find initial states and a parameterized input signal that leads
the system to a violation. The term “single shooting” refers to the
fact that the optimizer picks a single initial state and an input signal,
and then computes the cost of the objective function on the resulting
output signal. These tools use a plethora of global optimizers with
powerful heuristics to get around the problem that the cost surface
is typically highly nonlinear, and occasionally discontinuous. In
industrial-scale models, cost surfaces are a challenge for global op-
timizers, as they can be “flat,” i.e., lacking any gradient information
to suggest a search-direction for the optimizer. In our experience,
such scenarios are often encountered when the controller code has
complex Boolean conditions over the continuous state variables or
discrete state variables representing operating modes, as they result
in mixed discrete-continuous optimization problems. Another de-
pendency of the extant falsification tools is a good distance metric
quantifying the distance to bug, which is a challenge to define in
the presence of discrete state variables or operating modes, without
deep internal knowledge of the model structure [24].

Some of the above challenges are mitigated in our previous
work [30]. This technique uses a multiple shooting-based opti-
mization technique, that does not depend on a distance metric on a
hybrid state-space. Unlike most simulation based methods, multiple
shooting utilizes multiple short simulation traces to search for a
falsification. However, this work still treats the entire closed-loop
system as a black-box.

def ine MAX_TEMP (7 0 . 0)
de f ine MIN_TEMP (6 6 . 0)
de f ine CHATTER_LIMIT (2)

i n t c o n t r o l l e r (double room_temp) {
/ / ∗∗
/ / on_ctr , o f f _ c t r : counters to t r ack on / o f f cyc les
/ / c h a t t e r _ d e t e c t _ c t r : counter to t r ack c h a t t e r i n g
/ / previous_command : prev ious command
/ / command : cu r ren t command
/ / u : c o n t r o l i npu t to the heater
/ / ∗∗
s t a t i c i n t on_ctr , o f f _ c t r , c h a t t e r _ d e t e c t _ c t r ;
s t a t i c i n t previous_command , command, u ;

/ / Compute command to heater based on room temperature
i f (room_temp >= MIN_TEMP && room_temp < MAX_TEMP)

command = NORMAL_HEAT;
e lse i f (room_temp >= MAX_TEMP)

command = NO_HEAT;
e lse i f (room_temp < MIN_TEMP)

command = FAST_HEAT;
e lse

command = previous_command ;

/ / Cha t te r ing absent , rese t the counter
i f (o f f _ c t r >= 5 | | on_ct r >= 5)

c h a t t e r _ d e t e c t _ c t r = 0 ;

/ / New command != prev ious command . Poss ib le c h a t t e r i n g
i f (command != previous_command)

c h a t t e r _ d e t e c t _ c t r ++;

/ / Cha t te r ing detected , hold prev ious command
i f (c h a t t e r _ d e t e c t _ c t r > CHATTER_LIMIT)

command = previous_command ;

/ / Increment counters
i f (command == NO_HEAT) {

on_ct r = 0 ;
o f f _ c t r ++;

} e lse {
on_ct r ++;
o f f _ c t r = 0 ;

}

/ / T rans la te command to c o n t r o l i npu t
i f (command == NO_HEAT) u = 20;
i f (command == FAST_HEAT) u = 100;
i f (command == NORMAL_HEAT) u = 70;

r e t u r n u ;
}

Figure 3: C code for the Thermostat. All initial control states are 0.

Rapidly exploring Random Trees [19] (RRTs) have also been used
to falsify safety properties for hybrid systems [2, 11, 17, 23]. RRTs
use a randomized tree-based algorithm to search for a finite sequence
of discrete inputs which can lead to unsafe system states. Recent
advances in the context of falsification include using a combination
of sophisticated heuristics to maximize the exploration of reachable
state-space (coverage), and biasing of the tree towards the goal using
robust satisfaction measures over partial traces, Even though RRTs
have been widely successful in planning, they are not as efficient
in finding a violating trajectory of high dimensional search space
with a highly constrained reachable space (as is the case with under-
actuated systems). They too, operate on a black box assumption.

Symbolic Execution of Programs. Symbolic execution was first
formally proposed in [18]. Since then, with increasingly powerful
constraint solvers, it has evolved into an efficient code analysis tech-
nique, forming the basis for tools such as CUTE [28], KLEE [3],
and Pathcrawler [29]. These tools are usually employed to generate
inputs that maximize the coverage of control-flow paths in the pro-
gram. For large programs, a purely symbolic approach can be quite
inefficient, and a modified version of symbolic execution, where
concrete states are maintained alongside symbolic states is usually

Controller
ρ : (y, s) 7→ (s′,u)

Plant
x′ = SIM(x,u,∆)
y = g(x)

Figure 4: Closed loop composition of a plant and a controller model
with controller sampling period ∆.

preferred. This enables program analyses in the presence of complex
constraints that the constraint solvers can not handle, and efficient
generation of test cases for path coverage, when 100% coverage is
infeasible. Due to their symbolic nature, such techniques can be
fused easily with CEGAR-like techniques [6], which we propose
in this presentation. Recent surveys on symbolic execution can be
found at [4, 5].

Closed Loop Analyses Techniques. Closed loop falsification was
first proposed by Lerda et al. [20, 21], where model checking of
the software was combined with simulation-based systematic ex-
ploration of the physical system. Majumdar et al. [22] proposed
a verification mechanism for linear dynamical systems using sym-
bolic execution of both the controller code and the plant (using
over-approximation of reachable states). In contrast, we provide a
more efficient but best effort approach where the physical dynamics
are treated as a black-box.

3. SAMPLED DATA CONTROL SYSTEM
In this section, we provide useful definitions, including the prob-

lem setup along with the basic abstractions for the controller and the
plant. We are interested in analyzing closed-loop systems consisting
of a plant and a controller, wherein the plant is a physical process
modeled as a dynamical system and the controller is implemented
as a set of software tasks that execute repeatedly with a fixed period
known as the sampling period.

DEFINITION 3.1 (PLANT MODEL). The plant model is described
by a set of plant states X , plant inputs U and plant outputs Y along
with two functions:

• A simulation function SIM : X × U × R≥0 7→ X , where
SIM(x,u, τ) maps the current state x at time t to the next
state x′ at time t+ τ (where τ ≥ 0) with the assumption that
the input signal u(t) is a constant u ∈ U for t ∈ [0, τ).
• An observation function g : X 7→ Y that maps the current

state x to the observable output y = g(x).

