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Abstract
We present the idea of successive control barrier functions for

nonlinear (polynomial) control systems. Control Barrier Functions

(CBFs) can be used to maintain safety properties for a system

through the online modification of control inputs to ensure that the

state remains inside a controlled invariant set that excludes a set

of unsafe states. However, the synthesis of CBFs is quite difficult

in practice, especially for nonlinear dynamical systems. Compu-

tationally inexpensive approaches employ relaxed control barrier

conditions that result in relatively small control invariant sets. In

turn, this can result in unnecessary modification of the nominal

control input to keep the dynamics inside this set.

In this paper, we propose the concept of “successive” CBFs.

Rather than rely on a single CBF, our approach uses a hierarchy of

functions wherein functions at one level of a hierarchy become ac-

tive only if the functions at the previous levels have “failed”. Using

a well-known approach to finding barrier functions for polynomial

dynamical systems using sum of squares optimization, we show

how to adapt it to synthesize successive barrier functions. We also

provide “transit time” guarantees to construct a “chattering-free”

runtime enforcement scheme that avoids collisions with fixed obsta-

cles. We demonstrate our approach on a set of interesting nonlinear

benchmarks, while comparing it with state of the art approaches

for synthesizing CBFs.
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1 Introduction
In this work, we present algorithms for the computation of con-

trol invariant sets for nonlinear polynomial dynamical systems

using the notion of successive control barrier functions. Control Bar-

rier Functions (CBFs) represent a promising approach to enforce

safety in autonomous systems through the continuous or intermit-

tent modification of the nominal control input, obtained from a
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controller for which safety is not guaranteed, to maintain the sys-

tem inside a control invariant region that excludes a set of unsafe

states [1]. However, the key difficulties include the construction of

such functions, especially for nonlinear control systems with con-

straints on the control inputs. CBFs can be synthesized by a variety

of approaches based on those used to synthesize control Lyapunov

functions. These include bilinear optimization [36], sum-of-squares

approaches using alternating descent [38], solving HJBI PDE [9]

and learning such functions from data followed by a post-hoc ver-

ification [13, 22]. Despite the proliferation of these approaches,

systematically synthesizing CBFs for nonlinear systems is well-

known to be a hard problem. We propose the notion of successive

control barrier functions that define strategies for avoiding a fixed

set of unsafe states. The key idea is to derive these functions by

combining simple barrier functions. A barrier function is a concept

defined for a system without inputs that proves that the system’s

trajectories will not reach an unsafe set of states, starting from the

initial set [32]. We first use a very simple approach for synthesizing

CBFs by combining barrier functions. Each such barrier function is

designed for a fixed control input u = u𝑖 and defines a set of states

from which the application of the fixed control input u𝑖 will avoid
visiting the unsafe set. We define the notion of transit time: the

time taken for the barrier function to go from some fixed thresh-

old value inside the control invariant set to the boundary between

controlled (safe) and potentially uncontrolled (unsafe) sets wherein

the CBF changes sign. We show how to provide a lower bound

for transit time and how such a bound can lead to a periodically

sampled computation for monitoring the barrier and modifying

the nominal controller to enforce safety. However, such CBFs turn

out to be quite conservative, in practice: they produce relatively

small control invariant sets as a result of this conservatism. In turn,

this results in the runtime enforcement intervening more often to

modify the nominal controller unnecessarily.

To alleviate this conservatism, we define successive control bar-

rier functions which define a sequence of CBFs 𝐵0, . . . , 𝐵𝑘 wherein

a later CBF satisfies its decrease condition only if the earlier ones

are all violated. The key idea here is that when a trajectory violates

the CBF 𝐵𝑖 , we allow such a violation to happen provided a later

𝐵 𝑗 for 𝑗 > 𝑖 can be used to maintain safety. We demonstrate how

to construct such successive CBFs. We then present an approach

to use the successive CBFs to maintain control invariance. We use

the notion of a transit time to allow for a sampled-data approach

which involves periodic sampling using the minimum transit time.

Finally, we demonstrate our approach using a set of small but

challenging benchmark examples of nonlinear systems ranging

from 2 to 7 state variables. We show how the use of successive bar-

rier functions can help add to the control invariant set. We compare

our result to a recent approach that uses neural networks as CBFs

and has been implemented in the tool FOSSIL [13]. The comparison
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with FOSSIL demonstrates that our approach, although slower on

small examples, can still scale to larger dimensional benchmarks

and can obtain control invariant sets that add more controllable

states when compared to those included in the CBFs discovered by

FOSSIL. The contributions of this paper include; the introduction

of the notion of successive control barrier functions for tight over-

approximation of unsafe regions for guaranteed safe planning, the

synthesis of a runtime safety monitor based on switching between

the successive control barrier functions, and empirical evaluation

of these on some interesting nonlinear dynamics.

1.1 Related Work
Barrier functions, sometimes called barrier certificates, are used to

guarantee a system never reaches an unsafe set of states starting

from some initial set [32]. Whereas barrier functions are defined

for systems without control inputs, the notion of control barrier

functions extend to systems with control inputs. Control Barrier

Functions (CBFs) can be used to synthesize feedback laws or mod-

ify a nominal feedback in order to ensure a dynamical system’s

trajectories never leave a specified safe set, or equivalently, never

enter an unsafe set [1]. These approaches have been quite beneficial

in the verification of cyber-physical systems [12], especially for

safety-critical applications [10, 23, 44].

Although CBFs are being widely used to enforce safety prop-

erties, computing a CBF for a given nonlinear dynamics is quite

challenging. A significant challenge in computing control barrier

functions arises due to the relative degree of the function. Using

exponential control barrier functions addresses these challenges

[27], and higher-order control barrier functions generalize these

approaches further [37, 41]. The higher-order approach keeps differ-

entiating a high relative degree constraint function until a control

input is found. The CBF conditions are then enforced over the

highest-order derivative. However, in practice, many dynamical

systems may not obey the relative degree condition. Also, since the

approach often starts from the specification of the safety property,

it can lead to infeasibility during runtime wherein we may fail to

find a control input can be applied to maintain safety.

Lately, many learning-based approaches for CBF computation

have emerged. Neural CBFs exploit the universal approximation

property of neural networks [22, 46]. Another interesting approach

is finding an invariant by learning a hypersurface for each obstacle

using support vector machines [42]. In practice, neural CBFs can be

learned rapidly but the difficulty arises in the process of verifying

a given neural CBF.

Besides neural CBFs, Sum-of-squares(SOS) optimization tech-

niques have shown great promise regarding the efficient compu-

tation of control barrier functions [38]. In the case of polynomial

dynamical systems with semi-algebraic sets, SOS techniques re-

lax the algebraic geometry problem into semi-definite programs,

leading to efficiency in solving the optimization problem [29, 35].

The approach has been well integrated into packages such as SOS-

TOOLS and the more recent Julia SumOfSquares package [19, 39].

Our approach relies on computing multiple barrier functions.

Computing more than one barrier function has recently become

a prominent approach for safe planning in challenging environ-

ments. The need for multiple barriers primarily arose to counter

scenarios where a single barrier function may not be sufficient.

Many of these approaches consider environments with multiple

obstacles/constraints by synthesizing multiple barriers, wherein

each of these barriers enforcing a subset of constraints [16, 21]. One

way of computing these viability domains is applying all barriers in

a single quadratic program [33, 43], while some approaches decou-

ple the design to ensure joint feasibility under more conservative

assumptions [6]. Our approach considers a single unsafe set 𝑋𝑢
unlike the other approaches mentioned above. The motivation for

considering multiple CBFs lies in improving the control invariant

set for a single unsafe set specification.

