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Abstract— We study the problem of constructing controlled
supermartingale functions to synthesize feedback laws that
guarantee safety properties of stochastic differential equa-
tions (SDE) with control inputs. SDEs are widely used to
model continuous time stochastic processes with applications
ranging from financial markets to biology. In this paper, we
extend classic notions from martingale theory for stochastic
processes to prove that a given SDE will not exit a safe
region over some finite time horizon with high probability.
Our notion considers time-varying supermartingale functions
that provide sharper probability bounds when compared to
those that are time-independent. Furthermore, we study the
controlled version of these supermartingales and the problem
of synthesizing feedback control law that will maintain the
state within a safe set with high probability over a given finite
time horizon. We provide a projection-based algorithm for syn-
thesizing polynomial, time-varying controlled supermartingales
and corresponding feedback laws using sum-of-square (SOS)
programming techniques. We implement our approach on some
challenging numerical examples to demonstrate how it can
synthesize control feedback laws that provide upper bounds on
the probability of safety violations over a given time horizon.

I. INTRODUCTION

Stochastic differential equations (SDEs) are models of
continuous-time stochastic processes that are built on top of
ordinary differential equations by adding terms based on the
differential of the Brownian motion. They are naturally used
to model many types of stochastic processes in areas such
as control systems (e.g., modeling wind disturbances) [1],
physics (e.g., modeling noise in solid state devices) [2] and
finance (e.g., modeling option prices) [3]. SDEs are defined
by combining drift and diffusion terms, wherein the drift
term models the evolution of the states over time and the
diffusion term introduces a stochastic term that is affected
by the “derivative” of white noise [4]. In this paper, we
study the problem of proving that given an SDE with initial
conditions, its trajectories remain within a safe region for
some given finite time horizon [0, T ] with high probability.
Furthermore, given a SDE with control inputs, we study the
problem of designing a feedback law that ensures bounded
time safety with high probability. Tools from supermartin-
gale theory have been used to tackle such problems [5]–
[9]. However, these tools often focus on time independent
supermartingales. In this paper, we focus on so-called λ-
supermartingales that are time dependent through a time
varying scaling term λ(t). This allows us to prove sharper
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time varying bounds that tail off exponentially as time
increases. Also, the computation of such supermartingales
with control inputs is very challenging: leading to bilinear
optimization problems that are well-known to be computa-
tionally hard. In this paper, we provide a simple iterative
scheme for computing such supermartingales using sum-of-
squares (SOS) programming [10], [11]. Our iterative scheme
formulates a series of semidefinite programming problems
that, upon convergence, yield the required supermartingales.
Although convergence of our computational scheme is not
guaranteed a priori, we demonstrate promising results on a
set of challenging numerical examples that show the power
of our approach to prove nontrivial bounds on probabilities
of reaching unsafe sets.

A. Related Work

The notion of supermartingales [12] and their use in
proving properties of stochastic systems is well known [13].
Lyapunov methods have been extended to SDEs to prove
stochastic stability [13]–[15]. Techniques for proving safety
properties have built upon these results. Prajna et al [5]
introduced the notion of stochastic barrier certificates, which
serve as supermartingales to verify that stochastic hybrid
systems remain within a safe set with high probability. This
work laid the foundation for subsequent developments in
the formal verification of probabilistic safety properties. For
instance, Wisniewski and Bujorianu [8] developed a prob-
abilistic safety analysis framework for Markov processes,
further expanding the scope of barrier methods to stochastic
settings. More recently, Wang et al [7] introduced the concept
of stochastic control barrier functions (SCBFs) for safety-
critical control of systems governed by SDEs, bridging
the gap between safety verification and control design in
stochastic environments Although Prajna et al demonstrate
the use of polynomial supermartingales synthesized us-
ing sum-of-squares programming, the later work of Stein-
hardt and Tedrake [6] utilizes exponential barrier functions
and semidefinite programming to derive sharper probability
bounds for safety properties of discrete and continuous time
stochastic systems. However, the computation of exponential
supermartingales is a hard problem that also leads to bilinear
constraints. In this paper, we try to prove sharp bounds
on the probability of safety violations through the use of
time-varying supermartingales wherein the probabilities of
safety property violations are shown to decay exponentially
over time. The contributions of this paper are two-fold: (a)
we show how time varying supermartingale functions can



provide sharp bounds; and (b) we demonstrate an approach
to synthesize these functions using SOS programming.