The SIM function satisfies the property that SIM(x,u, 0) = x for
all x ∈ X and u ∈ U .

The controller samples the output y of the plant at regular time
instants, and updates the control input u before the next time instant.
Controllers are assumed to have an internal state s that is updated
by the execution of the controller.

DEFINITION 3.2 (CONTROLLER MODEL). A controller is spec-
ified in terms of its input space Y , its internal state space S, and
the controller sampling period ∆. Its semantics are provided by
a function ρ : Y × S 7→ U × S, where the function ρ(y, s) maps
the controller input y (which is the plant output at time t) and in-
ternal state s (at time t) to (s′,u), where s′ and u are the updated
controller state and the input to the plant at time t+ ∆, respectively.

The above mentioned parallel composition of a plant and a con-
troller (Figure 4) is called a Sampled Data Control System (SDCS).

DEFINITION 3.3 (SAMPLED DATA CONTROL SYSTEM). A
sampled data control system (SDCS) consists of two components,
as illustrated in Figure 4. (a) A plant model P described by two
functions SIM and g as in Definition 3.1, and (b) a controller imple-
mentationC described by a program whose semantics are described
by a function ρ as in Definition 3.2. Finally, the closed-loop parallel
composition assumes that the function SIM is always called with
τ = ∆, i.e., the controller sampling period.

In practice, sampled data control systems include A/D (analog-to-
digital) and D/A converters for interfacing between the analog plant
and the digital controller. Errors are often introduced due to the
presence of measurement noise and the quantization of the A/D and
D/A converters. Though we allow our models to have an exogenous
input modeling a bounded controller disturbance, and allow search-
ing over the disturbance-space during the falsification process, for
simplicity of presentation, we omit this from the formalization.

The state of the closed-loop system is given by (x, s,u) where
x ∈ X denotes the plant state, s ∈ S denotes the internal control
state and u ∈ U the plant input. Let x0 be the initial plant state at
t = 0, s0 be the initial controller state and u0 be the initial plant
input or controller output. Given a controller sampling period ∆,
the operational semantics of the closed-loop model can be described
as a countable sequence of plant and controller moves as follows:

(x0, s0,u0) ; (x1, s0,u0)→ (x1, s1,u1) ;
(x2, s1,u1)→ (x2, s2,u2) · · ·

In each of the above states, the index i denotes the real time i∆.
The closed-loop model interleaves two types of moves:

• Plant Moves: (xi, si,ui) ; (xi+1, si,ui), where xi+1 =
SIM(xi,ui,∆) is the next state of the plant after time ∆
has elapsed with input ui. The move has no effect on the
controller state, or the control input to the plant that is held
constant (zero-order hold).
• Control Moves: (xi+1, si,ui) → (xi+1, si+1,ui+1) de-

scribes a move by the controller that denotes an instantaneous
execution of the control program to yield (si+1,ui+1) =
ρ(g(xi+1), si). In our idealized semantics, no time elapse
occurs during this computation.

Note: The idealized semantics ignores the time taken by the con-
troller code to execute. However, when this time is assumed to be
much smaller when compared to the overall time period ∆ and the
plant’s dynamics are assumed to be “slow” enough, the idealized
semantics can be justified due to their simplicity. Failing this, we
may assume a small but known execution time ∆̂ for the controller
and define the controller move to also allow the plant state to change
while the controller finishes its computation:

(x, s,u)→ (x̂, ŝ, û)

wherein x̂ = SIM(x,u, ∆̂) and the remaining parts of the definition
remain intact.

3.1 Software-Centric View of the Controller
So far, we have used a map ρ to describe the controller. In most

industrial embedded systems, implementations of controllers use
imperative programming languages such as C. For the purpose of
our analysis, we present the controller software as a control-flow
graph (CFG), a structure that focusses on the structural organization
of the execution paths in the controller software.

In the following presentation, we omit any discussion on features
such as function calls, arrays, and pointers, but remark that as our
technique uses off-the-shelf analysis tools, such features can be

handled by our implementation. On the other hand, a programming
language like C, allows dynamic memory allocation, recursive exe-
cution without known termination bounds, pointer arithmetic, and
complex data structures. Such features are rarely found in real-time
embedded control software, and we can safely assume that we do not
encounter these in the controllers to be analyzed. We now formalize
the control software as a CFG.

DEFINITION 3.4 (CONTROL-FLOW GRAPH). A control-flow
graph is defined as a tuple 〈V,Vi,Vo, L,E,Φ, l0, lf 〉, where V is
a set of variables, Vi ∈ V and Vo ∈ V are the input and output
subset1. L is a set of nodes (control locations), l0, lf are unique
start and end locations, representing entry and exit points of the
given program respectively. E ⊆ l × l is a finite set of directed
edges, Φ is a function labeling each edge(l, l′) ∈ E with two kinds
of constraints:

1. An assignment constraint has the following form:

(vl′ = e(Vl)) ∧
∧

w∈V\{v}

(wl′ = wl).

It arises from an assignment statement v := e in the program,
where e is the symbolic expression signifying a function over
some subset of variables in V . The constraint itself relates the
value of the modified variable v at location l′ to the values of
the variables at location l through the function e, and asserts
that all other variables remain unchanged.

2. A conditional constraint has one of the following forms:

1.assume(b(Vl)) 2.assume(¬b(Vl)).

It arises from a conditional statement of the form if(b) then
l′ else l′′. Here b is a Boolean-valued symbolic expression2

over the variables. For the edge(l, l′), the first label is used,
wheres for the edge(l, l′′), the second label is used.

DEFINITION 3.5 (CONTROL-FLOW PATH). An entry-exit control-
flow path π is a sequence of nodes, l0, . . . , li, . . . , lf , beginning with
l0 and ending in lf , such that each location pair (li, li+1) ∈ E.

During program execution an edge(l, l′) is taken if its label eval-
uates to true. The conditional label is assigned the valuation of
its expression b or ¬b. The sequence of edges naturally partitions
a program into a set of paths Π = {π1, . . . , πN}. Let each path
πi be described by a path constraint ρi(Vi,Vo) which sequentially
composes the constraints along πi. The path constraint ρi can be
understood intuitively as a combination of (a) a path condition ξ(Vi)
on the program inputs which decides if the path is feasible and (b) a
path function Vo := fi(Vi) that describes the updates through the
assignment statements along the path.

