
An Algorithm for Learning Switched Linear
Dynamics from Data

Guillaume Berger∗ Monal Narasimhamurthy∗ Kandai Watanabe
Morteza Lahijanian Sriram Sankaranarayanan
University of Colorado Boulder, Boulder, CO, USA

firstname.lastname@colorado.edu

Abstract

We present an algorithm for learning switched linear dynamical systems in dis-
crete time from noisy observations of the system’s full state or output. Switched
linear systems use multiple linear dynamical modes to fit the data within some
desired tolerance. They arise quite naturally in applications to robotics and cyber-
physical systems. Learning switched systems from data is a NP-hard problem that
is nearly identical to the k-linear regression problem of fitting k > 1 linear models
to the data. A direct mixed-integer linear programming (MILP) approach yields
time complexity that is exponential in the number of data points. In this paper,
we modify the problem formulation to yield an algorithm that is linear in the size
of the data while remaining exponential in the number of state variables and the
desired number of modes. To do so, we combine classic ideas from the ellipsoidal
method for solving convex optimization problems, and well-known oracle separa-
tion results in non-smooth optimization. We demonstrate our approach on a set of
microbenchmarks and a few interesting real-world problems. Our evaluation sug-
gests that the benefits of this algorithm can be made practical even against highly
optimized off-the-shelf MILP solvers.

1 Introduction

Switched linear systems model dynamical systems that arise in diverse areas including natural sci-
ences (biological models) [4, 8, 15], robotics [2], and cyber-physical systems [1]. They are charac-
terized by a finite set of modes, wherein each mode features a different set of governing equations
for the future states in terms of the current state of the system. In this paper, we study algorithms for
inferring the dynamics of a switched linear system from data that consists of full-state observations
(this can be subsequently extended to output observations using ARX models; see Section 2 for
details). Specifically, given a set of data points {(xi,x

′
i)}Ni=1 of current and next state observations,

and a number of modes m, we wish to find matrices A1, . . . , Am such that each data point (xi,x
′
i)

is explained by some matrix Aj : (∀i) (∃j) ||x′
i − Ajxi|| ≤ ϵ||xi|| + τ , for given error tolerances

ϵ, τ > 0. However, the switching signal which governs the current mode associated with each data
point is latent. This renders the problem NP-hard and the best known approaches have exponential
complexity in terms of the number of data points and the desired number of modes [22]. The ex-
ponential complexity in the number of data points makes this problem especially challenging since
many datasets of interest have thousands of data points but with tens of modes and state variables.

The key insight in this paper is that by reformulating this problem to incorporate a “gap” in the
tolerance, we can significantly improve the complexity to be linear in the number of data points
N and exponential in the number of modes and the dimension of the state space. Rather than
providing a YES/NO answer for a single tolerance bound ϵ, our approach takes as inputs two levels
of tolerance ϵ1 < ϵ2. It either finds matrices that satisfy the “upper” tolerance bound ϵ2 > 0 or

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

returns NO if no set of m matrices can fit the data with the “lower” tolerance ϵ1 (< ϵ2). However,
if the underlying data could have been modeled with some tolerance that lies in the gap (ϵ1, ϵ2),
our algorithm can either succeed or return NO with no guarantees provided. Our technical approach
exploits the gap in our formulation to argue that any set of solutions must have a lower bound
on its volume. Furthermore, by exploring the solution space in a carefully defined manner, we
guarantee that each step of our approach will shrink the volume of the remaining solution space by a
constant factor. This is achieved by using ideas that are similar to separation oracles in combinatorial
optimization [20], or the so-called “cutting plane” argument [10]. However, our approach applies
these inside a tree-based branch-and-bound algorithm, wherein we use the volume contraction to
prove bounds on the depth of the underlying tree. Thus, we achieve a bound on the running time
that is exponential in the state dimension and the number of modes but linear in the data size.

We demonstrate our ideas using a prototype implementation that is compared against a standard
mixed-integer linear programming (MILP) formulation of the problem solved using a state-of-the-
art solver (Gurobi) [17]. Our experimental results confirm that the theoretical insights also apply
in practice to yield an algorithm that is often orders of magnitude faster, especially as the amount
of data increases. We also demonstrate our approach using two interesting applications that include
modeling human writing on a tablet in order to predict what alphabet is being written from a small
number of samples, and deriving models of mechanical systems with contact forces from data.

1.1 Related Work

The problem of switched and hybrid system identification has been widely studied using a vari-
ety of approaches going back to the early 1980s; see, e.g., [32]. We discuss a few representative
approaches, and refer the reader to the monograph by Lauer et al [22] for further details.

The identification approach may be exact (seeking a global solution that minimizes the error be-
tween the data and the model prediction), or approximate (wherein the optimization problem is
solved approximately, or assumptions about the nature of the switching signal are used to simplify
the problem). Our approach here is exact but the problem itself is reformulated with a gap. As
for the nature of the switching mechanism, many approaches (including ours) focus on identifying
the dynamics of individual modes while assuming that the switching signal is exogenous; on the
other hand, other approaches, such as piecewise affine system identification [5, 28], hybrid automata
learning [29], or linear complementary systems learning [19], attempt to identify the dynamics of
each mode along with rules for transitioning between modes.

Vidal et al [33] present an exact approach for finding matrices that fit the data in the absence of noise
by posing the problem as one of finding zeros of a multivariate polynomial. This is subsequently
refined by Ozay et al [26] to handle the case of noisy data, by using sum-of-squares relaxations to
obtain a semidefinite optimization problem. Assumptions on the nature of the switching signal can
drastically simplify the problem at hand. For instance, Ozay [25] shows that the problem can be
solved in polynomial time using a dynamic programming algorithm if the number of mode switches
in a trajectory is bounded. Other approximate approaches involve greedy algorithms [5] and block–
coordinate descent (similar to k-mean regression) algorithms [21, 31]. However, the performance of
these algorithms can vary depending on the nature of the data and no guarantees are available.

Machine learning techniques have also proved useful in hybrid system identification. For instance,
standard machine learning approaches (such neural networks) can be used to infer hybrid system
models [16, 24]. However, the resulting number of modes can be exponential in the network size.
Moreover, switched systems often involve discontinuous switching which cannot be modeled ad-
equately using standard activation functions such as sigmoids or ReLU. Ly and Lipson present an
approach for learning hybrid automata from data using evolutionary techniques [23]. Their approach
combines symbolic regression for learning the dynamics of the individual modes with techniques for
guessing the latent modes and inferring the conditions for switching from one mode to another.