SOS programming techniques allows us to prove proper-
ties over polynomial inequalities by encoding the problem of
proving that a given polynomial is non-negative over a semi-
algebraic set as a semi-definite optimization problem that can
be solved efficiently [10], [11], [16]. The approach has been
well integrated into packages such s the Julia SumOfSquares
package [17]. Our computational approach presented here
is an extension of our previous work that uses a similar
approach to synthesize vector barrier function for Ordinary
Differential Equations (ODEs) [18]. However, the setting of
this work is entirely different,and thus, the technique has
been suitably adapted.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we will first recall some classical notions
of stochastic processes and define the SDE model.

A. Stochastic Process

We will briefly present some basic concepts from measure
theory; further details are available elsewhere [12].

Given a set Ω (sample space), a measurable space is
defined as a pair (Ω,F), where F is a σ-algebra on Ω.
We will refer to key concepts from measure theory and
stochastic processes including that of a filtration, stopping
time, stopped processes and Doob’s inequality. The details
of these concepts are available from standard textbooks [12].
Let I ⊆ R≥0 denote a set of “time instants”.

The elements of F are subsets of Ω called measurable
sets or events. The triple (Ω,F ,P) is known as a probability
space. The function P : F → [0, 1] is the probability measure
defined on (Ω,F), assigning probabilities to events within
the sample space.

Given a probability space (Ω,F ,P), and a measurable
space (E, E), a random variable X : Ω → E is a measurable
function: for all B ∈ E , X−1(B) ∈ F . A stochastic process
is a collection of random variables {Xt : Ω → E}t∈I .

Definition 1 (Filtration): The family of σ-algebras{
Ft

}
t∈I is called a filtration on (Ω,F), if for each t,

Ft ⊆ F and for 0 ≤ s ≤ t, Fs ⊆ Ft.

We will define a special class of stochastic processes called
supermartingales.

Definition 2 (Supermartingales): Given a probability
space (Ω,F ,P), the stochastic process {Xt}t∈I is called a
supermartingale with respect to a filtration M = {Mt}t∈I
iff the following conditions hold:

• Xt is Mt-measurable for all t ∈ I,

• E[|Xt|] <∞ for all t ∈ I,

• E[Xt | Ms] ≤ Xs for all t, s ∈ I, t ≥ s .

Remark 1: In contrast to the supermartingale condition
specified in Definition 2, if we have E[Xt | Ms] ≥ Xs

for all t, s ∈ I, t ≥ s, the stochastic process is referred
to as a submartingale with respect to the filtration M. If a
process satisfies both the submartingale and supermartingale
conditions, it is called a martingale process [19].

Theorem 1 (Supermartingale Inequality [19]): Suppose
{Xt}t∈I is a real-valued supermartingale process. Then for
each c > 0 and bounded interval [a, b] ⊂ I we have

c× P

(
sup

t∈[a,b]

Xt ≥ c

)
≤ E[Xa] + E[max(−Xb, 0)] , (1)

c× P
(

inf
t∈[a,b]

Xt ≤ −c
)

≤ E[max(−Xb, 0)] . (2)

The supermartingale inequality is very useful since it
bounds the probability that the supermartingale exceeds some
level c inside a time interval [a, b] in terms of the properties
of the process at the “end points” Xa, Xb.

Definition 3 (Stopping Time): Given a probability space
(Ω,F ,P) and a filtration M = {Mt}t∈I , a function τ :
Ω → I is called a stopping time with respect to M if for
all t ∈ I, we have {ω ∈ Ω : τ(ω) ≤ t} ∈ Mt. Informally, a
stopping time τ refers to a “criterion” for stopping a process
that can be evaluated at any time t by knowing the values
of the Xs for s ≤ t.

Given a stochastic process X = {Xt}t∈I and a stopping
time τ , the process Xτ = {Xt∧τ}t∈I is called the stopped
process, where

Xt∧τ (ω) =

{
Xt if t ≤ τ(ω),

Xτ(ω) if t > τ(ω) .

If the stochastic process X = {Xt}t∈I starts from a specific
point X0 = x, let Px denote the probability measure
satisfying Px(X0 = x) = 1. When X0 is a random
variable with distribution µ, we denote the corresponding
probability measure by Pµ. Likewise, we employ the nota-
tions Ex(h(Xt)) := E[h(Xt)|X0 = x] and Eµ(h(Xt)) :=
E[Xt|X0 ∼ µ].

Definition 4 (Markov Property): We say that the process
{Xt}t∈I on a σ-algebra (E, E) has the Markov property with
respect to a filtration M if, for each x ∈ E, D ∈ E , and
s, t ∈ I, we have Px(Xt+s ∈ D | Mt) = PXt(Xs ∈ D).