We can now summarize the program as the union of all possible
control-flow paths ρ =

⋃N
i=1 ρi. It can be easily shown that this

union of path constraints exhaustively covers the entire set of values
for Vi, and thus, ρ(Vi,Vo) can be written as a function on program
inputs Vi := ρi(Vi). In the present context, we can formulate
the piecewise function which computes the controller move for a
controller with N paths as follows:

ρ(y, s) =

 f1(y, s) if ξ1(y, s)
. . .
fN (y, s) if ξN (y, s)

(1)

1Note that some of these variables represent the internal state of the
controller.
2It is assumed that b is side-effect free, i.e., it does not modify the
values of the program variables.

This is accomplished by using symbolic execution to find the
path condition ξi and path function fi for every path π. In general,
a software program might not terminate due to the presence of an
infinite path. Additionally, the number of paths in a program can be
infinite. It is also non-trivial to determine such cases. Fortunately,
best practices in embedded control software discourage the use of
jump statements and unbounded loops. Most loops have specified,
fixed bounds, and we assume that the same rule is true for the
controllers that we encounter. Under this assumption, there is a
finite number of finite length control paths in the controller software.

4. IMPLICIT QUANTIZED ABSTRACTION
We now consider the abstraction of the closed loop system by

defining abstractions of the plant and the controller state spaces.

4.1 Plant Abstraction
The abstraction of the plant is defined by a tiling of the state-

state and the control-input space3 X × U into a set of cells C :
{C1, C2, . . .}. The set C is a partition on X × U , i.e., the cells are
pairwise disjointCi∩Cj 6= ∅ if i 6= j, and their union

⋃
Cj∈C Cj is

equal toX ×U . Rather than performing an explicit construction of a
tiling of X ×U , we define the tiling implicitly through quantization.

We introduce a quantization function which essentially truncates
the decimal representation of the state and control-input to a given
level of precision d (i.e., digits after the decimal point).

DEFINITION 4.1 (d-PRECISE QUANTIZATION). A d-precise
quantization is a function QUANTd that maps a state-input pair
(x,u) to a quantized pair (x̂, û) such that:

QUANTd(x,u) =
1

10d

(
b10dxc, b10duc

)
(2)

It is easy to see that the d-precise quantization function induces
an equivalence relation ≡d, such that:

(x1,u1) ≡d (x2,u2) iff QUANTd(x1,u1) = QUANTd(x2,u2) .

We observe that the quotient set (X ×U)/≡d is a set of cells defined
as follows. Let j be a vector of integers, with dimension of j equal
to the sum of dimensions of X and U . Let Cj be defined as:

Cj = {(x,u) | QUANTd(x,u) =
j

10d
} (3)

Then, the set Cj is an element of the quotient set (X × U)/≡d ,
with the representative element being j

10d . It is easy to see that the
set of cellsCj forms a tiling; we call this d-quantized tiling, with≡d

as the cell-equivalence relation. In simple terms, given a d, for any
state-input pair (x,u), the index of the cell to which (x,u) belongs
can be obtained by simply truncating the decimal representation of
(x,u) to d digits and multiplying the result by 10d. For a given
d-quantized tiling, checking if two states belong to the same cell,
simply involves checking if their first d digits in decimal notation
are the same.

DEFINITION 4.2 (d-SAMPLING). Given a d-quantized tiling
C and a cell Cj in the tiling, a d-sampling is defined as a random
sample of elements of Cj.

We observe that d-sampling is fairly trivial to obtain. If the
number of dimensions of the representative element ofCj is (n+m),
then we take (n+m) random strings of numbers and append them
to each dimension in j

10d to get one new random sample. We
3The quantization is performed only for continuous values and
discrete values are treated as is.

repeat this process till we get a set of desired size. If each random
string generation uses a uniform random sampling, the resulting set
contains points that have uniform distribution.

Given a tiling, the plant abstraction is now defined as an existential
abstraction that connects two cells. We formally define this below:

DEFINITION 4.3. Let C be a d-quantized tiling. The d-quantized
tiling-based plant abstraction (denoted Pd) is given by a graph
(V,E), where V = C, and the set of edges E is defined such that
(Cj, Ck) ∈ E iff: there is a state-input pair (x,u) ∈ Cj and a
state-input pair (x′,u) ∈ Ck such that x′ = SIM(x,u, τ).

In other words, cells Cj and Ck are connected if there is some
source state and source input such that the destination state can be
reached from the source state using simulation under the action of
the source input. It is easy to show that the abstraction Pd′ refines
Pd whenever d′ > d. I.e, keeping more digits around produces a
finer abstraction of the system.

So far, we have implicitly defined the abstraction of the plant.
However, we have not yet provided the means to construct these
abstractions for a given plant model. We now present the use of
numerical simulations to explore Pd.

On-the-fly exploration of the Plant Abstraction: A primitive opera-
tion involved in the exploration is to check for a given pair of cells
Cj and Ck whether the edge from Cj to Ck exists in the abstrac-
tion. In the absence of simplifying assumptions about the nature of
the plant model, this problem is equivalent to the general nonlinear
reachability problem, and is undecidable in general. In our setup, we
have made no assumptions beyond the efficient computation of the
SIM function that defines the plant’s discrete time behavior. There-
fore, we resort to a numerical approach called scatter-and-simulate,
first introduced in previous work by some of the authors [30]:

1. Obtain a d-sampling of Cj of sizeN ,N > 0.
2. For each sampled state x` in the d-sampling, compute x′` =

SIM(x`,u`, τ).
3. Check if (x′`,u`) ∈ Ck for any ` ∈ [1,N]. If yes, then Cj

must have an edge to Ck in Pd. Otherwise, Cj may not have
an edge to Ck.

In practice, the sampling ofN states can either use a deterministic
sampling scheme or the samples can be drawn uniformly at random
from Ci. The value ofN itself is a parameter that can be adjusted
to achieve a tradeoff between time and precision.

An abstract edge from Cj to Ck is robust iff there exist a con-
nected subset C ⊆ Cj of nonzero volume such that every state
(x,u) ∈ C leads to a state in Ck upon the application of the SIM
function.

It is shown in our previous work (and elsewhere) that for uniform
sampling of Cj, as N increases all robust edges are found with
probability 1. However, there may be non-robust plant edges that
cannot be discovered by the procedure no matter how large N
is. This is a key theoretical limitation caused by our reliance on
black-box models and simulations. In practice, however, non-robust
plant edges seldom exist. For instance, the problem of simulating a
plant model with such non-robust edges is already nontrivial in the
presence of numerical errors.