Also relevant to this work, Dempster et al [12] study the problem of inferring hidden Markov models
with linear systems, called Jump Markov Models (JMMs), using a modification of the Expectation–
Maximization (EM) algorithm. However, the E-step, which infers the assignments of modes, can be
quite expensive for JMMs. Subsequently, Gharamani and Hinton [14] propose a technique wherein
the difficulties in the E-step are resolved using variational inference, whereas Blake et al [7] propose
a sampling-based scheme. A key difference between our approach and JMMs is that we focus on

2

the algorithmic efficiency for learning the dynamics of the modes. Although this requires us to infer
the sequence of modes for the data, we do not learn the Markov model that generates this sequence.
However, our example on handwriting recognition presented in Section 4 illustrates how off-the-
shelf approaches for learning a finite-state model can be combined with our approach in a fruitful
manner. As for our application involving mechanical systems with contact forces (Section 4), a
recent work by Jin et al [19] propose a convex relaxation approach to learn linear complementary
systems. These systems provide compact representations for a class of piecewise linear systems,
including mechanical systems with contact forces [3, 27]. Our implementation does not use this
compact representation, but is nevertheless able to learn switched linear models for these systems.
Finally, our approach side-steps the problem of estimating the number of modes which is often an is-
sue. This problem can be addressed by adding a penalty term accounting for the “model complexity”
to the overall objective function to be minimized [23] or by using more sophisticated non-parametric
Bayesian approaches wherein the prior distribution specifies unbounded number of modes and the
varying number of model parameters varying as the number of modes increases [13].

2 Problem Formulation

We will use bold, lower case symbols (x,y,w) to denote vectors, and upper case letters (A,B,C)
to denote matrices, unless otherwise mentioned. Let R denote the set of real numbers, and N the
set of natural numbers. For m ∈ N, let [m] = {1, . . . ,m}. Let En denote the n × n matrix with
all entries equal to 1. We write A ≤ B to denote that each entry of A is less than or equal to the
corresponding entry of B (same notation will be used for vectors).

A linear dynamical system in discrete time is defined by its state x(t) ∈ Rn and output y(t) ∈ Rp, at
each time t ∈ N. The state evolves using the dynamical rule: x(t+1) = Ax(t), wherein A ∈ Rn×n.
The output is obtained as y(t) = Cx(t), wherein C ∈ Rp×n.
Definition 1 (Switched Linear Dynamical System). A switched linear dynamical system with state
x : N→ Rn and output y : N→ Rp with m ≥ 1 modes is defined by m matrices A1, . . . , Am. For
each time t ∈ N, there exists a mode σ(t) ∈ [m] s.t. x(t + 1) = Aσ(t)x(t). The switching signal
σ : N → [m] chooses a mode for each time t such that the continuous state x(t) evolves according
to this mode. The output is given by y(t) = Cx(t) according to a given matrix C ∈ Rp×n.
Remark 1. Switched affine systems, with x(t + 1) = Ajx(t) + bj for bj ∈ Rn, are handled by
augmenting x with an extra component that is always 1, thus treating bj as a new column of Aj .

The goal of this paper is to learn a switched linear dynamical system model from observation data.
The simplest type of data consists of full state observations involving pairs of states of the form
{(xi,x

′
i)}Ni=1, wherein each xi = x(ti) and x′

i = x(ti + 1) are states observed at two successive
time instants ti and ti + 1. In particular, the switching signal σ is not observed. We assume that the
number of modes m is known.1

Remark 2. The assumption of full state observation is often impractical. However, our tech-
niques extend to output observations by using a fixed-length history of output observations y(t −
p), . . . ,y(t) and finding a switched auto-regressive (SARX) model [35] of the form:

y(t+ 1) =
∑p

k=0
Bσ(t),ky(t− k), wherein σ(t) ∈ [m], Bj,k ∈ Rp×p .

Therefore, in the following, we will focus our description on the full-state data.
Definition 2 (Fitting With Error Bound τ and Tolerance ϵ). A set of matrices A1, . . . , Am “fits” the
data D with error bound τ > 0 and tolerance ϵ > 0 iff

(∀ (xi,x
′
i) ∈ D) (∃ j ∈ [m]) ∥x′

i −Ajxi∥∞ ≤ ϵ∥xi∥∞ + τ . (1)

Our approach can be modified to handle L2 or L1 norm instead of L∞ (see Appendix A).

The switched linear system identification (SLS-ID) problem inputs the number of modes m ≥ 2,
data D : {(xi,x

′
i) }Ni=1, error bound τ > 0, tolerance ϵ > 0 and a magnitude bound γ. It outputs a

set of matrices A1, . . . , Am that fits D with error bound τ and tolerance ϵ and satisfies

−γEn ≤ Aj ≤ γEn , ∀ j ∈ [m] , i.e, each entry of Aj lies in [−γ, γ] , (2)

1Using repeated doubling followed by binary search, we can find the smallest number of modes m∗ for
which a switched linear system fits the data by running our procedure O(log(m∗)) times.

3

or outputs INFEASIBLE if no such matrices exist. The SLS-ID problem is known to be NP-hard [22,
Theorem 5.1]. We formulate below a mixed-integer linear program (MILP) for the SLS-ID problem.

We choose mn2 decision variables which form the unknown entries of the matrices A1, . . . , Am.
We also use binary indicator variables wi,1, . . . , wi,m ∈ {0, 1} wherein i = 1, . . . , N ranges over
each data item in D. The indicator variable wi,j denotes that the ith data item in D is fitted by the
matrix Aj . Each data item must be fitted by one matrix, i.e.,

∑m
j=1 wi,j = 1 , ∀ i ∈ [N] . We add

constraint (2) to set limits on the magnitude of the entries of the matrices Aj . Finally, we add the
constraint that each data item is fitted by the corresponding matrix:

∥x′
i −Ajxi∥∞ ≤ ϵ∥xi∥∞ + τ + (1− wi,j)M , ∀ (xi,x

′
i) ∈ D, ∀ j ∈ [m] . (3)

Here, M > 0 is a constant that is larger than γ∥xi∥1+∥x′
i∥∞ for all (xi,x

′
i) ∈ D, implying that (3)

is trivially satisfied if wi,j = 0 (so-called “big-M” trick in integer linear programming).

The set of constraints above along with wi,j ∈ {0, 1} form the constraints of a MILP. The objective
can be set in many ways: for instance, minimize the sum of the absolute value of the entries of each
matrix, as a regularization term.
Lemma 1. A set of matrices A1, . . . , Am is feasible for the MILP defined above (for some valuation
of the binary variables wi,j) iff it fits the data D with error bound τ and tolerance ϵ.

The branch-and-bound algorithm for solving MILPs will solve mN linear programs in the worst-
case, noting that for each i ∈ [N] exactly one binary variable in the set {wi,1, . . . , wi,m} can be set
to 1. This is exponential in the data size N (= |D|). This bound is seemingly independent of the
dimension n of the underlying state-space. However, if N < mn, we are estimating more unknowns
than the available data. Therefore, in practice, it generally holds that N ≫ mn.

2.1 Identification with a Tolerance Gap

We now formulate a “relaxed version” of the SLS-ID problem with a “tolerance gap”, that will be
called the SLS-ID-GAP problem.