When dealing with multiple CBFs, a valid concern is how often

one needs to switch between barriers. A continuous time monitor-

ing strategy may lead to Zeno behavior. There have been attempts

to alleviate this problem by incorporating dwell time constraints

when synthesizing barriers [7, 8], where the controllers can only

intervene once a minimum dwell time has elapsed. The dwell times

are present to compute impulsive timed CBFs. Our work uses a

different approach that consists of computing minimum transit

times using a notion introduced in this paper, that we call the “slow

transit property”. The transit property allows our approach to effec-

tively work in a sampled-data manner; i.e., by periodically sampling

the state of the system and making a decision on how to modify

the nominal control input for the subsequent time interval. Our

approach is set up so as to guarantee that the system cannot transit

from safe to unsafe within this time interval.

The concept of a controlled invariant set is dual to another inter-

esting concept of Inevitable Collision States (ICS). The ICS concept

was first formulated in [14]. A state is an ICS where, no matter what

trajectory is executed by the system, a collision with an obstacle will

eventually occur [25]. Whereas, the controlled invariant set guar-

antees that there always exists a control strategy that will ensure

collisions with obstacles are not possible. Determining whether a

state is ICS for all possible trajectories is intractable [24]. Even for a

simple dynamical system, computing ICS for only a few trajectories

is computationally intensive [31].

There have been few notable attempts to approximate ICS. One

of the earliest attempts was a generic ICS checker implemented in

[25, 26]. Bekris et al [2, 3] introduced sampling-based planners for

avoiding ICS efficiently. Another approach was to employ backward

reachability for ICS approximation [31]. Lim et al. [20] use precom-

puted offsets for safe navigation for fixed-wing aerial vehicles. In

this paper, we present a new guaranteed over-approximation tech-

nique that uses sum of squares optimization and exploits the link

between ICS and control barrier functions.

2 Preliminaries
We will present key preliminary notions including dynamical sys-

tem models for autonomous vehicles, control barrier functions

[1, 32], and sum-of-square (SOS) optimization [18, 29, 30, 35]. We

will use boldface notation to denote vectors. For a vector x ∈ R𝑛 ,
the 𝑖𝑡ℎ component is denoted 𝑥𝑖 .

Let x ∈ R𝑛 denote the state of the system and u ∈ R𝑚 denote

the control inputs. We assume that u ∈ 𝑈 , wherein 𝑈 is a hyper-

rectangle of the form [𝑙 (𝑢1), ℎ(𝑢1)] × · · ·× [𝑙 (𝑢𝑚), ℎ(𝑢𝑚)]. Let R[x]
denote the set of multivariate polynomials over x with real-valued
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coefficients and R𝑑 [x] denote polynomials whose terms have de-

gree at most 𝑑 ∈ N. A basic semi-algebraic set is defined by a con-

junction of polynomial inequalities of the form𝑅 = {x | ∧𝑘
𝑖=1 𝑝𝑖 (x) ≥

0} wherein 𝑝1, . . . , 𝑝𝑘 ∈ R[x].

Definition 2.1 (Polynomial Dynamical System). A polynomial

dynamical system Σ over some state-space 𝑋 ⊆ R𝑛 is a system

of ordinary differential equations (ODE) of the form ¤x = 𝑓 (x, u),
wherein 𝑓 : R𝑛 → R𝑛 is a polynomial vector field of the form

𝑓 (x, u) = (𝑝1 (x, u), . . . , 𝑝𝑛 (x, u)) for polynomials 𝑝1, . . . , 𝑝𝑛 .

A trajectory of a system over time 𝑇 for a continuous input

signal u : [0,𝑇 ) → 𝑈 is a continuous and differentiable function

𝜑 : [0,𝑇 ) → 𝑋 such that for all time 𝑡 ∈ [0,𝑇 ), 𝑑𝜑
𝑑𝑡

= 𝑓 (𝜑 (𝑡), u(𝑡)).

Example 2.2. Consider a polynomial systemwith 3 state variables

(𝑥,𝑦, 𝜃 ) and control input 𝑢. The state space 𝑋 = {(𝑥,𝑦, 𝜃 ) |𝜃 ∈
[−𝜋, 𝜋]}. The dynamics are given as

¤𝑥 =

(
1 − 𝜃

2

2

)
, ¤𝑦 =

(
𝜃 − 𝜃

3

3

)
, ¤𝜃 = 𝑢 , wherein 𝑢 ∈ [−0.05, 0.05] .

2.1 Barrier and Control Barrier Functions
Barrier functions (or barrier certificates) are often used in control

applications to realize safety properties of closed-loop autonomous

systems. The concept of a barrier function was first introduced

by Prajna and Jadbabaie [32] and later extended by many others

[4, 17, 27, 45]. The concept of a control barrier function extends that

of a barrier for systems with control inputs [1, 40]. Let ¤x = 𝑓 (x) be
a differential equation for Lipschitz continuous function 𝑓 (note:

no control inputs). Let 𝑋𝑢 represent the unsafe set.

Definition 2.3 (Barrier Function). A barrier function 𝐵 : R𝑛 → R
is a differentiable function of the state variables such that there

exist constants 𝜖 > 0 and 𝜆 satisfying:

∀ x ∈ 𝑋𝑢 , 𝐵(x) ≥ 𝜖, and ∀ x ∈ 𝑋, ∇𝐵(x) · 𝑓 (x) ≤ −𝜆𝐵(x) .

Theorem 2.4. Let 𝐵 be a barrier function following Def. 2.3 and

x0 ∈ R𝑛 be such that 𝐵(x0) ≤ 0. Any trajectory 𝜑 : [0,𝑇 ) → R𝑛
with 𝜑 (0) = x0 will not intersect the unsafe set 𝑋𝑢 .

Proof. Let 𝜑 : [0,𝑇 ) → R𝑛 be any trajectory. Since 𝑓 is con-

tinuous, it follows that 𝜑 is differentiable. Consider the function

𝑒𝜆𝑡𝐵(𝜑 (𝑡)). For all 𝑡 ∈ [0,𝑇 ), 𝑑
𝑑𝑡

(
𝑒𝜆𝑡𝐵(𝜑 (𝑡))

)
= 𝜆𝑒𝜆𝑡𝐵(𝜑 (𝑡)) +

𝑒𝜆𝑡 𝑑
𝑑𝑡
𝐵 ≤ 𝜆𝑒𝜆𝑡𝐵(𝜑 (𝑡))−𝜆𝑒𝜆𝑡𝐵(𝜑 (𝑡)) ≤ 0. Therefore, 𝑒𝜆𝑡𝐵(𝜑 (𝑡)) ≤

𝐵(𝜑 (0)). Thus, for all 𝑡 ≥ 0, 𝐵(𝜑 (𝑡)) ≤ 0 if 𝐵(𝜑 (0)) ≤ 0. Therefore,

𝜑 (𝑡) ∉ 𝑋𝑢 since 𝐵(x) ≥ 𝜖 > 0 for all x ∈ 𝑋𝑢 . □

Example 2.5. Consider the system in Ex. 2.2, wherein we fix the

external inputs 𝑢1 = −0.05. Let 𝑋𝑢 = {(𝑥,𝑦) | 𝑥2 + 𝑦2 ≤ 0.04} be
the unsafe set. We obtain a barrier function

𝐵0 (𝑥,𝑦, 𝜃 ) = 0.25 + 10−4 ×
(
−2.42𝜃 − 23.1𝑦 − 9𝑥 + 2.7𝜃2 + 49.4𝑦𝜃
−3.1𝑦2 − 6.36𝑥𝜃 − 1.02𝑥𝑦 − 5.86𝑥2

)
.

We set 𝜖 = 0.25, 𝜆 = −0.1. Note that for any state (𝑥,𝑦, 𝜃 ) s.t.
𝐵0 (𝑥,𝑦, 𝜃 ) ≤ 0, we can apply the control 𝑢 = −0.05 to keep the

system away from the set 𝑋𝑢 .