Another operation of interest over the d-quantized tiling is to find
all neighbors Ck ∈ C of a given cell Cj such that (Cj, Ck) ∈ E.
The process of scatter and simulate is trivially modified to collect
all the reached cells Ck.

To define the controller abstraction, we need to similarly define
a quantization function on the plant output y, such that Cy =
QUANTd(y). This will allow us to reason over abstract plant outputs
in the same way as abstract plant states C.

4.2 Controller Abstraction
Given a CFG with N control-flow paths π1, . . . , πN , recall that

we have a set of concrete partial path functions ρ1, . . . , ρN whose
union yields the overall semantics ρ of the program as in Eq. (1).

Most real-world controllers use nonlinear expressions and con-
ditions in assignment and conditional statements respectively. Per-
forming analyses over such controller software (e.g. to perform
symbolic execution), requires solvers capable of reasoning over
such theories. Unfortunately, reasoning about non-polynomial arith-
metic (such as transcendentals) is undecidable [26], while reasoning
about polynomial arithmetic, while decidable, is computationally
expensive. A common approach taken in traditional software veri-
fication (such as in abstract interpretation [7]) is to have conserva-
tive over-approximation of such operations using efficient logical
theories (such as linear arithmetic). In this context, we need to
over-approximate each path constraint ρi to obtain path constraint
ρ̂i that is expressible using the theory of linear arithmetic.

This is typically formalized using an abstraction function α that
maps path constraints ρj into abstraction path constraints ρ̂j : α(ρj)
that satisfy the following property: ρj(y, s) ⊆ ρ̂j(y, s). The overall
abstract controller relation ρ̂ is simply the union of ρ̂j for each path
πj in the control code. We can abuse notation and use ρ̂(Cy, ϕ) to
denote the action of the (abstract) controller on a given cell Cy from
the tiling-based plant abstraction, and an abstract set of controller
states ϕ. The result yields a set of control inputs U and updated
controller states ψ; we formalize the soundness of the abstraction in
the following assumption:

ASSUMPTION 4.1 (CONTROLLER ABSTRACTION SOUNDNESS).
Suppose in the abstract semantics, we have (U,ψ) = ρ̂(Cy, ϕ),
then for all plant outputs y ∈ Cy and all controller states s ∈ ϕ,
the concrete values (u′, s′) = ρ(y, s) are contained in their respec-
tive abstract states: u′ ∈ U and s′ ∈ ψ.

Having defined an abstraction of the controller semantics, the goal
is to compute (U,ψ) = ρ̂(Cy, ϕ). This is achieved through an ab-
stract symbolic execution of the program. One way to achieve this is
by precomputing each relation ρ̂j for path πj as a tuple of assertions
(ξj , Rj , Tj), where ξj encodes the abstract path condition on Cy

and ϕ, and Rj and Tj are projections of ρ̂(Cy, ϕ) on the controller
states and controller outputs (i.e. plant inputs) respectively.

5. CLOSED LOOP FALSIFICATION
Having defined the plant and controller abstractions, we now

explore a series of abstract states to analyze the safety of a plant
and controller state combinations. The approach presented here can
extend to more complex bounded-time temporal logic properties by
instrumenting the system with a temporal logic monitor [13–15],
and searching for the reachability of a target state in the monitor.

DEFINITION 5.1 (CLOSED LOOP ABSTRACT STATE). The
abstract state of the overall closed-loop system is a combination
(C,ϕ), where C is an abstract plant cell and ϕ is an abstract
controller state, i.e., a logical predicate specifying a set of controller
states.

The closed-loop system abstraction is explored in two phases:

• We consider an abstract plant move (C,ϕ) ;A (C′, ϕ)
wherein (C,C′) ∈ EA belongs to the abstract edge rela-
tion between cells. The new cell C′ is generated using the
simulate-and-scatter procedure that samples cell C and per-
forms a concrete simulation using the plant’s SIM function.
• Next, we consider a controller move (C′, ϕ) →A (C′′, ψ)

wherein we compute (U,ψ) = ρ̂(Cy, ϕ) and obtain a new cell

C′′ = QUANTd(x′,u′) for some x′ ∈ C′, and some u′ ∈ U
by quantizing the new control inputs with the plant states.
The updated controller states are now represented by ψ. Also,
Cy = QUANTd(g(x′)).

The two moves combine to give a closed loop move of the system:
(C,ϕ)

∆−→A (C′′, ϕ′).This can now be used for computing the set of
reachable abstract states R∆ : {(C′′, ϕ′) | (C,ϕ)

∆−→A (C′′, ϕ′)}
a one timestep (τ = ∆). We now present this combined closed loop
step as an algorithm.

Algorithm 1: Closed Loop Execution on Abstract States
Input: Abstract states (C,ϕ), plant input u, abstract plant

output Cy , plant simulator SIM, controller summary ρ
Output: Reachable abstract states R∆

Xu := {(x1,u1), . . . , (xN ,uN)} = d_sample(C,N)1
X ′u := {x′ | x′ = SIM(x,u,∆) ∧ (x,u) ∈ Xu}2
Y := {Cy | Cy = QUANTd(g(x′)) ∧ x′ ∈ X ′u}3
SϕY := {(U,ψ) | (U,ψ) = ρ̂(Cy, ϕ) ∧ Cy ∈ Y }4
R∆ := {(C′′, ψ) | C′′ = QUANTd(x′,u′) ∧ u′ =5
sample(U) ∧ (U,ψ) ∈ SϕY ∧ x′ ∈ X ′u}

To compute the plant step, first d-sampling is used to obtain N
state-input pairs which are then supplied to SIM to compute a rep-
resentative set of next plant states X ′u . The corresponding set of
representative plant outputs are also computed using g() and are
then quantized to get Y . Using this set of abstract plant outputs,
and controller function ρ̂ new abstract controller states and outputs
are computed. The controller inputs u are then sampled (using a
constraint solver, as discussed in Sec. 6). Finally, R∆ is built by
quantizing plant state-input (x′,u′) pair. The overall search algo-
rithm scatter-and-simulate remains the same as explained in [30].

Thus, in practice, exploring the abstraction is a combination
of exploring the plant abstraction through a numerical simulation
procedure to compute the resulting cells and then running an abstract
symbolic execution of the controller code. In doing so, the robust
edges in the plant are captured whereas all possible moves by the
controller are taken into account.