Inputs: Number of modes m ≥ 2, data D : {(xi,x
′
i)}Ni=1, absolute error bound τ > 0, two relative

error tolerances ϵ2 > ϵ1 ≥ 0 and a magnitude bound γ. Let ϵgap = ϵ2 − ϵ1. For technical reasons
that will be explained later, we assume that γ > ϵgap.

Output: FEASIBLE along with a set of matrices A1, . . . , Am satisfying the bounds constraints (2)
that fits D with error bound τ and tolerance ϵ2, or, INFEASIBLE if no set of m matrices with magni-
tude bound γ − ϵgap can fit the data with tolerance ϵ1 and error bound τ .

For any given data set D and tolerance ϵ2 > 0, we define ϵmin(D, ϵ2) ∈ [0,∞] as the least tolerance
ϵ for which D can be fitted with fixed error bound τ and magnitude bound γ − (ϵ2 − ϵ).2 Thus, the
algorithm for the SLS-ID-GAP problem guarantees that (a) if ϵmin(D, ϵ2) ≤ ϵ1 then the algorithm
will return FEASIBLE with matrices that fit the data with tolerance ϵ2 and magnitude bound γ; (b) if
ϵmin(D, ϵ2) > ϵ2, the algorithm will return INFEASIBLE; (c) if ϵmin(D, γ2) ∈ (ϵ1, ϵ2], the algorithm
may return either answer without any guarantees. The main result of the paper is as follows:
Theorem 1. There exists an algorithm for solving the SLS-ID-GAP problem with complexity
O
(
mCmn3|log(nγ/ϵgap)|Npoly(m,n)

)
, wherein C is a constant factor and poly(m,n) is polynomial

function of m and n.

The significance of this approach is that it is linear in the size of the data set N , although exponential
in the number of modes m and the dimension of the state space n.

3 Tree-Based Exploration Algorithm

We now present, in stages, our algorithm for finding a set of matrices A1, . . . , Am that fits the data.
First, we present the algorithm as a tree-based exploration approach, wherein each node of the tree

2ϵmin(D, γ2) is well defined; for instance, it suffices to solve the MILP in the previous section with ϵ as
objective function to minimize, and replacing γ with γ−(ϵ2−ϵ) in constraint (2). Note that ϵmin(D, γ2) = ∞
iff there is xi = 0 with ∥x′

i∥∞ > τ (indeed, this is the only situation in which no set of matrices A1, . . . , Am

can fit the data for any tolerance ϵ > 0).

4

Algorithm 1: Overall algorithm for switched linear system identification
Data: m,D, τ, ϵ1, ϵ2, γ (see Section 2.1).
Result: YES with matrices A1, . . . , Am that fit the data with tolerance ϵ2, or NO.

1 Initialize tree T with a root node (see text for details)
2 while there exist unexplored leaf nodes in T do
3 ν ← unexplored leaf node in T
4 Mark ν as explored
5 result ← Expand ν using Algorithm 2
6 if result = ⟨FEASIBLE, (A1, . . . , Am)⟩ then
7 return ⟨YES, A1, . . . , Am⟩ /* Solution discovered */

8 return NO /* No nodes remain to be explored */

Algorithm 2: Algorithm to expand a non-terminal leaf node in the tree.
Data: Leaf node ν with polyhedra P1, . . . , Pm, data set U and assignment map µ.
Result: New leaf nodes, or matrices Q1, . . . , Qm that fit all the data.

1 Choose feasible solutions (matrices) Q1, . . . , Qm s.t. for all j ∈ [m], Qj ∈ Pj (Section 3.2 will
specify how to choose Q1, . . . , Qm)

2 Find (xi,x
′
i) ∈ U s.t. for all j ∈ [m], ∥x′

i −Qjxi∥∞ > ϵ2∥xi∥∞ + τ
3 if not found then
4 return FEASIBLE, (Q1, . . . , Qm) /* Q1, . . . , Qm fit all the data */
5 else
6 Û ← U \ {(xi,x

′
i)} /* Remove (xi,x

′
i) from unassigned data */

7 for j ∈ [m] do
/* Constrain polyhedron Pj s.t. matrix Aj “fits” (xi,x

′
i) */

8 P̂j ← Pj ∩ {Aj : ∥x′
i −Ajxi∥∞ ≤ ϵ2∥xi∥∞ + τ}

9 if P̂j contains a Lind
∞ -norm ball of radius ϵgap (Lemma 3 explains why) then

10 Create new child node νj of ν.
11 Associate νj with polyhedra P1, . . . , Pj−1, P̂j , Pj+1, . . . , Pm

12 µ̂j ← µ ∪ {(xi,x
′
i) 7→ j} /* Associate (xi,x

′
i) with mode j. */

13 Associate node νj with set Û and map µ̂j

represents a set of m convex polyhedra. Subsequently, we will show how a careful choice of the
tree exploration strategy will guarantee a bound on the maximum length of each branch of the tree.
This, in turn, yields the desired algorithm and its complexity guarantee.

The central data structure maintained by our algorithm is a tree T . Each node of the tree has the
following associated information:

1. Convex polyhedra P1, . . . , Pm, represented as systems of linear inequalities. Each Pj ⊆ Rn×n

describes a set of possible solutions for matrix Aj .

2. A subset U ⊆ D containing data points that have not been “assigned” a mode yet.

3. A assignment map µ : (D \ U)→ [m] mapping each data point in D \ U to a mode in [m].

Root Node: The root of the tree is initialized by m convex polyhedra P1, . . . , Pm, wherein Pj

encodes the bounds on each entry of the matrix Aj : −γEn ≤ Aj ≤ γEn. The set U at the root is
the full data set D and the associated map µ is the “empty map” since its domain is empty.

3.1 Expanding a Node

Starting from the root node, our algorithm iteratively expands the tree T until no unexplored leaf
remains or a suitable set of matrices is found (see Algorithm 1).

5

Expansion: Each expansion step involves choosing an unexplored leaf ν of the tree and carrying
out the steps outlined in Algorithm 2. Namely, expanding ν begins with choosing feasible solutions
Q1, . . . , Qm from polyhedra P1, . . . , Pm, respectively (line 1). The choice of these solutions will
be described in detail in Section 3.2. Next, we scan through all the “unassigned” data U to find
a data point (xi,x

′
i) ∈ U that cannot be fitted by Q1, . . . , Qm (line 2). If no such data point can

be found then we have, in fact, fitted all the data using Q1, . . . , Qm. Therefore, we can terminate
(line 4). If a data point (xi,x

′
i) ∈ U is found in the previous step, then we create m potential

child nodes ν1, . . . , νm for the current node. Each potential child νj will have associated polyhedra
P1, . . . , Pj−1, P̂j , Pj+1, . . . , Pm, wherein, for j′ ̸= j, Pj′ remains the same as in node ν, and P̂j is
defined in order to force the matrix Aj to fit the data point (xi,x

′
i) that could not be fitted by the

previous candidate matrices (line 8). Node νj will have associated data set Û : U \ {(xi,x
′
i)} and

mode assignment map µ̂j : µ ∪ {(xi,x
′
i) 7→ j}.3 Finally, the potential child node νj is actually

added to the tree only if P̂j satisfies some lower bound on its size (line 9).