The concept of a control barrier function extends that of a barrier

function for systems with control inputs.

Definition 2.6 (Control Barrier Function). Consider a system S as

in Definition 2.1 and the set 𝑋𝑢 ⊆ 𝑋 be the unsafe set. A control

barrier function for S is a differentiable function 𝐵 : 𝑋 → R such

that there exist constants 𝜖 > 0 and 𝜆 satisfying (a) 𝐵(x) ≥ 𝜖 for
all x ∈ 𝑋𝑢 and (b) for all x ∈ R𝑛 there exists a control input u ∈ 𝑈
such that ∇𝐵(x) · 𝑓 (x, u) ≤ −𝜆𝐵(x).

Analogous to barrier functions, we can prove the following the-

orem for control barrier functions [1].

Theorem 2.7. Let 𝐵(x) be a control barrier function following

Def. 2.6. For all x0 such that 𝐵(x0) ≤ 0, there exists a control feedback

law 𝜅 : 𝑋 → 𝑈 mapping states to controls, such that the resulting

trajectory 𝜑 : [0,𝑇 ) → R𝑛 will not enter the unsafe set 𝑋𝑢 .

Control barrier functions are used to avoid violations of safety

properties by applying a control input to the system that ensures

the derivative satisfies ¤𝐵(x(𝑡)) ≤ −𝜆𝐵(x(𝑡)).

2.2 Sum Of Squares Programming for
Synthesizing Barriers

Barrier functions for polynomial functions can be synthesized using

sum-of-squares (SOS) optimization techniques [30, 35]. A polyno-

mial 𝜎 ∈ R[x] is a sum of squares (SOS) iff it can be written as

𝜎 = ℎ2
1
+ · · · + ℎ2

𝑘
for some polynomials ℎ1, . . . , ℎ𝑘 ∈ R[x]. Note

that if a polynomial 𝜎 is SOS then for all x ∈ R𝑛 , 𝜎 (x) ≥ 0 (the

converse is not necessarily true). Let the unsafe set 𝑋𝑢 be a basic

semialgebraic set defined as follows: 𝑋𝑢 = {x ∈ R𝑚 | 𝑔1 (x) ≥
0, 𝑔2 (x) ≥ 0, . . . , and 𝑔𝑙 (x) ≥ 0}. The following conditions are

sufficient for a polynomial 𝐵(x) to be a barrier function Def. 2.3:

C0 : 𝐵(x) − 𝜖 = 𝜎0 + 𝜎1𝑔1 + · · · + 𝜎𝑙𝑔𝑙 , s.t. 𝜎0, 𝜎1, . . . , 𝜎𝑙 are 𝑆𝑂𝑆
C1 : − ∇𝐵 · 𝑓 (x) − 𝜆𝐵(x) = 𝜉 s.t. 𝜉 is SOS .

Note that conditions C0, C1 express the fact that for all x ∈ 𝑋𝑢 ,
𝐵(x) ≥ 𝜖 and for all x, ∇𝐵 · 𝑓 ≤ −𝜆𝐵 (see Def. 2.3). To discover a

function 𝐵, we proceed as follows:

(1) Fix degree bounds for 𝐵, 𝜎0, . . . , 𝜎𝑙 , 𝜉 , expressing each un-

known polynomial as a summation over the monomials with

unknown coefficients.

(2) Conditions C0, C1 above yield linear equations on the un-

known coefficients.

(3) Express the SOS condition on 𝜉 𝑗 , 𝜎𝑖 in terms of the positive

semi-definiteness of a matrix involving its coefficients [30].

(4) This results in a semi-definite programming problem whose

feasible solution yields 𝐵 [5].

This process is automated by useful software tools such as SOS-

TOOLS [28] and the Julia SumOfSquares.jl package [19, 39].

Example 2.8. Consider again the running example (Ex. 2.2) wherein

we fix the external inputs𝑢1 = 0.05. Let𝑋𝑢 = {(𝑥,𝑦) |𝑥2+𝑦2 ≤ 0.04}.
By fixing a maximum degree of 4 for the barrier function, we obtain

𝐵1 =
©«

10 − 10𝜃 + 1.95𝑦 − 5.5𝑥 + 10𝜃2 − 10𝑦𝜃 + 1.7𝑦2 + 1.3𝑥𝜃 − 2.4𝑥𝑦 + 𝑥2
+ · · · +

0.05𝑥2𝜃2 + 0.075𝑥2𝑦𝜃 + 0.0024𝑥2𝑦2 − 0.017𝑥3𝜃 − 0.0027𝑥3𝑦 + 0.001𝑥4
ª®¬ .

This barrier function and the function 𝐵0 from Example 2.5 were

synthesized using the SumOfSquares.jl package in Julia [19, 39].
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Algorithm 1: Algorithm for multiple control barrier com-

putation

Data: System Σ, unsafe set 𝑋𝑢 , finite control set𝑈𝑓 𝑖𝑛 ,
constants 𝜖 > 0, 𝜂, 𝛿 and 𝜆, degree bound 𝐷 , test set 𝑆 .

Result: Set of barrier functions and associated controls B.
1 B = ∅ /* Initialize to empty set */

2 for u𝑡 ∈ 𝑈𝑓 𝑖𝑛 do
3 for x𝑡 ∈ 𝑆 do
4 find polynomial 𝐵 of degree 𝐷

5 s.t. (∀x ∈ 𝑋𝑢 ) 𝐵(x) ≥ 𝜖
6 (∀x) ∇𝐵 · (𝑓 (x, u𝑡 )) ≤ −𝜆𝐵
7 𝐵(x𝑡 ) ≤ 0

8 if 𝐵 found then
9 B = B ∪ {(𝐵, u𝑡 )}

10 𝑆 = 𝑆 \ {x ∈ 𝑆 | 𝐵(x) ≤ 0} /* remove already

eliminated test point */

11 return B

3 Successive Control Barrier Functions
In this section, we describe the overall successive control barrier

function approach of this paper.

a. First, we show that fixing a finite set of control inputs can be

used to synthesize barrier functions that can be combined into a

control barrier function. Section 3.1 describes this approach.

b. Unfortunately, our approach produces a non-smooth control bar-

rier function which requires theoretical ideas from non-smooth

analysis and in practice can lead to zenoness/chattering. We

provide an approach for analyzing “transit times” that will allow

us to work with discrete time monitors.

c. The combination of using SOS programming and enforcing a

transit time condition make the resulting control barrier func-

tions too conservative; i.e., their controlled invariant regionmarks

off many states as “uncontrollable”. We will address this by pre-

senting the idea of successive control barriers.

3.1 From Barriers to Control Barriers
Let ¤x = 𝑓 (x, u) be the dynamical model with a compact set of

control inputs u ∈ 𝑈 and 𝑋𝑢 be the set of unsafe states. Let 𝑈
fin

be a finite subset of𝑈 . Our control barrier function will consider

controls only from this set𝑈
fin
.

Remark 1. If the dynamics 𝑓 (x, u) are control affine; i.e., 𝑓 (x, u) =
𝑓1 (x)+ 𝑓2 (x)u and𝑈 is represented by a (compact) convex polyhedron,

then𝑈
fin

can be taken to be the vertices of𝑈 . This is because whenever

for a state x there exists a u ∈ 𝑈 , such that (∇𝐵(x)) · (𝑓1 (x) +
𝑓2 (x)u) ≤ −𝜆𝐵(x), we can show that one of the vertices u ∈ 𝑈

fin
will

satisfy the decrease condition since it is affine in u.