6. IMPLEMENTATION
We have prototyped the presented falsification technique as S3CAMX,

a falsification tool which uses scatter-and-simulate combined with
symbolic execution. The primary objective of S3CAMX is to
demonstrate the feasibility of testing closed loop controller mod-
els designed in popular industrial frameworks like MatlabTM and
SimulinkTM , as well as legacy control systems.

S3CAMX takes in the controller source code in C, a SIM function
representing the plant model, and the test description. The test de-
scription specifies the initial states and error states (safety property)
for the system under test, its sampling period ∆ and the time hori-
zon for the test. It also specifies the initial abstraction parameters, a
detailed discussion on their description and selection can be found
in our previous work [30].

6.1 Controller Description
We assume a controller architecture where the inter-

face to the controller is through a function with signature
controller_step(input, output), corresponding to the controller
execution on a set of plant outputs. input to the controller
encapsulates the (a) plant output y, (b) previous controller state
s and (c) exogenous controller input w (disturbances/exogenous
inputs). The controller returns a structured output consisting
of (a) controller’s next state and (b) control input (to the plant).
This setup is quite generic, and follows a similar format used

i n t c o n t r o l l e r () {
s t a t i c i n t v a r ;
v a r += 1 ;
r e t u r n 0 ;

}

Listing 1: Present

i n t c o n t r o l l e r (i n t v a r) {
i n t v a r ;
v a r += 1 ;
r e t u r n v a r ;

}

Listing 2: Absent

Figure 5: Listing with and without persistent variables.

by Embedded CoderTM , MatlabTM ’s automatic code generation
toolbox to generate C code.

We make a special distinction between the persistent (‘global’)
state variables of the controller and ‘local’ variables that are reini-
tialized each time the controller is invoked. In typical C software,
persistent variables are usually easy to identify as their declaration
is qualified by global or static. In a SimulinkTM model, persistent
variables are associated with data-store blocks with dedicated read
and write blocks to access their values. Given a control software
with persistent states, it can be transformed to one without them by
converting the persistent variables into function parameters. The
above C code snippets in Fig. 5 illustrate the transformation of a
function with persistent variables to an equivalent function with only
local variables.

6.2 Controller Preprocessing
Before beginning the analyses, S3CAMX transforms the con-

troller using a symbolic execution engine to a set of all possible
control-flow paths in the controller. The paths are represented by
their associated path constraints and update functions. This enumer-
ation is expensive and carried only once for a given controller. Once
pre-processed, a controller move involves checking the feasibility
of each path constraint and if feasible, computing the valuations of
updated state and output. We use Z3 [8], an SMT solver to check
feasibility and compute a concrete satisfying assignment on the con-
troller’s input (y, s). The update function is then used to compute
(s′,u). Multiple satisfying assignments can be obtained by adding
blocking constraints.

Pathcrawler [29] is used as the symbolic executor of choice. It
can work with constraints over floating points in C programs and
uses ECLiPSe [27] as its constraint solver. At the time of implemen-
tation, Z3 did not support floating point arithmetic and the theory
of reals was used instead. Pathcrawler and Z3 provide for efficient
linear constraint solving, but limit the kind of non-linear constraints
which can be handled in the controller. Using symbolic execution,
we can extend the current implementation to catch program bugs
like division by zero, out of bounds access, and other common
programming bugs in the controller. As a remark, we also tried
KLEE [3], but unlike Pathcrawler it uses bitvector theories to model
C programs. This implies that it can not handle floating point arith-
metic, and results in bitvector constraints which are comparatively
inefficient to solve.

We note that static generation of all controller paths is not always
efficient. In practice, controller code base can be quite large and
enumerating all paths is an expensive and potentially wasteful pro-
cess. This can be in part remedied by not doing a plant agnostic path
enumeration which can result infeasible paths. Instead, the domain
of the inputs to the controller can be constrained appropriately using
knowledge about the relevant plant model, thus reducing the number
of generated controller paths. A better solution will be a tighter
integration of the symbolic execution engine to enable a budget
constrained dynamic path exploration using suitable heuristics.

6.3 Plant Description
The current version of the prototype can directly use plants mod-

eled in Python or MatlabTM by using the provided interface. Other
frameworks can be easily accommodated by wrapping their respec-
tive simulation functionality within a layer of Python. The signature

Controller
Code

Controller
ρ̂ : (Cy, ϕ) 7→ (ψ,U)

Plant
x′ = SIM(x,u,∆)
y = g(x)

Symbolic
Execution

Cy SAMPLE

Cx SAMPLE

ϕ

u

Cx′

QUANT

Cy

QUANT

ψ

U

SAMPLE_SMT

Figure 6: Closed loop symbolic execution.

of the SIM function is of the form x′ = SIM(x,u, t) with t,x,u,x′

as defined. The implementation details of the algorithm used to com-
pute the plant abstraction can be found in our previous work [30].

6.4 Closed Loop Execution
The closed loop analyses involves computing the controller and

the plant move in lock step Fig. 6. The controller code is first
abstracted using symbolic execution to obtain controller ρ̂. Given a
set of abstract plant states Cx and inputs u and controller state ϕ,
the closed loop step proceeds with the plant step. Cx is sampled and
along with u simulated to obtain x′ and y, which are then quantized
to getCx′

andCy respectively. Next, the controller step takes inCy

and the given ϕ to compute ψ and U . Using an SMT solver, we find
satisfying assignments to the constraints and in essence, compute
representative samples for U as u. The implementation differs from
the theory here, where we quantize the samples u and then sample
again to get additional samples. This repeats for n steps, where
n =

⌈
T
∆

⌉
and T is the time horizon specified by the given property.

6.5 Constraint Blowup
The symbolic treatment of the controller code has benefits of be-

ing precise, but as the case with similar methodologies like bounded
model checking, automatic test generation, and more, suffers from
‘constraint blowup’. Each controller move requires an ‘unrolling’
of the controller in time, tracking the associated constraints. The
constraints accumulate width each time step and become very ineffi-
cient to solve. Even though SMT solvers are quite efficient, large
constraints can make the entire analyses unusable. We address this
by providing an option of selecting the ‘history depth’ in S3CAMX.
Once the given depth is exceeded, the symbolic controller states
are concretized, and the accumulated symbolic constraints (history)
are purged. This is done by selecting some representative concrete
controller states instead of maintaining complex symbolic represen-
tation of all reachable controller states. To clarify, it does not limit
the length of the abstract trajectories which can be discovered. For
all the presented benchmarks, a depth of 1 was used.