B. Stochastic Differential Equation

Consider stochastic differential equation (SDE) as

dx = f(x)dt+ σ(x)dW (3)

where x ∈ Rn is the state of system in Rn, W is p-
dimensional Brownian motion, f : Rn → Rn is the drift
term, and σ : Rn → Rn×p is the diffusion term.

Assumption 1 (Existence and Uniqueness Assumption):
The functions f and σ satisfies the following conditions
(see [4, Theorem 5.2.1]):



• f , σ are measurable functions,

• (Growth Condition) For some C, and each x ∈ Rn:
|f(x)|+ |σ(x)| ≤ C(1 + |x|),

• (Lipschitz Condition) For some L, and x, y ∈ Rn:
|f(x)− f(y)|+ |σ(x)− σ(y)| ≤ L|x− y|.

Remark 2: The solutions to the SDE in (3) satisfy the
Markov property.

Consider the measurable space E = Rn equipped with
the Borel measure. An observable function h is defined as
h : E → R. Let B(E) be the set of all bounded measurable
functions from E = Rn to the real line R. The space B(E)
forms a Banach space under the supremum norm defined as
∥h∥ = sup

x∈E
|h(x)| [20].

Definition 5 (Semigroup of Operators [21]): A one-
parameter family of linear operators {Pt} which satisfies
the following properties is called semigroup.

• P0 = Id,

• Pt+s = Pt ◦ Ps, ∀s, t ≥ 0.

Definition 6 (Koopman Operator): For every t ∈ I, Pt :
B(E) → B(E) is a positive linear operator with respect to
the Markov process {Xt}t∈I . Let h ∈ B(E) then

Pth(x) = Ex [h(Xt)] . (4)

{Pt}t∈I has semigroup property. Based on Chapman-
Kolmogorov equation [22], for s, t ∈ I we have Pt+s =
PtPs, and P0 = Id.

Definition 7 (Generator of Koopman Operator): The op-
erator L : DL → B(E) is called the (infinitesimal) generator
of the semigroup Pt, and is defined as

Lh(x) = lim
t→0

Pth(x)− h(x)

t
, x ∈ E , (5)

where DL be the set of all f ∈ B(E) that the the limit exists.

The Koopman generator captures the infinitesimal evolution
of observables under the dynamics, similar to how the Lie
derivative describes changes along trajectories in determin-
istic systems. The relation of the Koopman operator and its
generator is expressed through Dynkin’s formula.

Proposition 1: (Dynkin Formula) Let I = R≥0. Suppose
h ∈ DL, then for t ≥ 0 (see [23, Proposition 14.10])

Pth(x) = h(x) + Ex

[∫ t

0

Lh(Xs)ds

]
. (6)

Remark 3: The generator of Koopman for the SDE system
in (3) for a twice differentiable function h is given as

Lh(x) = ∇h(x)⊤f(x) + 1

2
tr
(
(σ(x)σ(x)⊤)×∇2h(x)

)
.

(7)
Example 1: Consider the SDE: dx = −0.5xdt−0.2xdW

over x ∈ R and 1D Brownian motion W (t). The drift term
a(x) = 0.5x and the diffusion term σ(x) = 0.2x. For the
Lebesgue measurable function h(x) = x2. We have Lh =
a(x) · ∇h+ 1

2 tr(σσ
⊤∇2h) = −x2 + 0.04x2 = −0.96x2.

C. Controlled SDE

In many dynamical systems, the drift term not only
captures the inherent behavior of the system but may also
include an additional component influenced by a control
input. This control input allows for external manipulation or
regulation of the system’s dynamics, enabling stabilization,
trajectory tracking, or optimization of performance. Consider
an SDE system where the drift term includes an additional
component influenced by a control input:

dx = (f(x) + g(x)u)dt+ σ(x)dW , (8)

where g : Rn → Rn×m, and the control input u ∈ Rm.

Let Lu be the generator of (8), and L be the generator of
the SDE without the term g(x)u involving the control input.
Then, we can express Lu in terms of L of SDE without
control term, along with an additional term that captures the
influence of the control input, as

Luh(x) = Lh(x) +∇h(x)⊤g(x)u . (9)

D. Problem Statement

We will now present the problem statement.

Inputs: We are given a controlled SDE model according to
Eq. (8) defined by functions f(x), g(x) and σ(x), a set
of initial states X0, unsafe states Xu ( X0 ∩ Xu = ∅),
time horizon T > 0 and probablity threshold ρ ∈ (0, 1).