Algorithm 1 computes a set of barrier functions and associated

controls of the form B = {(𝐵1, u1), . . . , (𝐵𝑘 , u𝑘 )}, wherein each 𝐵𝑖
is a barrier function for the dynamics ¤x = 𝑓 (x, u𝑖 ) with u = u𝑖 .
To facilitate multiple barrier computation, we fix a finite set 𝑆 of

“test” states such that 𝑆 ∩ 𝑋𝑢 = ∅. Our goal is to attempt to find a

barrier for each test state x𝑡 ∈ 𝑆 that shows that it belongs to the
control invariant region when the control is fixed to some u𝑖 ∈ 𝑈fin

.

𝐵(𝜑 (𝑡))

𝑡

−𝐾

0

𝑡0 𝑡0 + 𝜏
Upward Transit

Figure 1: Illustration of a trajectory transiting from
𝐵(𝜑 (𝑡0)) ≤ −𝐾 to 𝐵(𝜑 (𝑡0 + 𝜏)) ≥ 0.

Lines 4- 7 present the SOS formulation. In particular, line 7 adds a

linear constraint in the coefficients of the unknown polynomial 𝐵

that forces the polynomial to be non-positive at the test point x𝑡 .
If a barrier is found for a test point x𝑡 and some control u𝑗 ∈ 𝑈fin

,

the test point is eliminated from the set 𝑆 . In practice, 𝑆 consists of

randomly generated states that lie outside 𝑋𝑢 .

We wish to combine the set of barrier functions obtained from

Algorithm 1 into a single control barrier function. For instance, we

can consider the piecewise minimum: 𝐵(x) = min(𝐵𝑖 ,u𝑖 ) ∈B 𝐵𝑖 (x),
as the minimum over all the barriers considered. However, such a

function is non-smooth. Although the theory of nonsmooth barrier

functions [15, 16] have been studied using techniques from non-

smooth analysis [11], the results of Glotfelter et al are not directly

applicable in our case, where the barrier functions 𝐵1, . . . , 𝐵𝑚 are

obtained by altering the control inputs and thus technically, pertain

to different dynamics. We now study a simpler but conservative

scheme that imposes an additional transit time condition; imposing

the transit time condition on the barriers computed using Algo-

rithm 1 allows us to effectively combine them into a single control

barrier function and enforce control invariance.

3.2 Transit Time Bounds for a Barrier Function
Let 𝐵(x) be a barrier function for a fixed control input u𝑟 ∈ 𝑈 . The

set {x | 𝐵(x) ≤ 0} is the controlled invariant (CI) corresponding

to 𝐵(x) using the control u = u𝑟 . Let 𝐾 > 0 be a fixed threshold.

Let u(𝑡) ∈ 𝑈 be an arbitrary control signal. Let 𝜑 (𝑡) denote the
resulting trajectory. We say that 𝜑 “transits” from a state 𝜑 (𝑡0)
wherein 𝐵(𝜑 (𝑡0)) = −𝐾 to a state 𝐵(𝜑 (𝑡0 + 𝜏)) = 0 for transit time

𝜏 > 0 if for all time 𝑡 ∈ (𝑡0, 𝑡0 + 𝜏), 𝐵(𝜑 (𝑡)) ∈ (−𝐾, 0) (See Fig. 1).
Since we have assumed that the dynamics are time invariant, we

can set 𝑡0 = 0 without loss of generality.

Definition 3.1 (Minimum “Upward” Transit Time). The minimum

(upward) transit time given a barrier function 𝐵(x) and threshold

𝐾 > 0 is defined as the infimum over the transit times of all possible

trajectories 𝜑 : [0,𝑇 ) → 𝑋 of the system ¤x = 𝑓 (x, u) corresponding
to a continuous control signal u : [0,𝑇 ) → 𝑈 .

𝜏∗ = inf

𝜏
������ 𝜑 is a trajectory for continuous u : [0,𝑇 ) → 𝑈 ,

0 < 𝜏 ≤ 𝑇, 𝐵(𝜑 (0)) = −𝐾, 𝐵(𝜑 (𝜏)) = 0, and

∀𝑡 ∈ (0, 𝜏) 𝐵(𝜑 (𝑡)) ∈ (−𝐾, 0)

 .
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We will now augment the requirements for a barrier function to

be able to provide a bound on its transit time given a threshold 𝐾 .

Definition 3.2 (Upward Slow Transit Property). We say that a

control barrier function has the upward slow transit property (STP)

iff there exist 𝛿, 𝜂 ∈ R such that

∀ x ∈ 𝑋,∀u ∈ 𝑈 , 𝐵(x) ∈ [−𝐾, 0] ⇒ ∇𝐵 · 𝑓 (x, u) ≤ 𝜂𝐵(x) + 𝛿 .
(1)

Theorem 3.3. If a barrier function 𝐵(x) satisfies (1) then (a) if

max(𝛿,−𝜂𝐾+𝛿) > 0, then𝜏∗ ≥ 𝐾
max(𝛿,−𝜂𝐾+𝛿 ) ; and (b) ifmax(𝛿,−𝜂𝐾+

𝛿) ≤ 0, then no transits are possible: i.e, 𝜏∗ = ∞.

Proof. Let 𝜑 : [0,𝑇 ) → 𝑋 be any trajectory corresponding to

some continuous control signal u : [0,𝑇 ) → 𝑈 and 𝜏 > 0 be a time

such that the conditions for transit hold: 𝐵(𝜑 (0)) = −𝐾, 𝐵(𝜑 (𝜏)) =
0, and ∀𝑡 ∈ (0, 𝜏) − 𝐾 ≤ 𝐵(𝜑 (𝑡)) ≤ 0. Since u is continuous, 𝜑 is

continuous and differentiable. Applying the Lagrange mean value

theorem, we obtain,

𝐵(𝜑 (𝜏)) = 𝐵(𝜑 (0)) + 𝜏 𝑑
𝑑𝑡
𝐵(𝜑 (𝑡)) ,where 𝑡 ∈ (0, 𝜏) .

Next, we observe that
𝑑
𝑑𝑡
𝐵(𝜑 (𝑡)) = ∇𝐵(𝜑 (𝑡))·𝑓 (𝜑 (𝑡)) ≤ 𝜂𝐵(𝜑 (𝑡))+

𝛿 , since 𝐵(𝜑 (𝑡)) ∈ [−𝐾, 0]. We have

0 = 𝐵(𝜑 (𝜏)) = 𝐵(𝜑 (0)) + 𝜏 𝑑
𝑑𝑡
𝐵(𝜑 (𝑡)) ≤ −𝐾 + 𝜏 (𝛿 + 𝜂𝐵(𝜑 (𝑡))) .

Since 𝐵(𝜑 (𝑡)) ∈ [−𝐾, 0], 𝛿 + 𝜂𝐵(𝜑 (𝑡)) ≤
{
𝛿 𝜂 ≥ 0

𝛿 − 𝜂𝐾 𝜂 < 0

.

Therefore, 𝛿 + 𝜂𝐵(𝜑 (𝑡)) ≤ max(𝛿, 𝛿 − 𝜂𝐾). Suppose max(𝛿, 𝛿 −
𝜂𝐾) > 0, then 𝜏∗ ≥ 𝐾

max(𝛿,−𝜂𝐾+𝛿 ) . This proves (a).
Otherwise, if max(𝛿, 𝛿 − 𝜂𝐾) ≤ 0, we have 𝛿 − 𝜂𝐾 ≤ 0 and

𝛿 ≤ 0. As a result, we conclude that whenever 𝐵(x) ∈ [−𝐾, 0],
𝑑
𝑑𝑡
𝐵(x) = ∇𝐵(x)·𝑓 (x, u) ≤ 𝜂𝐵(x)+𝛿 ≤ 0. Therefore, applyingmean

value theorem, 𝐵(𝜑 (𝜏)) = 𝐵(𝜑 (0)) + 𝜏 𝑑
𝑑𝑡
𝐵(𝜑 (𝑡)) ≤ 𝐵(𝜑 (0)) ≤ −𝐾 .