Thus, the process of expanding a node of the tree results either in termination with a feasible solution
Q1, . . . , Qm that fits the entire data, or in the possible addition of at most m new leaf nodes to the
tree. We will now establish important properties of this algorithm.
Lemma 2. Let Q1, . . . , Qm be the chosen candidates while expanding some node ν. For each child
νj of ν with associated polyhedra P1, . . . , Pj−1, P̂j , Pj+1, . . . , Pm, we have that Qj ̸∈ P̂j .

Proof. Let U be the data set associated to ν. Since we did not terminate, there is (xi,x
′
i) ∈ U

such that ∥x′
i − Qjxi∥∞ > ϵ2∥xi∥∞ + τ . However, P̂j is obtained by adding the constraint

∥x′
i − Ajxi∥∞ ≤ ϵ2∥xi∥∞ + τ to the existing constraints in Pj . Therefore, Qj ̸∈ P̂j since it

violates the new constraint.

Recall that the induced (operator) L∞ norm of a matrix: ∥A∥ind∞
.
= max∥x∥∞≤1∥Ax∥∞.4 Given

A ∈ Rn×n and ϵ ≥ 0, let Bind
∞ (A, ϵ) denote the ball of radius ϵ (w.r.t. ∥·∥ind∞) centered at A. We

prove that the tree-based exploration algorithm is complete for the SLS-ID-GAP problem: if there is
a set of matrices A∗

1, . . . , A
∗
m fitting the data with tolerance ϵ1 and satisfying the reduced magnitude

bound γ − ϵgap, then there is an unexplored leaf whose associated polyhedra contain these matrices.
Lemma 3. At each iteration of the algorithm, there exists an unexplored leaf ν in the tree with
associated polyhedra P1, . . . , Pm such that for all j ∈ [m], Bind

∞ (A∗
j , ϵgap) ⊆ Pj .

Proof. First, we prove that the property holds for the root node. Therefore, let Aj ∈ Bind
∞ (A∗

j , ϵgap).
By the formula for the induced norm, it holds that for any matrix M , if ∥M∥ind∞ ≤ ϵ, then for all
k1, k2 ∈ [n], |Mk1,k2| ≤ ∥Mk1:∥1 ≤ ϵ, so that −ϵEn ≤ M ≤ ϵEn. Hence, letting M

.
= Aj − A∗

j

and ϵ
.
= ϵgap, we get that −ϵgapEn ≤ Aj − A∗

j ≤ ϵgapEn. Thus, −γEn ≤ Aj ≤ γEn, so that
Aj ∈ Pj at the root node.

Suppose that at the beginning of the kth iteration, the unexplored leaf ν, with associated polyhedra
P1, . . . , Pm, has the property that Bind

∞ (A∗
j , ϵgap) ⊆ Pj for all j ∈ [m]. We wish to prove the

property for some unexplored leaf after the iteration. This is trivial if the leaf ν is not expanded in
that iteration. Suppose the leaf ν is expanded. Let (xi,x

′
i) be the data point that cannot be explained

by the candidates that were chosen, and let j ∈ [m] be such that A∗
j explains the data point (xi,x

′
i)

with tolerance ϵ1. We show that Bind
∞ (A∗

j , ϵgap) ⊆ P̂j where P̂j is defined as in line 8. Indeed, let
Aj ∈ Bind

∞ (A∗
j , ϵgap). It holds that ∥x′

i − Ajxi∥∞ ≤ ∥x′
i − A∗

jxi∥∞ + ∥(Aj − A∗
j)xi∥∞ ≤ ∥x′

i −
A∗

jxi∥∞ + ϵgap∥xi∥∞ ≤ ϵ1∥xi∥∞ + τ + ϵgap∥xi∥∞ ≤ ϵ2∥xi∥∞ + τ , where the second inequality
comes from the definition of the induced norm and the assumption on Aj , and the third inequality
comes from the assumption on A∗

j explaining (xi,x
′
i) with tolerance ϵ1. Thus, Bind

∞ (A∗
j , ϵgap) ⊆ P̂j .

Since, Bind
∞ (A∗

j , ϵgap) ⊆ Pj , this implies that Bind
∞ (A∗

j , ϵgap) ⊆ P̂j , concluding the proof.

From the definition of the child nodes (line 9), the convex sets associated to each leaf of the tree
satisfy a lower bound on their volume.

3In other words, the newly assigned data point is assigned to mode j in node νj
4Note that ∥A∥ind∞ = max(∥A1:∥1, . . . , ∥An:∥1) (maximum among the L1 norm of each row) [18].

6

Lemma 4. At each iteration of the algorithm, and for each leaf ν in the tree, with associated

polyhedra P1, . . . , Pm, it holds that for all j ∈ [m], vol(Pj) ≥ (2ϵgap)
n2

(n!)n .

Proof. Let ν be a leaf node as in Lemma 3 and let j ∈ [m]. By Lemma 3, Pj must contain
Bind

∞ (A∗
j , ϵgap). The ball Bind

∞ (A∗
j , ϵgap) is the product of n unit L1-norm balls (one for each row)

each scaled with a factor ϵgap. The volume of a unit L1-norm ball in n dimensions is given by 2n

n! .
Combining these observations, we have that vol(Pj) ≥

((2ϵgap)
n

n!

)n
.

We have not proven a bound on the size of the tree explored by our algorithm so far. In the next
subsection, we describe a way of selecting the candidates Q1, . . . , Qm (line 1) such that the volume
of P̂j will be smaller than some fraction α < 1 times the volume of Pj . This, combined with the
lower bound on the volume of these sets (Lemma 4), will provide a bound on the length of each
branch (i.e., the depth) of the tree.

3.2 Cutting Plane Argument

We prove an effective bound on the depth of the tree using the so-called cutting-plane argument from
non-smooth optimization [10]. First, we refine line 1 of our algorithm wherein we choose candidates
Qj ∈ Pj for each j ∈ [m]. Specifically, we will choose Qj as the center of the maximum volume
inscribed ellipsoid (MVE) of Pj . The MVE center of a polyhedron can be computed efficiently by
using semi-definite programming (SDP) [6, Proposition 4.9.1]. Now consider the child node νj of
ν, to which we associate the polyhedron P̂j ⊊ Pj . We show that the volume reduces by at least a
factor α .

= (1− 1
n2) < 1.

Lemma 5. vol(P̂j) ≤ (1− 1
n2)vol(Pj).

Proof. From Lemma 2, we note that Qj /∈ P̂j . In other words, P̂j ⊊ Pj excludes the MVE center of
Pj . Following [30] (or [10, § 4.3] for a more recent reference), we have vol(P̂j) ≤ (1− 1

d)vol(Pj),
where d is the dimension of Pj . Here, d = n2, concluding the proof.

Let Vmin =
(2ϵgap)

n2

(n!)n denote the bound proved in Lemma 4.