Output: A continuous and differentiable control feedback
law u = κ(x) such that for all initial conditions x0 ∈
X0, the probability that a trajectory of the resulting
closed loop system starting from x0 at time t = 0
reaches a state xt ∈ Xu for t ∈ [0, T ] is less than or
equal to ρ.

In this paper, we consider SDEs which are “control affine”,
following the form in Eq. (8), wherein the functions
f(x), g(x) and σ(x) are multivariate polynomials over x.
We will search for a feedback law u = κ(x), wherein κ is a
polynomial with a degree bound D. The proof of the proba-
bility bound uses the concept of a λ-supermartingale function
h(x), defined in Section III. Our approach, therefore, jointly
synthesizes both the λ-supermartingale function given by a
polynomial h(x) involving the states of the system and the
feedback law κ. We pose this problem as that of solving
a series of sum-of-squares (SOS) optimization problems.
If these problems converge onto a solution, we show that
the solution yields the required feedback law κ and the λ-
supermartingale function h(x) that certifies the probability
bounds. Section IV discusses the SOS problem formulation
and properties.

III. SUPERMARTINGALE AND λ-SUPERMARTINGALE
FUNCTIONS

Supermartingales are commonly used to study stochastic
systems, and are particularly useful for safety, stability anal-
ysis, and stochastic control. Recall that the supermartingale



inequality in Theorem 1 allows us to bound the probability
of entering a given set.

Definition 8 (Supermartingale Functions): An observable
function h : E → R is a supermartingale for stochastic
process {Xt} iff {h(Xt)} is a supermartingale process.

Lemma 1: Given the SDE system in (3), and the corre-
sponding infinitesimal generator L, an observable function
h ∈ DL is supermartingale if Lh(x) ≤ 0.

Proof: To show that {h(Xt)} is supermartingale, we
need to show that E [h(Xt) | h(Xs)] ≤ h(Xs) for every t ≥
s. Using the semigroup property and Dynkin formula 1,

E [h(Xt) | h(Xs)] = Pt−sh(Xs)

= h(Xs) + EXs

[∫ t

s

Lh(Xr)dr

]
.

Since Lh(x) ≤ 0, it follows that E [h(Xt) | h(Xs)] ≤ h(Xs)
thereby confirming that {h(Xt)} is a supermartingale.

Example 2: The function h(x) in Example 1 is a super-
martingale: Lh = −0.96x2 ≤ 0 for all x.

A. λ-Supermartingales

Let λ : I → R be a continuous function over time. We
introduce λ-supermartingales, which generalize the concept
of supermartingales.

Definition 9 (λ-supermartingale): An observable h :
E → R is called λ-supermartingale, if there exists a
continuous function λ : I → R such that e−

∫ t
0
λ(s)dsh is

a supermartingale function.

A sufficient condition for an observable function h ∈ DL to
be λ-supermartingale is given in the following lemma.

Lemma 2: Given the SDE system in (3), and the corre-
sponding infinitesimal generator L, an observable function
h ∈ DL is λ-supermartingale with a continuous and differ-
entiable function λ : I → R if Lh ≤ λh.

Proof: Since h is λ-supermartingale, the function
e−

∫ t
0
λ(s)dsh is supermartingale. Therefore, Lemma 1 implies

that L(e−
∫ t
0
λ(s)dsh) ≤ 0. Hence

L(e−
∫ t
0
λ(s)dsh) = −λ(t)e−

∫ t
0
λ(s)dsh+ e−

∫ t
0
λ(s)dsLh

= e−
∫ t
0
λ(s)ds (−λ(t)h+ Lh) ≤ 0 .

Then, since Lh ≤ λ(t)h, h is λ-supermartingale.

Lemma 3: Let h ∈ DL be a λ-supermartingale function
with a smooth function λ : I → R, then for all x ∈ Rn,

Pth(x) ≤ e
∫ t
0
λ(s)dsh(x) . (10)

Proof: Using that the semigroup operator is defined
as Pt = etL, for each fixed x, taking the time derivative
of Pth we have that d

dtPth(x) = LetLh(x). Using that
semigroup operator commutes with infinitesimal operator, we
have d

dtPth(x) = etLLh(x) ≤ etLλ(t)h(x) = λ(t)Pth(x).
Then, we have Pth(x) ≤ e

∫ t
0
λ(s)dsh(x).

B. Probabilistic Forward Invariance and Safety Inference
using Supermartingale Functions

Here, we explore forward invariance and safety probabil-
ities using supermartingale functions.

Definition 10 (First Hitting Time): Suppose D ∈ E and
ω ∈ Ω. The first hitting time τD of the process X = {Xt}t∈I
to the set D is a random variable defined as

τD(ω) := inf{t ∈ I : Xt(ω) ∈ D}.