Hence, no transit is possible. □

Example 3.4. Analyzing the barrier function in our running ex-

ample 2.8 using SOS programming while fixing 𝐾 = 1 yields a

bound on the minimum transit time of 𝜏∗ ≥ 1.86.

3.3 Safety Enforcement using Multiple Barriers
Let 𝐵1, . . . , 𝐵𝑚 be barrier functions for unsafe set 𝑋𝑢 obtained by

fixing the control inputs to u1, . . . , u𝑚 , respectively. We assume

that all 𝐵𝑖 satisfy the upward STP (Defs. 3.2). This is ensured by

modifying Algorithm 1 to test that each barrier function discovered

by the algorithm satisfies (1) and discarding ones that do not. Let

𝜏1, . . . , 𝜏𝑚 be lower bounds on the transit time for these barriers

using the approach described in the previous section for a fixed

threshold 𝐾 > 0. Let 𝜏 = min(𝜏1, . . . , 𝜏𝑚). Let u = 𝜅 (x, 𝑡) ∈ 𝑈 be a

nominal control law that is continuous in x and 𝑡 1.

Figure 2 shows the setup of the safety filter corresponding to

multiple barriers 𝐵1, . . . , 𝐵𝑚 . The safe-filter module is invoked

every 𝜏 time units and can issue one of two decrees: (a) Pass: allow

the feedback law 𝜅 to operate for the next 𝜏 time units; or (b)

Override(u𝑗 ): keep a constant control input u = u𝑗 for the next 𝜏
time units.

1
The dependence on time allows 𝜅 to be a feed-forward control input: u = 𝜅 (𝑡 ) .

𝑑x
𝑑𝑡

= 𝑓 (x, u)

u = 𝜅 (x, 𝑡)

safe-filter

𝜏

Figure 2: Safety enforcement for multiple barrier functions
through a safety filter.

Let 𝐵𝑚𝑖𝑛 (x) = min(𝐵1 (x), . . . , 𝐵𝑚 (x)) be the minimum over

all the barrier functions. We will let ind(x) = min{ 𝑗 | 𝐵 𝑗 (x) =
𝐵𝑚𝑖𝑛 (x)} be the least index 𝑗 for which 𝐵 𝑗 (x) = 𝐵𝑚𝑖𝑛 (x) and
u𝑚𝑖𝑛 (x) = uind(x) be the control input corresponding to the mini-

mum index. The safety filter is defined as follows:

safe-filter(x;𝐵𝑚𝑖𝑛) =
{
Pass if 𝐵𝑚𝑖𝑛 (x) < −𝐾
Override(u𝑚𝑖𝑛 (x)) otherwise

In other words, the safety filter allows the feedback 𝜅 to be

applied for the next 𝜏 time units if at least one of the functions

𝐵1, . . . , 𝐵𝑚 is below the threshold −𝐾 . Otherwise, it applies the
control u𝑗 corresponding to that barrier function 𝐵 𝑗 whose value

is minimal among 𝐵1, . . . , 𝐵𝑚 .

Let 𝜑 : [0,𝑇 ) → 𝑋 be a trajectory of the closed loop system

with the safety filter applied (see Fig. 2). If 𝐵𝑚𝑖𝑛 (𝜑 (0)) < 0 then

𝐵𝑚𝑖𝑛 (𝜑 (𝑡)) < 0 for all 𝑡 ∈ [0,𝑇 ). We will assume that the safety

filter is evaluated at times 𝑡 = 0, 𝜏, 2𝜏, . . .. Furthermore, we assume

that the execution of 𝜅 and the safety filter are instantaneous. First,

we establish a lemma for the safety filter. Let x𝑘 = 𝜑 (𝑘𝜏) for 𝑘 ∈ N.

Lemma 3.5. If 𝐵𝑚𝑖𝑛 (x𝑘 ) ∈ [−𝐾, 0), then applying the overrid-

ing feedback u𝑗 provided by safe-filter(𝜑 (𝑘𝜏);𝐵𝑚𝑖𝑛) ensures that
𝐵𝑚𝑖𝑛 (𝜑 (𝑡)) < 0, for all 𝑡 ∈ [𝑘𝜏, (𝑘 + 1)𝜏].

Proof. Let 𝑗 = ind(x𝑘 ). Applying the control u𝑗 ensures that
for 𝑡 ∈ [𝑘𝜏, (𝑘 + 1)𝜏], we have

𝑑
𝑑𝑡
𝐵 𝑗 (𝜑 (𝑡)) |u=u𝑗

≤ −𝜆𝐵 𝑗 (𝜑 (𝑡)).
Since, 𝐵𝑚𝑖𝑛 (x𝑘 ) = 𝐵 𝑗 (x𝑘 ) < 0. Applying theorem 2.4, yields

𝐵𝑚𝑖𝑛 (𝜑 (𝑡)) ≤ 𝐵 𝑗 (𝜑 (𝑡)) < 0 for 𝑡 ∈ [𝑘𝜏, (𝑘 + 1)𝜏]. □

Lemma 3.6. If 𝐵𝑚𝑖𝑛 (x𝑘 ) < −𝐾 then 𝐵𝑚𝑖𝑛 (𝜑 (𝑡)) < 0 ∀ 𝑡 ∈
[𝑘𝜏, (𝑘 + 1)𝜏].

Proof. Suppose we have 𝐵𝑚𝑖𝑛 (𝜑 (𝑡)) ≥ 0 for some 𝑡 ∈ [𝑘𝜏, (𝑘 +
1)𝜏], by the continuity of 𝐵(𝜑 (𝑡)), there exist time intervals 𝑡1, 𝑡2
such that (a) 𝐵(𝜑 (𝑡1)) = −𝐾 , (b) 𝐵(𝜑 (𝑡2)) = 0 and 𝐵(𝜑 (𝑠)) ∈
(−𝐾, 0) for 𝑠 ∈ (𝑡1, 𝑡2). The trajectory transits during the time

interval [𝑡1, 𝑡2]. By definition of 𝜏 , we have 𝜏 ≤ 𝑡2 − 𝑡1. Therefore,
𝑡1, 𝑡2 cannot both be in the time interval [𝑘𝜏, (𝑘 + 1)𝜏]. This yields
a contradiction. Thus 𝐵𝑚𝑖𝑛 (𝜑 (𝑡)) < 0 for all 𝑡 ∈ [𝑘𝜏, (𝑘 + 1)𝜏]. □

Theorem 3.7. Let 𝜑 : [0,𝑇 ) → 𝑋 be any closed-loop trajec-

tory with the safety filter applied at times 𝑡𝑘 = 𝑘𝜏 for 𝑘 ∈ N. If
𝐵𝑚𝑖𝑛 (𝜑 (0)) < 0 then 𝐵𝑚𝑖𝑛 (𝜑 (𝑡)) < 0 for all times 𝑡 ∈ [0,𝑇 ).

Proof. The proof follows directly from Lemmas 3.5 and 3.6. □

Thus, the time-triggered application of the safe-filter rule en-

sures that the set {x ∈ 𝑋 | 𝐵1 (x) ≤ 0 or · · · or 𝐵𝑚 (x) ≤ 0} can
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𝜃 = −𝜋 𝜃 = −𝜋
2

𝜃 = 0 𝜃 = 𝜋
2

𝜃 = 𝜋

Figure 3: Successive barrier functions extend the overall con-
trol invariant region. The earlier approximations of the con-
trol invariant set are shown in light green. The minimum
transit time was computed to be 0.02.

be maintained as a controlled invariant set. Our goal, however, is

to find as large a control invariant set as possible so that we can

apply the nominal controller without overriding too often. We will

present the idea of a successive barrier function to add more states

that can be added to the control invariant region.