7. EXPERIMENTAL RESULTS
We compare our tool S3CAMX in Table 2 against S-Taliro and

our previous approach S3CAM which considers the entire com-
posed sampled data controller system as a black-box. As in our
previous work [30], we also provide a reference for the difficulty of
falsification using random testing. As before, random testing uses
100,000 simulations on most benchmarks (except for AFC). Every
time bounded property was tested to the time horizon specified next

Table 1: Summary of benchmarks. Each benchmark mentions the sampling period of the controller ∆ and its description is split into constituent
controller and plant. The controller is described by number of States, exogenous inputs (Ex. Ip), lines of code (LOC), symbolic paths in the
(Paths) and time taken to generate them (SymEx Time) in minutes. The plant is described by the language used to implement its model (Impl.),
number of modes if its a hybrid automaton or the number of blocks if its a SimulinkTM model (Modes/Blocks), continuous states (C. States)

Benchmark ∆(s) Controller Plant

States Ex. Ip LOC Paths SymEx Time Impl. Plant Modes/Blocks C. States

SPI 1 0 1 13 3 0 Python 1 1
Heater 0.2 4 0 59 26 0 Python 3 1
Heat 0.5 3 0 37 312 1 Python 6 3
DC Motor 0.02 1 1 29 3 0 Python 0 2
FuzzyC 0.01 0 0 218 208 236 Python 0 3
MRS 1 0 8 29 9 0 Python 0 4
AFC 0.01 7 0 243 120 40 Simulink 170 12

Table 2: Current tool S3CAMX, compared with S-Taliro and our previous tool S3CAM. All processes were run as single threaded on Ubuntu
12.04, running on an Intel i7-2820QM CPU @2.30GHz with 8GB RAM. All times are in minutes unless mentioned as seconds(s).

Benchmark Time Horizon Random Testing S-Taliro S3CAM S3CAMX

T (s) Num. Vio T Num. Succ Tavg Num. Succ Tavg Num. Succ Tavg

SPI(P1) 50 348/100k 17.5 10 0.36 10 0.01 10 0.22
SPI(P2) 200 33 /100k 60.9 10 19.59 10 0.03 10 1.31
SPI(P3) 500 0 /100k 154.4 0 TO 10 0.08 10 8.39
Heater 2 47 /100k 3.9 10 0.48 10 0.22 10 0.06
Heat 10 156/100k 39.0 10 11.78 10 0.06 10 0.16
DC Motor 1 0 /100k 45.0 0 TO 0 TO 10 0.63
FuzzyC 0.1 6 /100k 10.1 10 0.27 10 0.03 10 1.59
MRS 1 2 0 /100k 0.6 0 TO 0 TO 10 0.18
MRS 2 2 0 /100k 0.4 0 TO 0 TO 10 0.11
MRS 3 2 0 /100k 0.4 0 TO 0 TO 10 0.43
AFC 12 1 /100 238.7 10 0.25 10 16.15 10 13.45

to the benchmark. It should be noted that S3CAMX is a prototype in
early stages and optimization and parallelization have been deferred
to future releases.

To compare against random testing we used a fixed number of
random simulations (ns) and recorded the number of violating (nv)
traces. This is mentioned as (nv/ns) along with the time taken to
run the simulations. Next to it, is the average time taken for 10 runs
by S-Taliro, S3CAM and S3CAMX to find a falsification. This is
required due to the randomized nature of all three. The run of the
tools is defined as the time to find a falsification, permitting internal
restart (multi start strategy is often combined with random search).
If a run takes more than 1 hour to finish, we consider it as a time out.
If all 10 runs time out, we mention TO as the time taken and 0 as
the number of successful runs.

The implementation was benchmarked on several examples men-
tioned in Table 1, ranging from a simple PI controlled DC Mo-
tor to a complex air fuel controller for a powertrain described in
SimulinkTM . Against each system tested, we mention its sampling
period ∆ and the controller and plant characteristics. For the former,
this includes the number of states, exogenous inputs, lines of code,
symbolic controller paths statically discovered by Pathcrawler and
the time taken to do so. The plant is characterized by the imple-
mentation language for the simulator (Python or SimulinkTM), the
number of discrete modes if the plant is a hybrid system, otherwise
the number of SimulinkTM blocks, and lastly, the number of contin-
uous states (plants can also have exogenous inputs [30]. A detailed
description for each of the benchmark follows.

7.1 Sampled Polarity Integrator System
The SPI benchmark was used in [11] to highlight the difficulty

faced by Markov-chain Monte-Carlo based random testing tech-
niques, and optimization-guided techniques such as RRT-REX and
S-TaLiRo. The system has an exogenous input w, and a single

continuous state x which after every ∆ = 1 seconds gets reset to
either -1, 0, or 1 if the input w < 0, w = 0 or w > 0 respectively.
We split this system into a plant and a controller, where the con-
troller computes u = −1, 0, 1 based upon its exogenous input w as
u = sign(w). The continuous state of the plant evolves as ẋ = u.
We then check the three properties P1 : x < 20, P2 : x < 50 and
P3 : x < 150 for time horizons 50, 200, and 500 respectively. For
all properties S3CAM takes only a few seconds. S3CAMX takes a
bit longer due constraint solving, but, S-Taliro takes significantly
longer and times out for P3. Similar difficulty is faced by RRT-
Rex [11]. This example brings out the difference in our iterative
approach when compared to directed random search.

7.2 Heater
The heater system introduced in Sec. 1.1 consists of a room, and

a heater controlled by a thermostat. The heater has 3 operating
modes; off, regular heating, and fast heating. It can be switched
between modes by the thermostat in order to reach and maintain a
comfortable temperature in the room. Specifically, the thermostat is
designed to sense the room temperature after every ∆ = 0.2s and
maintain a temperature of around 70◦F . It also has built-in logic
to prevent chattering, i.e., avoiding rapid switching of the heater
between modes. The heater is modeled as a hybrid system with
linear dynamics, with 1 continuous state and three modes. The
thermostat’s software controller has 26 control-flow paths with 4
states which keep track of recent mode switchings. The property
we seek to falsify is that the room-temperature TF is always greater
than 52◦F . We are able to find the falsification trace, which upon
investigation indicates the failure of the chatter-prevention logic in
a very narrow range of possible initial settings for the ambient room
temperature (approx.) TF0 ∈ [69.9, 70.0]. Though all tools find
the falsification in less than half a minute, S3CAMX is an order of
magnitude faster than both S3CAM and S-Taliro.