Note that τD(ω) = ∞ if Xt(ω) ̸∈ D for all t ∈ I. Similarly,
the first exit time from a set D is defined as the first hitting
time of Dc (the complement of the set D).

Let E = Rn, I = R≥0, h ∈ DL be a nonnegative
supermartingale function, and Oc be the super-level set of
h for c > 0:

Oc := {x ∈ Rn | h(x) ≥ c} . (11)

Suppose τOc
indicates the first hitting time of the solution

to the SDE system (3) starting from x ∈ Rn\Oc to the set
Oc. The probability of hitting Oc within the time interval
[0, T ] starting from x, is formulated as

Px(τOc
≤ T ) = Px

(
sup

t∈[0,T ]

h(Xt) ≥ c
)
. (12)

Let us first consider a bound for a fixed time t ∈ I. Let
h ∈ DL be a nonnegative λ-supermartingale with smooth
function λ : R≥0 → R, and let Oc in (11) be a super-level
set of h for c > 0. The probability that Xt enters the set
Oc can be upper bounded directly using Markov inequality
follows:

Px(h(Xt) ≥ c) ≤ 1
cE

x[h(Xt)] = 1
cPth(x)

≤ 1
c exp

(∫ t

0
λ(s)ds

)
h(x)

}
(13)

Note that the bound above holds for a specific time t. Our
goal is to bound the probability over a time interval [0, T ].
The Lemma below provides us with a required bound. For
convenience, let Λ(t) =

∫ t

0
λ(s)ds.

Lemma 4: Given the SDE system in (3), and the cor-
responding infinitesimal generator L. Let h ∈ DL be a
nonnegative λ-supermartingale function with the continuous
function λ : R≥0 → R. Let Oc be as defined (11) and
S ⊆ Rn be such that S ∩Oc = ∅. For x ∈ S,

Px
(
τOc

≤ T
)
≤ 1

c

(
sup

t∈[0,T ]

eΛ(t)

)
h(x) . (14)

If we have initial distribution µ with support in S, then

Pµ
(
τOc

≤ T
)
≤ 1

c

(
sup

t∈[0,T ]

eΛ(t)

)
Eµ[h(X0)] . (15)

Proof: Let t range over the interval [0, T ]. We have

P(∃t : h(Xt) ≥ c) = P
(
∃t : e−Λ(t)h(Xt) ≥ ce−Λ(t)

)



= P
(
sup
t
e−Λ(t)h(Xt) ≥ inf

t
ce−Λ(t)

)
≤ E[h(X0)]

inf
t
ce−Λ(t)

=
1

c

(
sup
t
eΛ(t)

)
E[h(X0)]

If X0 is a Dirac distribution at x, then E[h(X0)] = h(x),
proving (14). If X0 ∼ µ, then we establish (15).

Remark 4: A supermartingale is, in fact, a λ supermartin-
gale with λ = 0. The term

(
supt∈[0,T ] e

Λ(t)
)

in Eq. (14)
is advantageous if λ(t) ≤ 0 for all t ∈ [0, T ]. First, the
probability bound Px(h(Xt) ≥ c) decreases exponentially
over time t yielding a tight bound for a specific time instant
t. This is illustrated through the numerical examples in
Section V. For instance the plots in Figs. 1, 2 and 3
show how the probability bounds for reaching an unsafe set
tails off over time, thanks to the λ(t) term. Furthermore,
supt∈[0,T ] e

Λ(t) ≤ eΛ(0) = 1. This latter fact is useful in
computing bounds that hold over a time horizon [0, T ].

We will now consider the case for controlled SDE (8).

Lemma 5: Given the controlled affine SDE in (8), let h ∈
DL be a nonnegative λ-supermartingale function with the
continuous function λ : R≥0 → R. Suppose S ⊂ Rn and
h(x) ≤ c for x ∈ S. Let Oc = {x ∈ X : h(x) ≥ c} be a
super-level set of h for c > 0. If there exists a differentiable
control law u = κ(x) such that for each x ∈ S:

Luh(x) = Lh(x) +∇h(x)⊤g(x)u(x) ≤ λh(x) , (16)

then, the probability of reaching Oc at time t starting from
x ∈ S is bounded as:

P (h(Xt) ≥ c) ≤ 1

c
eΛ(t)E[h(X0)] .

Likewise, if t ∈ [0, T ], then

P (∃ t : h(Xt) ≥ c) ≤ 1

c

(
sup
t
eΛ(t)

)
E[h(X0)] .