3.4 Successive Barriers
Suppose we have synthesized multiple barrier functions 𝐵1, . . . , 𝐵𝑚
with associated controls u1, . . . , u𝑘 . We can establish control in-

variance using the function 𝐵 (0) (x) = min
𝑚
𝑗=1

𝐵 𝑗 (x) for states x
wherein 𝐵 (0) (x) ≤ 0, using the upward slow transit property. We

will focus on synthesizing successive barrier functions that “work”

only when 𝐵 (0) (x) ≥ 0. The goal is that these functions together

add to the set of states from which we can apply controls to success-

fully avoid reaching the unsafe states. Let𝑈
fin

= {u1, . . . , u𝑁 } ⊆ 𝑈
be a fixed finite set of control inputs.

Definition 3.8. A function 𝐵𝑖 (x) is a successive barrier func-

tion w.r.t a previously established multiple control barrier function

𝐵 (0) (x) for a fixed control input u𝑖 ∈ 𝑈𝑓 𝑖𝑛 iff

(1) 𝐵𝑖 (x) ≥ 𝜖 for all x ∈ 𝑋𝑢 ,
(2) for all x such that 𝐵 (0) (x) ≥ −𝐾 , ∇𝐵𝑖 · 𝑓 (x, u𝑖 ) ≤ −𝜆𝐵𝑖 (x).

In other words, 𝐵𝑖 satisfies the derivative condition only for

those states wherein 𝐵 (0) (x) ≥ −𝐾 .
(3) 𝐵𝑖 has its upward transit time bounded from below by 𝜏𝑖 .

Let 𝐵1 (x), . . . , 𝐵𝑀 (x) be successive barrier functions for control
inputs u1, . . . , u𝑀 , respectively and previously established control

barrier function 𝐵 (0) (x). Let 𝐵 (1) (x) = min(𝐵1 (x), . . . , 𝐵𝑀 (x)) and
𝜏 be the minimum transit time among all barriers that have been

synthesized thus far.

Note that the concept of successive barriers can be iterated. Let

𝐵 (0) be our initial control barrier function. We can compute a

successive barrier 𝐵 (1) which satisfies the derivative conditions

only if 𝐵 (0) (x) ≥ −𝐾 . In turn, we can use this to derive another

function 𝐵 (2) as the minimum over multiple polynomials each

of whose derivative conditions holds only if 𝐵 (0) (x) ≥ −𝐾 and

𝐵 (1) (x) ≥ −𝐾 and so on. This yields a sequence of successive

barrier functions. Figure 3 shows how successive barriers can add

to the set of control invariant states.

We will now outline a scheme to synthesize successive barrier

functions iteratively. Algorithm 2 shows the overall algorithm. The

approach maintains a finite set 𝑆 of sample test states and a family

of sets of successive barrier functions: B =

〈
𝐵 (0) , 𝐵 (1) , . . . , 𝐵 (𝑘 )

〉
,

Algorithm 2: Algorithm for successive barrier computa-

tion

Data: System Σ, unsafe set 𝑋𝑢 , finite control set𝑈𝑓 𝑖𝑛 ,
previous successive barriers

B =

〈
𝐵 (0) , 𝐵 (1) , . . . , 𝐵 (𝑘 )

〉
, constants 𝜖 > 0, 𝜂, 𝛿 and

𝜆, degree bound 𝐷 , test set 𝑆 .

Result: 𝑘 + 1 level successive barrier function 𝐵 (𝑘+1) .
1 𝐵 (𝑘+1) ←∞ /* Initialize to trivial function */

2 for u ∈ 𝑈𝑓 𝑖𝑛 do
3 for x𝑡 ∈ 𝑆 do
4 find polynomial 𝐵 of degree 𝐷

5 s.t. x ∈ 𝑋𝑢 ⇒ 𝐵(x) ≥ 𝜖
6

∧𝑘
𝑙=1

𝐵 (𝑙 ) ≥ 0 ⇒ ∇𝐵 · 𝑓 (x, u) ≤ −𝜆𝐵
7 𝐵(x𝑡 ) ≤ 0

8 if 𝐵 found and 𝐵 has bounded transit time 𝜏 then
9 𝐵 (𝑘+1) = min(𝐵 (𝑘+1) , 𝐵)

10 𝑆 = 𝑆 \ {x ∈ 𝑆 | 𝐵(x) ≤ 0} /* remove already

eliminated test points from 𝑆 */

11 return 𝐵 (𝑘+1)

wherein each 𝐵 (𝑖 ) is of the form min(𝐵𝑖,1, . . . , 𝐵𝑖, 𝑗 ) for some poly-

nomial functions 𝐵𝑖,1, . . . , 𝐵𝑖, 𝑗 . Note that the constraint 𝐵
(𝑖 ) ≥ 0

is equivalent to

∧𝑗

𝑘=1
𝐵𝑖,𝑘 ≥ 0. We initialize B to be the "ances-

tors" (set of previous successive barriers) and the test states to be a

randomly sampled set of some fixed size 𝑁 .

We iterate over the control inputs u𝑖 ∈ 𝑈𝑓 𝑖𝑛 and test states

x𝑡 ∈ 𝑆 . We attempt to discover a barrier function 𝐵 of degree at

most𝐷 such that (a) ∀x ∈ 𝑋𝑢 , 𝐵(x) ≥ 𝜖 ; (b) the derivative condition;∧𝑘
𝑙=1

𝐵 (𝑙 ) ≥ 0 ⇒ ∇𝐵 · 𝑓 (x, u) ≤ −𝜆𝐵, and finally (c) we insist that
𝐵(x𝑡 ) ≤ 0, i.e, the barrier ensures safety at the test point x𝑡 . We use

sum of squares (SOS) programming to find such a barrier function

(Lines 4-7). If it succeeds, then we add the new barrier to our list

(Line 9), eliminating x𝑡 and other test points already excluded from

the unsafe region (Line 10).

4 Runtime Safety using Successive Barriers
Suppose we have synthesized a sequence of successive barrier func-

tions𝐵 (0) , 𝐵 (1) , . . . , 𝐵 (𝑘 ) , wherein each𝐵 (𝑖 ) = min(𝐵𝑖,1, . . . , 𝐵𝑖,𝑛 (𝑖 ) )
is obtained as a combination of multiple barrier functions with as-

sociated inputs u𝑖,1, . . . , u𝑖,𝑛 (𝑖 ) . Let 𝜏1, . . . , 𝜏𝑘 > 0 be bounds on

the upward transit times for 𝐵 (1) , . . . , 𝐵 (𝑘 ) , respectively. We define

𝜏 = min(𝜏1, . . . , 𝜏𝑘 ). Our goal is to combine the safety monitors for

each of the individual control barriers, as explained in Section 3.3

to yield a composite safety monitor for the overall sequence of

successive barrier functions.

Let x be the state at any time 𝑡 . We say that the control barrier

function 𝐵 (𝑖 ) is green if 𝐵 (𝑖 ) < −𝐾 , yellow if 𝐵 (𝑖 ) ∈ [−𝐾, 0) and red
if 𝐵 (𝑖 ) ≥ 0. Note that if the control barrier is green or yellow, then

the state x cannot be in the unsafe set 𝑋𝑢 by construction. A color

indicator function for a given state x and control barrier 𝐵 (𝑖 ) can
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B(x)
𝐵 (1) (x)

𝐵 (2) (x)
𝐵 (3) (x)

−𝐾
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unsafe

transit
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Figure 4: Barrier function evolution and the corresponding
states of the runtime monitor.

be defined as follows:

C𝑖 (x) =


𝐺 if 𝐵 (𝑖 ) (x) < −𝐾
𝑌 if − 𝐾 ≤ 𝐵 (𝑖 ) (x) < 0

𝑅 otherwise

The concept is illustrated in Figure 4. Now we can synthesize

the runtime safety shield for the successive barriers. Assume that

a nominal control law u = 𝜅 (𝑡, x) is used to decide on the control

input for a given state x. For each of the barriers 𝐵 (𝑖 ) , we will run
the safety filter defined in section 3.3 using 𝜏 as the time period. If

C𝑖 (x) = 𝐺 , then the judgement is pass, whereas if C𝑖 (x) = 𝑌 , the
judgement is override(u𝑖 ) for some u𝑖 ∈ 𝑈fin

. Let 𝜑 (𝑡) be some

trajectory and x𝑙 = 𝜑 (𝑙𝜏) for some natural number 𝑙 . We will now

define the safety filter function.