7.3 Heat benchmarks
The heat benchmarks were proposed in [12], and describe a sce-

nario where a limited number of heaters h are being used to heat r
rooms, where h < r. The control system can shuffle the heaters or
turn them on/off in order to maintain a comfortable temperature in
all rooms. We are interested in finding scenarios where the controller
fails and the temperature of any room dips below a certain threshold.
We choose the first instance in the suite of heat benchmarks for case
study; this instance has 3 rooms and 1 heater. The controller soft-
ware has 312 control-flow paths and 3 states tracking each room’s
temperature. Correspondingly, the plant has 3 continuous states and
6 modes. Each mode is characterized by the heater’s location and
it’s discrete state (on/off). We try to falsify the property that temper-
ature of the first room does not drop below 17.23◦C. Interestingly,
S3CAMX performs comparably to S3CAM even though the control
software has 312 paths. Both tools are faster than S-Taliro and
finish in a few seconds, where as S-Taliro requires a few minutes
for falsification.

7.4 DC Motor
This example illustrates the search for errors in the presence of

controller disturbance. The DC motor is a linear continuous system
with armature current i and angular velocity θ̇. It is controlled by
PI controller with saturation which results in 3 control-flow paths.
The bounded additive disturbance in the controller induces error
in the sensed plant outputs. We parameterize the disturbance as a
piecewise constant signal. We wish the system to never enter the
following region of the state-space: i ∈ [1, 1.2], θ̇ ∈ [10, 11]. We
choose this set by design; it is designed to be very hard to reach using
random simulations. S3CAMX can, however, find a falsification,
demonstrating the effectiveness of symbolic execution in finding a
sequence of inputs that lead to a violation. In comparison, S-Taliro
and our previous technique S3CAM fail to find a violation.

7.5 Fuzzy Control of Inverted Pendulum
Rule based controllers, such as ones implemented using fuzzy

logic, are an interesting challenge for symbolic execution based
analyses as they typically have a large number of control-flow paths.
We consider an example from [25], where the controller tries to
stabilize a nonlinear inverted pendulum balanced on a cart using
a 5X5 rule matrix. The C code 4 has 218 lines describing 208
control-flow paths. The controller is stateless and computes the
actuation force by classifying the current plant state (θ and θ̇) and
selecting a corresponding control output from a lookup table. The
safety property defines bounds on states, which when exceeded,
indicate undesirable transients or possible unstable behaviors. S-
Taliro finds a falsifying trajectory faster than S3CAMX, but not as
fast as S3CAM. This result is nevertheless encouraging as it shows
the ability of S3CAMX to analyze a large number of control-flow
paths and yet be successful at finding a falsifying trajectory.

7.6 Mode-Specific Reference Selection (MRS)
These are a set of 3 benchmarks from [9, 11]. The benchmarks

represent distinctive features from proprietary models of automotive
controllers, and they highlight issues faced by optimization-guided
methods. The systems have simple nonlinear dynamics but complex
combinatorial Boolean logic over 8 exogenous inputs. To make
the system amenable to S3CAMX, we split the discrete nonlinear
dynamics into a plant, and the rest (linear combinatorial logic)
becomes the controller. The controller remains the same across
the 3 benchmarks, but the plant varies. The mode selection logic
is now part of the controller which takes in 8 inputs w1, . . . , w8,
where each wi ∈ [0, 100] and computes u. The 3 plants have
4http://www2.ece.ohio-state.edu/~passino/fuzzycontrol.html

discrete time nonlinear dynamics where the evolution is governed
by x+ = f(x, u), where fi(x, u) comprises of polynomials of up to
degree 3 and trigonometric functions in x. The falsification can only
be found in the mode which is triggered when

∧
i∈[1..4] w2i(t) >

90∧w2i−1(t) < 10. The probability of triggering the mode is thus
a meager 10−8. Such a combinatorial search is not amenable to
sampling-based searches, and both S-Taliro and S3CAM fail. On
the other hand, S3CAMX can falsify the property in under a minute.

7.7 Powertrain Control Benchmark
We use the most complex version of the abstract fuel control

system benchmark (AFC) presented in [16]. It represents a complex
closed loop control system modeling a plant with hybrid dynamics
controlled by a PI controller. The original benchmark has both the
plant and the controller implemented in SimulinkTM . To test it using
our approach, we use Embedded CoderTM to generate C code for
the controller block, which is then hand-tuned to satisfy controller
interface requirements. Due to the observability requirement dis-
cussed in Sec. 6, the plant model is modified by simplifying the
variable transport delay block to a first order filter. The property
checked is a modified form of the ‘Worst-case excursions in the
normal mode’ property in [16], i.e., we try to falsify µ >= 0.02
while t ∈ [0, 1.0]. The search is over the original parameters: pedal
frequency, pedal amplitude and engine speed. Both S3CAMX and
S3CAM take longer than S-Taliro to find the falsification due to the
inefficient MatlabTM interface, as explained below.

In summary, symbolic execution being an expensive operation,
increases the time taken by S3CAMX to find a falsification when
compared with S3CAM. However, it also enables it to find falsi-
fications where S3CAM completely fails. Specifically, in cases
where the control program has non-robust paths and corner cases
(hard to cover behaviors using a uniform random distribution) which
lead to the violation, S3CAMX should perform better than a purely
sampling based search like S3CAM. This is due to the discussed
exhaustive exploration by symbolic execution of all possible control
paths for a given set of plant states. This is exemplified by the DC
Motor and MRS benchmarks. On the other hand, when the above
is not the case, and controller paths leading to the violation can be
exercised using uniform random sampling alone. This is evident by
the benchmarks: SPI, Heat and FuzzyC.

S3CAM fares better than S-Taliro in all benchmarks except
AFC (which involves a plant model in SimulinkTM /MatlabTM).
This can be partly attributed to the inefficient interface be-
tween S3CAM/S3CAMX and MatlabTM – our tool has a few lay-
ers of communication and indirection to get the Python imple-
mentation to communicate with the simulation infrastructure in
SimulinkTM /MatlabTM . Part of the inefficiency can be attributed to
the SimulinkTM SIM function. Each call to SIMin SimulinkTM has a
setup time required for model preprocessing and compilation; this
makes repeated simulations very expensive. This can be clearly
seen in the amount of time taken for 100 random simulations of
the AFC model. The latter issue has been recently addressed in a
newer version of SimulinkTM (R2015b) through the introduction of
a feature fast restart which reduces the setup time to some extent.