The proof directly follows by applying Lemma 5 to the
closed-loop SDE obtained by plugging-in u = κ(x). Return-
ing to the overall problem statement in Section II-D, we seek
a λ-supermartingale h(x) and feedback law κ that satisfy the
following criteria:

h(x) ≥ 0, ∀x ∈ X ; λ(t) ≤ 0, ∀t ∈ [0, T ];
h(x) ≤ ρ, ∀x ∈ X0; h(x) ≥ 1, ∀x ∈ Xu;
Lh(x) +∇h(x)⊤g(x)κ(x) ≤ λ(t)h(x),

∀x ∈ X , t ∈ [0, T ] .

 (17)

Theorem 2: Let h(x), κ(x) satisfy (17) over x ∈ X and
t ∈ [0, T ] for given controlled SDE involving f, g, σ, sets
X0,Xu, time horizon T > 0 and probability threshold ρ ∈
(0, 1). The controlled SDE (8) under the feedback u = κ(x)
satisfies P (τXu

≤ T ) ≤ ρ.

Proof: (Sketch) The proof is a direct application of
Lemma 4 noting that Xu ⊆ Oc for c = 1. Also, h(X0) ≤ ρ.
Furthermore, supt e

Λ(t) = 1 since λ(t) ≤ 0 for all t ∈ [0, T ].

IV. SYNTHESIS OF SUPERMARTINGALES

In this section, we use an iterative approach to synthesize
polynomial λ-supermartingale functions and control feed-
back laws for a given SDE. We will restrict our attention
to nonlinear SDEs whose drift and diffusion functions are
described by polynomials over x, t. Furthermore, we will
synthesize λ-supermartingales h(x), wherein λ(t) and h(x)
are polynomials over t, x, respectively.

Let R[x] denote the set of all polynomials for x ∈ Rn.
We assume that the SDE system in (8) is polynomial, the
functions f, g, σ are polynomials.

Definition 11 (Sum-of-Squares): A polynomial g ∈ R[x]

is a sum-of-squares if g =

r∑
i=1

p2i for r ∈ N and pi ∈ R[x].

The set of SOS polynomials is denoted by SOS[x].

We use monomial basis functions to express each polyno-
mial as the inner product of a coefficient vector with a mono-
mial vector. Suppose ϕd(x) denotes the monomial vector that
contains all monomials over x with degree ≤ d. Then, each
polynomial p(x) of maximum degree d can be expressed as
p(x) = v⊤ϕd where v ∈ Rrd is the coefficient vector and

rd =

(
n+ d
n

)
. We define the (coefficient) distance between

two polynomials hi(x) = v⊤i ϕd and hj(x) = v⊤j ϕd as

d(hi, hj) := ∥vi − vj∥2 . (18)

First, we consider polynomial SDEs without control in-
puts. Our goal is to synthesize a λ-supermartingale function
h(x) ∈ R[x] and λ(t) ∈ R[t] that satisfies the condition:

∀ x ∈ X ⊂ Rn, L(h(x)) ≤ λh(x) (19)

Let d be an a priori fixed degree bound for h(x). We write
h(x) = v⊤h ϕd for an unknown vector vh ∈ Rrd . We do the
same for λ as a function of t, λ(t) = ω⊤

λ ψq(t), where ψq(t)
is a basis of monomials up to some degree q in t.

Since L is a linear operator, we have that Lh(x) =
L
(
v⊤h ϕd

)
= v⊤h Lϕd. Note that Lϕd is a vector of polyno-

mials whose degrees can exceed d. We relax condition (19)
using the sum-of-squares (SOS) approach [10], [11], [16]:

find vh, ωλ s.t.
(ω⊤

λ ψq(t))× (v⊤h ϕd(x))− (v⊤h Lϕd(x)) is SOS

}
(20)

Note that the constraints are refined further using Puti-
nar/Schmugden’s positivstellensatz to encode the restriction
that t ∈ [0, T ] along with restrictions to the state-space x
that are stated as polynomial inequalities [10], [11], [16].
Also, if we require h to be positive semi-definite, we can
add the extra SOS constraint that h(x) = v⊤h ϕd(x) is
SOS. We will omit these to simplify the presentation, but
include them in our implementation. The SOS constraints
are translated into semi-definite programming problems. In
this case, however, the constraints obtained are bilinear,
since they involve a product of the unknowns vh and ωλ.



The resulting feasibility problem is therefore non-convex and
hard to solve, in general [24].