Definition 4.1. Given successive barrier functions 𝐵 (1) , . . . , 𝐵 (𝑘 ) ,
the function safe-filter(x𝑙 ;𝐵 (1) , . . . , 𝐵 (𝑘 ) ) operates as follows:
rule-1: Suppose there is an index 𝑗 ∈ [1, 𝑘] such that C𝑗 (x𝑙 ) = 𝐺 ,

then safe-filter(x𝑙 ;𝐵 (1) , . . . , 𝐵 (𝑘 ) ) is set to pass, or equiv-
alently, allows the nominal control law to be applied for the

next 𝜏 time units.

rule-2: Otherwise, let 𝑗 ∈ [1, 𝑘] be the least yellow index: i.e, (a)

C𝑗 (x𝑙 ) = 𝑌 , (b) for all 𝑖 < 𝑗 , C𝑖 (x𝑙 ) = 𝑅 and (c) for all 𝑖 > 𝑗 ,

C𝑖 (x𝑙 ) ∈ {𝑅,𝑌 }.We define safe-filter(x𝑙 ;𝐵 (1) , . . . , 𝐵 (𝑘 ) ) =
safe-filter(x𝑙 ;𝐵 ( 𝑗 ) ) = override(u𝑗 ), for some u𝑗 ∈ 𝑈fin

.

rule-3: Otherwise, all of the control barriers are in the red state.

This state should never be reached since the trajectory may

be potentially unsafe. safe-filter is undefined for this case.

Let 𝜑 (𝑡) be a trajectory obtained by composing nominal con-

troller u = 𝜅 (𝑡, x) and the safety-filter(x;𝐵 (1) , . . . , 𝐵 (𝑘 ) ) exe-
cuted with time period 𝜏 . We will first prove that if we are in a state

x𝑙 at time 𝑡 = 𝑙𝜏 such that C𝑗 (x𝑙 ) ∈ {𝐺,𝑌 } for at least one index
𝑗 ∈ [1, 𝑘] (i.e, not all control barriers are red) then C𝑖 (x𝑙+1) ∈ {𝐺,𝑌 }
for some index 𝑖 .

Lemma 4.2. Let 𝑗 ∈ [1, 𝑘] such that C𝑗 (x𝑙 ) = 𝐺 . It follows that
C𝑗 (𝜑 (𝑡)) ∈ {𝐺,𝑌 } for all 𝑡 ∈ [𝑙𝜏, (𝑙 + 1)𝜏].

Proof. This follows directly from Lemma 3.6. □

(𝑥 (𝑡 ), 𝑦 (𝑡 ) ) 𝑡 vs B(x(𝑡 ) ) (𝑥 (𝑡 ), 𝑦 (𝑡 ) ) 𝑡 vs B(x(𝑡 ) )

Figure 5: (Left) Nominal trajectory for a fixed (feedforward)
control signal 𝑢 (𝑡) for dynamics in Ex. 2.2. ((Right) Effect of
implementing the safety filter from Figure 2. Dashed lines
show the original behavior.

Lemma 4.3. If C𝑗 (x𝑙 ) = 𝑌 and C𝑖 (x𝑙 ) = 𝑅 for all 𝑖 ∈ [1, 𝑗) then for
all 𝑡 ∈ [𝑙𝜏, (𝑙 + 1)𝜏], there exists 𝑖 ≤ 𝑗 such that C𝑖 (𝜑 (𝑡)) ∈ {𝐺,𝑌 }.

Proof. Consider two cases: (case-1) all lower indices remain

“red” or “yellow” for the entire interval, i.e, ∀ 𝑡 ∈ [𝑙𝜏, (𝑙 + 1)𝜏] and
for all 1 ≤ 𝑖 < 𝑗 , we have C𝑖 (𝜑 (𝑡)) ∈ {𝑅,𝑌 } , or (case-2) there
exists a time instant 𝑡 ∈ [𝑙𝜏, (𝑙 + 1)𝜏] such that C𝑖 (𝜑 (𝑡)) = 𝐺 for

some 1 ≤ 𝑖 < 𝑗 . Note that if 𝑗 = 1, then case-1 must hold trivially

since there are no lower indices.

(case-1:) Let safety-filter(x𝑙 , 𝐵 ( 𝑗 ) ) = override(u𝑗 ) for u𝑗 ∈
𝑈
fin
. Suppose case-1 holds, then we have that for some barrier 𝐵𝑖, 𝑗

satisfies the derivative condition
𝑑𝐵
𝑑𝑡
≤ −𝜆𝐵 with control inputs

fixed to u𝑗 throughout the time interval [𝑙𝜏, (𝑙 + 1)𝜏]. Therefore,
since 𝐵𝑖, 𝑗 (x𝑙 ) < 0, we have 𝐵𝑖, 𝑗 (𝜑 (𝑙𝜏 + 𝑡)) ≤ 𝑒−𝜆𝑡𝐵𝑖, 𝑗 (x𝑙 ) < 0.

Hence, C𝑗 (𝜑 (𝑡)) = 𝑌 for all 𝑡 ∈ [𝑙𝜏, (𝑙 + 1)𝜏] This establishes the
result for case-1.

(case-2:) Let 𝐵 (𝑖 ) be such that C𝑖 (𝜑 (𝑡)) = 𝐺 for some 𝑡 in the

time interval. There must exist a time instant 𝑡∗ ∈ [𝑙𝜏, (𝑙 +1)𝜏] such
that 𝐵 (𝑖 ) (𝜑 (𝑡∗)) = −𝐾 for some 𝑖 < 𝑗 and 𝐵 (𝑖 ) ((𝜑 (𝑡∗ + 𝛿)) < −𝐾
for some 𝛿 > 0. Let 𝑡∗ be the infimum among all such time instants

satisfying the property. Using the upward transit time bound, we

note that C𝑖 (𝜑 (𝑡∗ + 𝛿)) = 𝐺 and the control input during the time

interval [𝑙𝜏, (𝑙 + 1)𝜏] is fixed to u = u𝑗 . Therefore, the control

input is continuous. Hence, we conclude that C𝑖 (𝜑 (𝑡)) ∈ {𝐺,𝑌 } for
𝑡 ∈ [𝑡∗, (𝑙 + 1)𝜏] because (𝑙 + 1)𝜏 − 𝑡∗ < 𝜏 and C𝑗 (𝜑 (𝑡)) ∈ {𝐺,𝑌 }
for 𝑡 ∈ [𝑙𝜏, 𝑡∗). □

Theorem 4.4. Starting from a state x0, wherein, C𝑗 (x0) ≠ 𝑅 for

all 𝑗 ∈ [1, 𝑘] the system will never reach an unsafe state 𝑥 ∈ 𝑋𝑢 .