8. CONCLUSIONS
In conclusion we presented a technique to falsify properties of

control systems described by implementations of control software
and models of physical systems (plant). A combination of numerical
simulations to explore the implicit plant abstraction and symbolic
execution to maximize path coverage on control code was used to
find abstract error traces. These were then iteratively concretized to
yield reproducible error traces.

Results on benchmarks, ranging from the simple to the complex
ones implemented in SimulinkTM were presented and compared
with random testing, S-Taliro, and our previous, purely numerical
technique S3CAM. We successfully demonstrated the effectiveness
of symbolic execution in detecting corner cases in controller code.
The implementation along with the benchmarks is made public
at https://github.com/zutshi/S3CAMX.

Acknowledgements
We thank James Kapinski for countless useful discussions which
helped shape this work. Zutshi and Sankaranarayanan were sup-
ported, in part, by the US National Science Foundation(NSF) under
award number CNS-1319457 and, in part, by Toyota Engineering
and Manufacturing North America(TEMA). All opinions are those
of the authors and not necessarily of the NSF or TEMA.

9. REFERENCES
[1] Y. Annapureddy, C. Liu, G. Fainekos, and

S. Sankaranarayanan. S-taliro: A tool for temporal logic
falsification for hybrid systems. Proc. TACAS, pages 254–257,
2011.

[2] A. Bhatia and E. Frazzoli. Incremental search methods for
reachability analysis of continuous and hybrid systems. Proc.
of HSCC, pages 451–471, 2004.

[3] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In OSDI, volume 8, pages 209–224, 2008.

[4] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen,
N. Tillmann, and W. Visser. Symbolic execution for software
testing in practice: preliminary assessment. In Proceedings of
the 33rd International Conference on Software Engineering,
pages 1066–1071. ACM, 2011.

[5] C. Cadar and K. Sen. Symbolic execution for software testing:
three decades later. Communications of the ACM,
56(2):82–90, 2013.

[6] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine,
O. Stursberg, and M. Theobald. Abstraction and
counterexample-guided refinement in model checking of
hybrid systems. International Journal of Foundations of
Computer Science, 14(04):583–604, 2003.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Conference Record of the
Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 238–252, Los
Angeles, California, 1977. ACM Press, New York, NY.

[8] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[9] J. Deshmukh, X. Jin, J. Kapinski, and O. Maler. Stochastic
local search for falsification of hybrid systems. In Automated
Technology for Verification and Analysis, pages 500–517.
Springer, 2015.

[10] A. Donzé. Breach, a toolbox for verification and parameter
synthesis of hybrid systems. In Proc. CAV, pages 167–170,
2010.

[11] T. Dreossi, T. Dang, A. Donzé, J. Kapinski, X. Jin, and J. V.
Deshmukh. Efficient guiding strategies for testing of temporal
properties of hybrid systems. In NASA Formal Methods, pages
127–142. Springer, 2015.

[12] A. Fehnker and F. Ivanĉić. Benchmarks for hybrid systems
verification. In Proc. of HSCC, volume 2993, pages 326–341,
2004.

[13] D. Giannakopoulou and K. Havelund. Automata-based
verification of temporal properties on running programs. In
Automated Software Engineering, 2001.(ASE 2001).
Proceedings. 16th Annual International Conference on, pages
412–416. IEEE, 2001.

[14] K. Havelund and G. Roşu. Monitoring programs using
rewriting. In Automated Software Engineering, 2001.(ASE
2001). Proceedings. 16th Annual International Conference on,
pages 135–143. IEEE, 2001.

[15] K. Havelund and G. Roşu. Synthesizing monitors for safety
properties. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 342–356. Springer, 2002.

[16] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts.
Powertrain control verification benchmark. In Proceedings of
the 17th international conference on Hybrid systems:
computation and control, pages 253–262. ACM, 2014.

[17] J. Kim, J. M. Esposito, and V. Kumar. An RRT-based
algorithm for testing and validating multi-robot controllers.
Technical report, DTIC Document, 2005.

[18] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[19] S. M. LaValle. Rapidly-exploring random trees a new tool for
path planning. Technical Report TR 98-11, Computer Science
Dept., Iowa State University, Ames, Iowa, 1998.

[20] F. Lerda, J. Kapinski, E. Clarke, and B. Krogh. Verification of
supervisory control software using state proximity and
merging. Hybrid Systems: Computation and Control, pages
344–357, 2008.

[21] F. Lerda, J. Kapinski, H. Maka, E. M. Clarke, and B. H.
Krogh. Model checking in-the-loop: Finding counterexamples
by systematic simulation. In American Control Conference,
2008, pages 2734–2740. IEEE, 2008.

[22] R. Majumdar, I. Saha, K. Shashidhar, and Z. Wang. Clse:
Closed-loop symbolic execution. In NASA Formal Methods,
pages 356–370. Springer, 2012.

[23] T. Nahhal and T. Dang. Test coverage for continuous and
hybrid systems. In Computer Aided Verification, pages
449–462, 2007.

[24] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancić,
A. Gupta, and G. J. Pappas. Monte-carlo techniques for
falsification of temporal properties of non-linear hybrid
systems. In Proceedings of the 13th ACM international
conference on Hybrid systems: computation and control,
pages 211–220. ACM, 2010.

[25] K. M. Passino, S. Yurkovich, and M. Reinfrank. Fuzzy control,
volume 42. Citeseer, 1998.

[26] J. Robinson. The collected works of Julia Robinson, volume 6.
American Mathematical Soc., 1996.

[27] J. Schimpf and K. Shen. Ecl i ps e–from lp to clp. Theory and
Practice of Logic Programming, 12(1-2):127–156, 2012.

[28] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C, volume 30. ACM, 2005.

[29] N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler:
Automatic generation of path tests by combining static and
dynamic analysis. In Dependable Computing-EDCC 5, pages
281–292. Springer, 2005.

[30] A. Zutshi, S. Sankaranarayanan, J. V. Deshmukh, and
J. Kapinski. Multiple shooting, cegar-based falsification for
hybrid systems. In Proceedings of the 14th International
Conference on Embedded Software, page 5. ACM, 2014.