Lemma 6. The depth of the tree is O(mn4 log(nγ/ϵgap)).

Proof. Consider any path from the root to a leaf whose length is mK for some integer K > 0.
We note that for each node ν and any of its children νj , the polyhedron P̂j satisfies the inequality
vol(P̂j) ≤ αvol(Pj), where α = 1− 1

n2 (Lemma 5). Let us say that the index j ∈ [m] is refined by
such an edge. By the pigeon-hole principle, for a path of length mK, there exists at least one index j

that is refined K or more times along the path. Therefore, we have that: vol(P (K)
j) ≤ αKvol(P

(0)
j),

where P
(0)
j is the jth polyhedron at the root and P

(K)
j is the jth polyhedron at the leaf.

We know that vol(P
(0)
j) = (2γ)n

2

. Thus, there exists Kmin such that for any K ≥ Kmin,

vol(P
(K)
j) < Vmin and thus the branch will end up being “pruned” by our algorithm (line 9). It

holds that

Kmin ≤
log((2γ)n

2

)− log(Vmin)

− log(α)
≤ log((2γ)n

2

)− log((2ϵgap)
n2

) + log(nn2

)

− log(α)
≤ n4 log

(nγ

ϵgap

)
,

where the last inequality follows from log(1− 1
n2) ≤ − 1

n2 . Therefore, the depth is upper bounded
by mKmin = mn4 log(nγ/ϵgap).

This places a bound on the depth of the tree, as stated in the lemma. In fact, the n4 term is reduced
to n3 using the observation that each polyhedron Pj for each node ν is the Cartesian product of n
polyhedra Pj,k, for k ∈ [n], involving the variables from the kth row of the unknown matrix Aj .

7

Theorem 2. The overall size of the tree cannot exceed mO(mn3 log(nγ/ϵgap)) nodes, wherein the
complexity of expanding each node is linear in the size N of the data set and involves solving m
SDPs each with n2 variables and O(mn3) constraints.

3.3 Fine-Grained Analysis

We will provide the proof of Theorem 2. For the L∞ norm, each set Pj can be described as the
Cartesian product of n polyhedra in R1×n (one for each row of the matrix). The MVE center
of a Cartesian product of convex sets is the vector containing the MVE center of each convex set.
Therefore, the volume reduction guarantee in Lemma 5 can be refined as: vol(P̂j) ≤ (1− 1

n)vol(Pj)
(see Lemma 8 below). By applying the same argument as in the proof of Lemma 6, we then get the
bound O(mn3 log(nγ/ϵgap)) on the depth of the tree.

We will now present this in more details. Let ν be any node of the tree and P1, . . . , Pm be the
associated polyhedra.
Lemma 7. Each Pj can be written as a Cartesian product Pj = Pj,1 × · · · × Pj,n wherein each
polyhedron Pj,i ⊆ R1×n involves just those decision variables of the matrix Aj associated with its
ith row.

Proof. Proof is by induction. To begin with, we note that this is true for the root node of the tree. For
the induction step, assume that the property is satisfied at some node ν of the tree and consider any
of its child nodes νj . We note that, for any (xi,x

′
i), the constraint ∥x′

i − Ajxi∥∞ ≤ ϵ2∥xi∥∞ + τ
is of the form ||z||∞ ≤ a for a vector z and scalar a. This can be decomposed into constraints
−a ≤ zi ≤ a for each row of z. Hence, the constraint ∥x′

i − Ajxi∥∞ ≤ ϵ2∥xi∥∞ + τ can be
decomposed into a conjunction of n constraints, each involving a different row of Aj . From the
induction hypothesis and the definition of P̂j (line 8), it follows that P̂j can be written as a Cartesian
product of n polyhedra, each involving a different row of Aj , concluding the proof.

We now state a refined version of Lemma 5.
Lemma 8. vol(P̂j) ≤ (1− 1

n)vol(Pj).

Proof. Let P̂j,i be the polyhedron associated with the ith row of matrix Aj in the jth child node of
some node ν such that the Qj,i /∈ P̂j,i, wherein Qj,i denotes the ith row of candidate matrix Qj

explored during the expansion of node ν by Algorithm 2. Since Qj,i is the MVE center of Pj,i, it
holds, by the cutting-plane argument (cf. proof of Lemma 5), that vol(P̂j,i) ≤ (1 − 1

n)vol(Pj,i).
Now, since vol(P̂j) =

∏n
i=1 vol(P̂j,i) and vol(Pj) =

∏n
i=1 vol(Pj,i), we get the desired result.

Lemma 9. The depth of the tree is O(mn3 log(nγ/ϵgap)).

Proof. The proof is very similar to that of Lemma 6. The only thing that to be changed is the value
of α = 1− 1

n (instead of 1− 1
n2). We can then use the bound: log(1− 1

n) ≤ −
1
n , to get the desired

result.

4 Experimental Evaluation

In this section, we will describe an evaluation of our approach meant to answer two key questions:
(a) Do the theoretical guarantees translate into superior empirical performance when compared
to highly optimized MILP solvers? (Namely, we compare our approach against the MILP solver
Gurobi [17] over a set of “microbenchmarks” of varying dimensions, number of modes and data
sizes.); (b) Does the approach yield interesting results on real-life datasets? (Namely, we illustrate
our approach on datasets from handwritten alphabets and mechanical systems with contact forces.)

Implementation: We implemented the proposed approach in Python 3.8, using Gurobi [17] to encode
and solve linear programs. We assume that the number of modes m (or an upper bound on it) is
given. Also, our implementation fixes ϵ1 = 0 and ϵ2 = ϵgap = ϵ > 0. Fixing ϵ1 = 0 implies that our
algorithm either finds matrices that fit the data with tolerance ϵ2 or concludes that no matrices exist
that fit the data with zero relative error tolerance. Therefore, throughout this section, we will report

8

(a) Performance across 10 random
microbenchmarks with n = 4,
m = 3, and varying values of N .

(b) Performance across 40 random
microbenchmarks with m = 4,
N = 100, and varying values of n.

(c) Performance across 40 random
microbenchmarks with n = 4,
N = 200, and varying values of m.

Figure 1: Performance of MILP vs. proposed approach (TS) on a set of microbenchmarks. All
timings are reported in seconds on a Linux server running Ubuntu 22.04 OS with 24 cores and 64
GB RAM. Each point in the plot represents the average time taken by the algorithm across 100
experiments (10 runs for each of the 10 microbenchmarks). The error bars represent the minimum
and maximum values of time taken across experiments. (a) The proposed approach (TS) scales
better than the MILP approach as the number of data points N increases and has smaller variance.
Both approaches scale similarly with the dimension (b) and the number of modes (c).