Remark 5: A common approach to solving bilinear con-
straints uses the idea of “alternating co-ordinate descent”
that goes by different names in the control theory and
optimization literature [25], [26]. Here, the idea is to iterate
starting from initial guesses ω(0)

λ , v
(0)
h provided by the user.

At each iteration, ω(i+1)
λ is obtained by solving (20) by

fixing vh = v
(i)
h and likewise, v(i+1)

h is obtained by fixing
ωλ = ω

(i+1)
λ . Doing so, yields a sequence of convex semi-

definite programming problems. We note that such a scheme
has the possibility of converging to a local “saddle point”
and has poor performance in practice [27].

Inspired by Alternating Minimization Algorithm [28, Section
1.6.3], we propose a projection-based approach that allows
all the decision variables vh, ωλ to potentially change during
each iteration but nevertheless yields convex optimization
problems. For simplicity, we write v = vh and ω = ωλ. Let
h0 be an initial guess, h0 = v⊤0 ϕd. The proposed iterative
scheme solves a the following optimization problem to find
hi+1 = v⊤i+1ϕd given hi = v⊤i ϕd for i ≥ 0:

min
v,ω

∥v − vi∥2
s.t. (v⊤i ϕd(x))× (ω⊤ψq(t))− v⊤LΦd is SOS

Additional constraints over v, ω


(21)

Eq. (21) computes (vi+1, ωi+1) as a function of vi. Note
that ωi is not used.

Lemma 6: At any iteration i, if the optimization prob-
lem (21) has an optimal value of 0, then vi+1 = vi and
the values (vh, ωλ) = (vi+1, ωi+1) satisfy Eq. (20).

Algorithm 1 summarizes the overall approach. The algorithm
constructs a sequence of iterates starting from an initial guess
v0 and iterating until a limit N is reached. Rather than
terminate when the optimal value from solving Eq. (20) is
precisely 0, we will do so when it falls below some tolerance.
Finally, the approach checks that Eq. (20) holds on the final
result, failing with the result is rejected. In practice, we find
that multiple trials using variations on the initial guess h0
can succeed in discovering suitable functions h(x).

Controlled Supermartingale Synthesis: We will now ex-
tend our approach to controlled supermartingale synthesis.
Consider a controlled SDE as specified in (8). For each
monomial in our basis m(x) ∈ ϕd, we can write: Lum(x) =
Lm(x) + (∇m(x))⊤g(x)u. Suppose we parameterize the
feedback u = κ(x) as a polynomial function u = Kϕd with
an unknown matrix of coefficients K ∈ Rm×rd and over the
same monomial basis ϕd (for convenience). The approach
of alternating projection can be extended wherein at each
iteration we update a triple (vi, ωi,Ki) starting with some

Data: initial guess: v0, monomial basis:
ϕd(x), ψq(t), tolerance parameter: ϵ > 0,
iteration limit: N

Result: SUCCESS with (vh, ωλ satisfying Eq. (20)
or FAILURE conditions.

for i = 0, . . . , N do
Solve SOS problem (21). Let o be the optimal

objective and vi+1, ωi+1 be the results.;
if (o ≤ ϵ) then

Check if vh = vi+1, ωλ = ωi+1 satisfy
Eq. (20). ;

if check succeeded then
return (vh, ωλ) ;

else
return FAILURE;

end
end

end
return FAILURE;

Algorithm 1: Algorithm for computing λ supermartin-
gales using iterated projection approach.

initial guess v0,K0.

min
v,w,K

∥v − vi∥+ ∥K −Ki∥

s.t.
(
v⊤i ϕd(x)

)
×
(
ω⊤ψq(t)

)
−
(
v⊤Lϕd(x)

)
+
(
v⊤i ∇ϕd(x)

)
× g(x)× (Kϕd(x)) is SOS ,

Additional constraints over v, w,K .
(22)

Once again, we can apply a modified version of the
iterative scheme given a controlled SDE: (a) We initialize
using a guess (v0,K0); (b) at each iteration, we update
(vi+1, ωi+1,Ki+1) by solving Eq. (22); and (c) if we achieve
convergence, we apply Eq. (22) to check our final result.

Finally, we conclude by focusing on the solution to the
problem statement in Section II-D. Given initial set X0,
unsafe set Xu, time horizon T and probability bounds ρ,
we find a solution to Eq. (17) by solving the following SOS
program iteratively.

min
v,w,K

∥v − vi∥+ ∥K −Ki∥ s.t.