Figure 2: Plot showing the actual trajectory (in green) and the estimated trajectory (in blue) by the
tree search algorithm for benchmark #2 and N = 50.

the value of ϵ. Our implementation coincides with the description in Section 3 with one important
modification: we compute the Chebyshev center (center of the largest inscribed ball) instead of the
center of the maximum volume inscribed ellipsoid (MVE). The Chebyshev center can be computed
very efficiently and reliably using Linear Programming [9], and provides a good approximation of
the MVE center. Although the theoretical guarantees on the termination of the process using the
Chebyshev center are weaker than those with the MVE center (Lemma 5), the use of Chebyshev
center in this context is a widely-used heuristic [10, §4.4]. The containment check described in
line 9 of Algorithm 2 is implemented by comparing the Chebyshev radius against ϵgap.

Evaluation on Microbenchmarks: We compare the proposed approach against the MILP ap-
proach on a suite of synthetic microbenchmarks. Each such benchmark consists of m randomly
chosen n×n Hurwitz matrices, where m,n are varied systematically. A total of N data points were
generated for each experiment from k = N/T trajectories, each of length T = 10 time steps starting
from a random initial state in [−1, 1]n. An additive noise sampled uniformly at random in the range
[−0.05, 0.05] was added to each state. In Figure 1, we illustrate how the two approaches scale in
terms of computation time with respect to the number of data points (N), number of states (n), and
number of modes (m). All timings are averaged over 10 separate runs to account for the variability
in computation times. Further details on microbenchmark generation are provided in Appendix B.

9

Figure 3: Plot showing how the two approaches - 1) MILP (dashed lines) and 2) proposed approach
(solid lines) scale in terms of times taken to solve the system identification problem as the number
of data points increases. The plot reports time taken by both approaches for dataset size N = 10 to
N = 100000 from Benchmark #3 (n = 5, m = 8).

Table 1: Performance of k-Linear Regression vs. our approach on a set of microbenchmarks. We use
N data points for training both approaches and 50 data points constitute the held-out test dataset.
Each row of the table reports average/min/max over 5 runs with τ = 0.05 and ϵ = 1 for a fixed
train-test data set. All experiments were carried out on a Linux server running Ubuntu 22.04 OS
with 24 cores and 64 GB RAM.

PROPOSED APPROACH k-LINEAR REGRESSION
Error Time Error Time

N avg max min avg (s) avg max min avg (s)

Benchmark #1 20 0.17 1.16 0.01 0.04 0.34 3.21 0.01 0.03
(n = 2, m = 4) 100 0.05 0.33 0.00 8.54 0.23 2.13 0.01 0.02

500 0.05 0.37 0.00 15.61 0.19 2.15 0.00 0.02
Benchmark #2 20 0.14 1.10 0.01 2.62 0.29 2.13 0.02 0.08

(n = 4, m = 2) 100 0.07 0.46 0.01 1.37 0.21 2.31 0.02 0.02
500 0.06 0.26 0.02 1.56 0.27 2.47 0.02 0.03

Benchmark #3 20 0.56 2.72 0.03 1.70 0.95 5.58 0.02 0.16
(n = 4, m = 4) 100 0.23 1.65 0.03 506.29 0.48 3.74 0.01 0.41

500 0.18 1.24 0.02 1184.16 0.41 2.46 0.02 0.11

The comparison clearly shows that the MILP solver’s computation time increases rapidly with the
number of data points N . In contrast, the running time of our approach depends linearly on N . Both
approaches scale similarly in terms of number of modes (m) and dimension (n).

We compare the accuracy of the proposed approach against k-Linear Regression (kLR) [21] in terms
of one-step prediction errors: minmj=1 ||x′

i−Ajxi||∞, measured over a held out test dataset. Table 1
compares the prediction errors for a set of 3 microbenchmarks. The proposed approach has smaller
error bounds compared to kLR but takes more time, as expected.

Figure 3 shows how the two approaches (MILP and TS) scale for Benchmark #3 (with n=5, m = 8)
as we increase the number of datapoints up to N = 100 000.

Handwriting Recognition: We now evaluate our approach on a dataset from human handwriting
on a tablet: our goal is to identify various modes with dynamics that describe how letters are traced
out on the tablet. We generate our own handwriting dataset by having an author trace out the letters
“a”, “b”, “c” and “d” using their fingers on the mouse pad of their laptop. We collect the (x, y)
locations of the handwritten letters over time. We generate our final dataset by interpolation in order
to ensure that the samples are roughly equidistant from each other. This can be done in an online
fashion, if need be. It ensures that our model here is not capturing artifacts of the pressure sensor in

10

Figure 4: Left: Handwriting samples with identified modes shown in different colors, Middle:
JMM model for letter b and Right: predicting letters from partial observations using the JMM.

Figure 5: Left: Cartpole with soft walls. Right: Acrobot with soft joint limits.

the mouse pad or how the person tracing the alphabet may speed-up or slow-down at various points
in time. We also scale the (x, y) values so that the letters fit within a square of side length 1. Further
details are provided in Appendix D. We collect 10 samples for each letter (Figure 4-left).

We apply our approach to learn m = 3 matrices that fit the data with ϵ = 0.05 and τ = 0.1. For
each sample, we obtain a corresponding switching sequence from this process. We apply a well-
known grammatical inference approach to learn a Jump Markov Model (JMM), wherein the various
dynamical modes are represented on the edges of the automaton [11, 34]. The estimated mode for
each data point of each letter is represented in Figure 4-left. Each color represents a different mode.
We note that the modes naturally corresponds to different parts of the letters.

Figure 4-middle shows an example of JMM for the letter “b”. Each transition in the JMM represents
a mode and a probability of taking the edge. At state q0, mode 1 is observed for 92% of the time,
and at q1, mode 0 is observed for 93% of the time. We then try to predict a class for an alphabet as
it is being written, based on the estimated JMMs (see Figure 4-right). Each column represents 20%,
40%, 60%, 80%, 95% portion of a letter. We use the JMMs and Bayesian inference to compute the
probability of a letter given a partial sequence of states. The letters “a”, “b” and “d” are correctly
predicted but the letter “c” is classified as an “a”: a visual inspection of Figure 4-right explains why
this is the case.

In conclusion, we show that our switched linear system identification algorithm works on the noisy
handwriting data and can be used to identify a JMM from sequences of identified modes which in
turn can be useful for data classification and prediction.

Acrobot: We evaluate our approach on an acrobot benchmark with soft joint limits [3]. We sam-
pled N = 30 trajectories with time step dt = 0.03 seconds for T = 3 seconds. We then identified
the dynamics at each mode using the proposed approach (with m = 3, τ = 0.01, and ϵ = 0.01). The
average one-step prediction error5 of the proposed approach on a held-out test dataset consisting of
5 trajectories is 0.005 (min: 0.0, max: 0.18). The average training time is 7.56 seconds. In compar-
ison, the average one-step prediction error of k-Linear Regression(kLR) [21] on the same dataset
is 1.80 (min: 0.0, max: 8.68). The average training time of kLR is 0.18 seconds. Figure 6 shows
the predictions of the proposed approach on a sample test trajectory. Despite the underlying system
having an infinite number of modes (as the time-sampled system of a continuous-time hybrid linear
system), our system identification technique is able to identify three main linear modes that explain
most of the data both in the training and test datasets.