C1 : v⊤i ϕd(x) is SOS on x ∈ X ,

C2 : − w⊤ψq(t) is SOS for t ∈ [0, T ] ,

C3 : v⊤i ϕd(x) ≤ ρ for x ∈ X0 ,

C4 : v⊤i ϕd(x) ≥ 1 for x ∈ Xu ,

C5 :
(
v⊤i ϕd

)
×
(
w⊤ψq

)
− v⊤Lϕd

+
(
v⊤i ∇ϕd

)
× g(x)× (Kϕd)

is SOS (t, x) ∈ [0, T ]×X .



(23)

The constraint C1 imposes non-negativity of h(x), C2
enforces the negativity of λ(t) over [0, T ], C3, C4 places
limits for h(x) on the initial set X0 and unsafe set Xu, C5
denotes the λ supermartingale property.



Fig. 1: (Left) Twenty randomly sampled trajectories of the
closed loop synthesized for Example 3 and (Right) upper
bound of probability of reaching unsafe set obtained by
applying Eq. (13) .

V. EXPERIMENTAL RESULTS

We now present the results of our approach on a few
selected numerical examples of SDEs. In each case, we
solve an instance of the problem stated in Section II-D
for various controlled SDEs with given X0,Xu, threshold
T and probability bounds ρ using the iterative algorithm
from Section IV and the constraints shown in (23). Our
implementation uses the Julia programming language and
the SumOfSquares.jl package of Legat et al [17]. Our
implementation and the results of the numerical examples
will be made available through our GitHub repository 1.

Example 3: Consider the following controlled SDE

dx = (f(x) + g(x)u)dt+ σ(x)dW, (24)

where f(x) =
(
−x31 + 0.5x2
−x1 − 2.0x2

)
, g(x) = I2×2, and σ(x) =(

0.2x1 0.1x2
−0.1(x1 + x2) 0.2

)
. Suppose the initial set is X0 =

{x ∈ R2 : (x1 − 8)2 + (x2 − 2)2 ≤ 0.5}, and the unsafe set
is Xu = {x ∈ R2 : (x1 − 2)2 + (x2 − 2)2 ≤ 0.5}. Applying
the iterative algorithm to the problem in (23), the feedback
control law and the λ-supermartingale observable function h
are generated for T = 10, and 1− ρ = 0.95. Figure 1 (left)
shows twenty trajectories generated from various initial states
X0. The probability of reaching the super-level set of h at
each t calculated using Eq. (13) (i.e. P(h(Xt) ≥ 1)) as a
function of time t is shown in Figure 1 (right).

The maximum degree d of monomials ϕd(x) was taken
to be 8, and that for λ(t) was 2. The stopping threshold for
the algorithm is ϵ = 10−10.

Example 4: Consider a controlled Lotka Volterra sys-

tem with f(x) =

(
1.5x1 − x1x2
−x2 + 1.2x1x2

)
, g = I , and σ =(

0.2x1 0
0 0.2x2

)
. Suppose X0, Xu are given as

X0 = [0.5, 2]2 , Xu = {x ∈ R2 : x1 + x2 ≥ 5} .

Applying the iterative approach to the problem in (23), the
feedback control law and the λ-supermartingale observable

1https://github.com/MasoumehGHM/
timedKoopmanScalar

function h are generated for T = 10, and 1 − ρ = 0.95.
Figures 2(left) show the normalized feedback law, while
Figure 2 (right) plots the bounds on probability for specific
time instants. The maximum degree for ϕd(x) was taken to
be 8 and that for ψq(t) was taken to be 2. ϵ was set to 10−8.

Example 5: Consider the approximate pendulum SDE

system with f(x) =

(
x2

−x1 − x31

)
, g =

(
0
1

)
, and σ =(

0 0
0 0.1

)
. Suppose X0, Xu are given as

X0 = [−π
8
,
π

8
]× [−0.2, 0.2],

Xu =

{
x ∈ R2 : |x1| ≥

7π

8
, |x2| ≥ 5

}
.

The feedback control law and the λ-supermartingale observ-
able function h are generated for T = 5, and 1− ρ = 0.75.
Figure 3 (left) shows the trajectories of twenty random
generated initial points from X0. Figure 3(right) illustrates
probability bounds at various time instants. The maximum
degree of polynomials in x was taken to be 8, and the
maximum degree for λ was 2. The stopping threshold for
the algorithm was set to ϵ = 10−10.

VI. CONCLUSION

Thus, our proposed approach effectively leverages super-
martingale functions to compute feedback laws that guar-
antee probabilistic safety properties of SDE models in the
presence of control inputs. Future work will aim to extend
this methodology to accommodate multiple observable func-
tions, extending to stochastic jump differential equations and
stochastic hybrid systems.
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