5One-step prediction error: minm
j=1 ||x′

i −Ajxi||∞

11

Figure 6: Data from the Acrobot system plotted against those of the identified model.

Cartpole: We evaluate our approach on a cartpole system with soft walls [3]. We sampled N = 30
trajectories with time step dt = 0.05 seconds for T = 5 seconds. We then identified the dynamics at
each mode using the proposed approach (with m = 3, τ = 0.1, and ϵ = 0.1). The average one-step
prediction error of the proposed approach on a held-out test dataset consisting of 5 trajectories is
0.016 (min: 0.00, max: 0.15). The average training time is 9.35s. The average prediction error of
k-Linear Regression(kLR) [21] is 0.04 (min: 0.0, max: 0.15) and the average time taken by kLR is
0.16 seconds. Additional plots are provided in Appendix C. Similarly to the acrobot example, the
learned system is able to explain most of the data (both in the training and test datasets) with a few
(three) linear modes, despite the fact that the actual system has an infinite number of modes (as the
time-sampled system of a continuous-time hybrid linear system).

5 Conclusions: Limitations, Future Work and Broader Impacts

In summary, we have presented an approach that improves the time complexity of switched lin-
ear system identification using a novel problem formulation with a “gap” and using ideas from the
ellipsoidal method in combinatorial optimization. The resulting complexity is linear in the num-
ber of data points. Limitations include (a) Our approach uses full state information and extends
to output observations using SARX models. However, the number of modes in the SARX model
can be exponentially larger when compared to the state-space model. (b) Our approach finds the
matrices fitting dynamics but does not infer the “generator” for the mode switches, although we
present an example using Jump Markov Models. However, the problem of learning the matrices for
various modes in conjunction with the “generator” may not always lend itself to a clean separation
wherein the modes are first inferred using our approach and a generative model such as a Markov
chain is then inferred. For instance, our approach may find matrices that fit the data well but lead
to poorly fitting system models. We will study the use of backtracking in our approach to generate
multiple “dissimilar” solutions; (c) Finally, our implementation performs the tree exploration with-
out leveraging other information about the system or using heuristics that have proved powerful in
branch-and-bound algorithms. Nevertheless, it provides a proof of concept that it can be competitive
against highly-optimized MILP solvers. We will expand on these ideas in our future work.

In terms of broader impacts, model identification is a very important machine learning problem
that has very important and beneficial applications in areas such as controls, autonomous systems
and medical applications. Better modeling of physiological processes can lead to improved closed-
loop medical devices. Improved ability to predict human movements can lead to safer human-robot
interactions. However, our approach can be used to improve surveillance systems that could be
themselves be used in ways that are detrimental to the freedom of individuals and societies.

Acknowledgments: We thank the anonymous reviewers for their detailed comments and sugges-
tions. This research was funded in part by the Belgian-American Education Foundation (BAEF) and
the US National Science Foundatton (NSF) under award numbers 1836900 and 1932189.

12

References
[1] Rajeev Alur. Principles of cyber-physical systems. MIT Press, 2015.

[2] Aaron D. Ames. Human-inspired control of bipedal walking robots. IEEE Transactions on
Automatic Control, 59(5):1115–1130, 2014.

[3] Alp Aydinoglu, Victor M Preciado, and Michael Posa. Contact-aware controller design for
complementarity systems. In 2020 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 1525–1531. IEEE, 2020.

[4] E. Bartocci, F. Corradini, M. R. Di Berardini, E. Entcheva, S. A. Smolka, and R. Grosu. Model-
ing and simulation of cardiac tissue using hybrid I/O automata. Theoretical Computer Science,
pages 3149–3165, aug 2009.

[5] Alberto Bemporad, Andrea Garulli, Simone Paoletti, and Antonio Vicino. A bounded-error
approach to piecewise affine system identification. IEEE Transactions on Automatic Control,
50(10):1567–1580, 2005.

[6] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization: analysis,
algorithms, and engineering applications. SIAM, 2001.

[7] Andrew Blake, Ben North, and Michael Isard. Learning multi-class dynamics. In Advances in
Neural Information Processing Systems, volume 11. MIT Press, 1998.

[8] Luca Bortolussi and Alberto Policriti. Hybrid systems and biology. In Marco Bernardo, Pier-
paolo Degano, and Gianluigi Zavattaro, editors, Formal Methods for Computational Systems
Biology, pages 424–448, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[9] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press,
2004.

[10] Stephen Boyd and Lieven Vandenberghe. Localization and cutting-plane methods. From Stan-
ford EE 364b lecture notes, 2007.

[11] Colin De la Higuera. Grammatical inference: learning automata and grammars. Cambridge
University Press, 2010.

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
39(1):1–38, 1977.

[13] Emily Fox, Erik Sudderth, Michael Jordan, and Alan Willsky. Nonparametric Bayesian learn-
ing of switching linear dynamical systems. In D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou, editors, Advances in Neural Information Processing Systems, volume 21. Curran
Associates, Inc., 2008.

[14] Zoubin Ghahramani and Geoffrey E. Hinton. Variational learning for switching state-space
models. Neural Computation, 12(4):831–864, 2000.

[15] Ronojoy Ghosh, Keith Amonlirdviman, and Claire J. Tomlin. A hybrid system model of planar
cell polarity signaling in drosophila melanogaster wing epithelium. In IEEE Conference on
Decision and Control (CDC), pages 1588–1594. IEEE, 2002.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[17] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.

[18] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

[19] Wanxin Jin, Alp Aydinoglu, Mathew Halm, and Michael Posa. Learning linear complemen-
tarity systems. In Learning for Dynamics and Control Conference, pages 1137–1149. PMLR,
2022.

13

http://www.deeplearningbook.org

[20] Bernhard Korte and Jens Vygen. Combinatorial optimization: theory and algorithms.
Springer, 2010.

[21] Fabien Lauer. Estimating the probability of success of a simple algorithm for switched linear
regression. Nonlinear Analysis: Hybrid Systems, 8:31–47, 2013.

[22] Fabien Lauer and Gérard Bloch. Hybrid system identification: theory and algorithms for learn-
ing switching models. Springer, 2019.

[23] Daniel L. Ly and Hod Lipson. Learning symbolic representations of hybrid dynamical systems.
Journal of Machine Learning Research, 13(115):3585–3618, 2012.

[24] Daniele Masti and Alberto Bemporad. Learning nonlinear state–space models using autoen-
coders. Automatica, 129:109666, 2021.

[25] Necmiye Ozay. An exact and efficient algorithm for segmentation of ARX models. In Ameri-
can Control Conference (ACC), pages 38–41, 2016.

[26] Necmiye Ozay, Constantino Lagoa, and Mario Sznaier. Robust identification of switched affine
systems via moments-based convex optimization. In Proceedings of the 48h IEEE Conference
on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pages
4686–4691, 12 2009.

[27] Arvind U Raghunathan, Devesh K Jha, and Diego Romeres. PyROBOCOP: Python-based
robotic control & optimization package for manipulation. In 2022 International Conference
on Robotics and Automation (ICRA), pages 985–991. IEEE, 2022.

[28] Sadra Sadraddini and Calin Belta. Formal guarantees in data-driven model identification and
control synthesis. In Proceedings of the 21st International Conference on Hybrid Systems:
Computation and Control (part of CPS Week), pages 147–156, 2018.

[29] Miriam García Soto, Thomas A Henzinger, and Christian Schilling. Synthesis of hybrid au-
tomata with affine dynamics from time-series data. In Proceedings of the 24th International
Conference on Hybrid Systems: Computation and Control, pages 1–11, 2021.

[30] S. P. Tarasov, L. G. Khachiyan, and I. I. Èrlikh. The method of inscribed ellipsoids. In Dokl.
Akad. Nauk SSSR, volume 37, pages 226–230, 1988.

[31] Saeid Tizpaz-Niari, Pavol Cerny, Bor-Yuh Evan Chang, and Ashutosh Trivedi. Differential
performance debugging with discriminant regression trees. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32, 2018.

[32] Jitendra K. Tugnait. Detection and estimation for abruptly changing systems. Automatica,
18(5):607–615, 1982.

[33] René Vidal, Stefano Soatto, Yi Ma, and Sankar Sastry. An algebraic geometric approach to the
identification of a class of linear hybrid systems. In 42nd IEEE International Conference on
Decision and Control, volume 1, pages 167–172 Vol.1, 2003.

[34] Kandai Watanabe, Nicholas Renninger, Sriram Sankaranarayanan, and Morteza Lahijanian.
Probabilistic specification learning for planning with safety constraints. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 6558–6565. IEEE,
2021.

[35] Siep Weiland, A Lj Juloski, and B Vet. On the equivalence of switched affine models and
switched ARX models. In Proceedings of the 45th IEEE Conference on Decision and Control,
pages 2614–2618. IEEE, 2006.

14

A Problem Formulation using L1 and L2 norms

Our approach essentially amounts to computing convex sets Pj ⊆ Rn×n containing the feasible
values for the matrices Aj . If the L∞ or L1 norm is used for the constraint (1) on Aj , then the sets
Pj are polyhedra. In fact, if the L∞ norm is used, the set Pj can even be described as the Cartesian
product of n polyhedra in Rn (one for each row of Aj). If the L2 norm is used in (1), then the convex
sets can be described using second-order cones and linear constraints.

In any case, that is, for any vector norm ∥·∥, the convex set Pj defined by the constraints (1) with
the appropriate norm satisfies that Bind(A∗

j , ϵgap) ⊆ Pj , where ϵgap = ϵ − ϵ1 and A∗
j explains the

data with error bound τ and tolerance ϵ1. Here, Bind(A∗
j , ϵgap) is the ball in Rn×n centered at A∗

j

with radius ϵgap w.r.t. the matrix norm ∥·∥ind induced by ∥·∥ (the proof is identical to the one of
Lemma 3). Lemma 4 then applies mutatis mutandis using the volume of Bind(0, ϵgap).

Finally, regarding the computation of the MVE centers of the sets Pj (which is a key step of Al-
gorithm 2, as it is used to compute the candidate matrices Aj in line 1): finding the MVE center
of convex sets described by linear and second-order cone constraints can be cast as a semidefinite
optimization problem [9, § 8.2.4], so that it can be solved efficiently.

B Details on the Microbenchmarks

For Figure 1, we generate 90 microbenchmarks with varying values of n and m. We fixed the
dynamics at each mode of the microbenchmark by sampling a random n × n Hurwitz matrix. The
Hurwitz matrices were generated by first generating random diagonal and invertible matrices of
appropriate dimensions and then applying a similarity transformation on them. We then generated
trajectories from the microbenchmark by starting at some initial state in [−1, 1]n and simulating the
forward in time for T=10 time steps by randomly picking the mode at each time step. We added
a uniform noise with amplitude ∈ [−0.05, 0.05] to all the trajectories. Figure 7 shows one such
microbenchmark with n = 4 and m = 3 and some sample trajectories from the microbenchmark.

Figure 7: Microbenchmark (Left) with n = 4,m = 3 and sample trajectories (Right).

C Details on the Acrobot and Cartpole Benchmarks

D Details on the Handwriting Recognition

We generated a human handwriting dataset where each letter is drawn on a canvas of size 300× 300
pixels. Therefore, we asked the users to write letters a, b, c, d and collected the locations (x, y) of the
handwritten letters. We made sure that each handwritten letter had enough raw points (Traw > 100).

15

Figure 8: 3 trajectories of the Acrobat benchmark: The dashed lines with square markers show the
reference trajectories. The solid lines with triangle markers show the trajectories predicted using the
dynamics identified by the proposed approach.

Figure 9: 3 trajectories of the Cartpole benchmark: The dashed lines with square markers show the
reference trajectories. The solid lines with triangle markers show the trajectories predicted using the
dynamics identified by the proposed approach.

Subsequently, we interpolated the raw data points so that we could extract T = 30 data points
that are roughly equidistant from each other. The complete interpolation and extraction process in
explained below; see also Fig. 10 for an illustration.

Given the raw data points P : {p1, ..., pTraw
}, with pi : (xi, yi) ∈ R2,

1. Measure the total distance D =
∑

i di where di =
√

(xi+1 − xi)2 + (yi+1 − yi)2

2. For each j ∈ {0, . . . , T − 1}, let d′j =
D

T−1j, .

3. Compute the jth data point (x̂j , ŷj), as the point on the line that is at a distance d′j from p1.
Therefore:
(a) Find i ∈ {1, . . . , Traw−1} such that (x̂j , ŷj) is located between pi and pi+1, i.e., such

that the following condition holds true,

i∑
i=0

di ≤ d′j <

i+1∑
i=0

di.

(b) Define (x̂j , ŷj) : (1 − t)pi + tpi+1, where t = (d′j −
∑i

i=0 di)/di. Since (x̂j , ŷj) =
pi + t(pi+1 − pi), this satisfies that requirement that (x̂j , ŷj) is at a distance d′j from
p1.

We collected 10 samples for each letter and each letter’s final data size was set to T = 30. As a
result, the total number of data points is N = kT = 10 · 30 = 300.

16

Figure 10: The schematic of computing the equidistant points.

17

	Introduction
	Related Work

	Problem Formulation
	Identification with a Tolerance Gap

	Tree-Based Exploration Algorithm
	Expanding a Node
	Cutting Plane Argument
	Fine-Grained Analysis

	Experimental Evaluation
	Conclusions: Limitations, Future Work and Broader Impacts
	Problem Formulation using L1 and L2 norms
	Details on the Microbenchmarks
	Details on the Acrobot and Cartpole Benchmarks
	Details on the Handwriting Recognition