Proof. Using Lemma 4.2 and 4.3 we conclude that the state

where all C𝑗 (𝜑 (𝑡)) ≠ 𝑅 for all 𝑗 ∈ [1, 𝑘] cannot be reached in any

trajectory 𝜑 starting from x0. Since for some 𝑗 , C𝑗 (𝜑 (𝑡)) ∈ {𝐺,𝑌 },
it follows that 𝜑 (𝑡) ∉ 𝑋𝑢 . □

Example 4.5. Figure 5 shows a nominal trajectory (𝑥 (𝑡), 𝑦 (𝑡)) for
a fixed control input signal 𝑢 (𝑡) along with a plot of the function

B(x(𝑡)) over time, using the dynamics from Ex. 2.2. The portion of

the trajectory that enters the unsafe region overapproximation is

shaded red. This also corresponds to the part where B(x) ≥ −𝐾 .
On the other hand, we implement the safety filter. We periodically

sampled states with a period 𝜏 = 0.02. Notice that the override

happens withB(x) ≥ −𝐾 where𝐾 is set to 1 in our implementation.

After the override, the value of B(x) falls under the action of the

control input corresponding to the control barrier function.
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(a) (b) (c)

Figure 6: Improvement in approximation of the control in-
variant set through successive barrier functions. (a) approxi-
mation for the 2D example from section 5.1 with three iter-
ations of successive barrier functions; (b) two iterations of
successive barrier functions for 4D example from Section 5.2
with 𝑥2 = 𝑥4 = 0; (c) 𝑥2 = 𝑥4 = −5.

5 Empirical Evaluation
In this section, we will illustrate our approach with a few numerical

examples. We demonstrate that the approach of computing succes-

sive barrier functions yields increasingly tighter approximations of

the unsafe region.
2

5.1 2D Nonlinear Dynamics
Consider a nonlinear system with two state variables (𝑥1, 𝑥2) and
two control inputs (𝑢1, 𝑢2) ∈ [−0.05, 0.05]2.

¤𝑥1 =
1

2

𝑥1 −
1

5

𝑥2 −
1

100

𝑥1𝑥2 −
1

2

𝑢1 +
1

2

𝑢2,

¤𝑥2 = 𝑥1 −
2

5

𝑥2 −
1

20

𝑥2
2
− 7

10

𝑢2 +
1

10

𝑢1,

We take𝑈𝑓 𝑖𝑛 = {(𝑢1, 𝑢2) | 𝑢1 = ±0.05, 𝑢2 = ±0.05} and generate

500 randomly generated test points. The unsafe set is taken to be

𝑋𝑢 = {(𝑥1, 𝑥2) |𝑥2
1
+ 𝑥2

2
≤ 0.1}. We computed three levels of suc-

cessive barrier functions by applying Algorithm 2. The approach

managed to eliminate 490 test points from the unsafe region. 𝐵 (1)

is obtained as the minimum of two polynomial barrier functions,

𝐵 (2) is obtained as a minimum of 9 functions and 𝐵 (3) consists of
5 functions. Figure 6(a) shows the overall control invariant region

obtained by our approach. Synthesizing the first level barriers re-

quired 160 seconds of CPU time, the second level barrier functions

required 256 seconds of CPU time and the third level required 344

seconds. All timings were measured on a MAC OSX laptop running

3.1 GHz Quad-Core Intel Core i7 and 16GB RAM.

5.2 4D Nonlinear Dynamics
We consider an example of a polynomial system with 4 state vari-

ables and 2 control inputs 𝑢1, 𝑢2 ∈ [−0.1, 0.1]2.

¤𝑥1 = 𝑥2, ¤𝑥2 =
1

2

𝑥1 −
1

5

𝑥2 +
1

20

𝑥3𝑥1 −
1

100

𝑥1𝑥2 −
1

2

𝑢1,

¤𝑥3 = 𝑥4, ¤𝑥4 = −
2

5

𝑥4 +
1

5

𝑥1 −
1

20

𝑥2
3
− 7

10

𝑢2,

The unsafe set is taken to be 𝑋𝑢 = {(𝑥1, 𝑥2) |𝑥2
1
+ 𝑥2

2
≤ 1.0}. The

set𝑈𝑓 𝑖𝑛 was set to the vertices of𝑈 : [−0.1, 0.1]2 and we chose 200
2
The implementation and resulting barrier functions are available at https://github.

com/rameezw/SuccessiveBarriers.

(a) (b) (c)
poly1 van der Pol inv pendulum

Figure 7: Extension of the controlled invariant set through
successive barrier functions for different dynamical systems.

randomly selected test states. We computed two levels of successive

barrier functions by applying Algorithm 2. The barrier functions

synthesized eliminated 190 test points from the unsafe set. 𝐵 (1) is
obtained as the minimum of 4, and 𝐵 (2) as a minimum of 34 poly-

nomial functions. The minimum transit time was 1.76. Figure 6(b,c)

show the control invariant set thus obtained. Synthesizing the first

level barriers required 170 seconds of CPU time, and the second

level barrier functions required 1010 seconds of CPU time.

5.3 5D Dynamics (Coordinated Turn Model)
We now consider a coordinated turn model with 5 state variables

and 2 control inputs 𝑢1, 𝑢2 ∈ [−5, 5]2.

¤𝑥1 = 𝑥3 cos𝑥4,
¤𝑥2 = 𝑥3 sin𝑥4,
¤𝑥3 = 𝑢1,

¤𝑥4 = 𝑥5,
¤𝑥5 = 𝑢2,

The unsafe set is taken to be 𝑋𝑢 = {(𝑥1, 𝑥2) |𝑥2
1
+ 𝑥2

2
≤ 0.1}. The

set 𝑈𝑓 𝑖𝑛 was set to the vertices of 𝑈 : [−5, 5]2 and we chose 500

randomly selected test states. We computed three levels of succes-

sive barrier functions by applying Algorithm 2. 𝐵 (1) is obtained
as the minimum of four polynomial barrier functions, 𝐵 (2) is ob-
tained as a minimum of 15, and 𝐵 (3) is obtained as a minimum of

12 polynomial functions. Figure 8(a,b,c) show the resulting control

invariant sets obtained by our approach.

We use a polynomial approximation of trigonometric functions.

We alsomodel the error between the piecewise affine approximation

and the trigonometric function as a disturbance input whose values

are appropriately bounded. Details of the polynomial functions and

error bounds are available as part of the supplementary material.

5.4 6D Nonlinear Dynamics (Planar Multirotor)
We now consider a planar multirotor model with 6 state variables

and 2 control inputs 𝑢1, 𝑢2 ∈ [0, 2]2.

¤𝑥1 = 𝑥3,
¤𝑥2 = 𝑥4,
¤𝑥3 = (𝑢1 + 𝑢2) sin𝑥5,

¤𝑥4 = (𝑢1 + 𝑢2) cos𝑥5 − 2,
¤𝑥5 = 𝑥6,
¤𝑥6 = 𝑢1 − 𝑢2,

https://github.com/rameezw/SuccessiveBarriers
https://github.com/rameezw/SuccessiveBarriers
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(a) (b) (c)

Figure 8: Control invariant set improvement through three
iterations of successive barrier functions for 5D coordinated
turn model from Section 5.3 with (a)𝑥3 = 4, 𝑥4 = 0, 𝑥5 = 3;
(b)𝑥3 = 4, 𝑥4 = 1, 𝑥5 = 3; (c) 𝑥2 = 𝑥4 = −5.

(𝑥 (𝑡 ), 𝑦 (𝑡 ) ) 𝑡 vs B(x(𝑡 ) )

Figure 9: Effect of implementing the safety filter from Fig-
ure 2 for a fixed (feedforward) control signal 𝑢 (𝑡) for dynam-
ics in Ex. 5.4. Dashed lines show the original behavior.

The unsafe set is taken to be 𝑋𝑢 = {(𝑥1, 𝑥2) |𝑥2
1
+ 𝑥2

2
≤ 0.1}. The

set𝑈𝑓 𝑖𝑛 was set to the vertices of𝑈 : [0, 2]2 and we chose 900 ran-

domly selected test states. We computed three levels of successive

barrier functions by applying Algorithm 2. 𝐵 (1) is obtained as the

minimum of four polynomial barrier functions, 𝐵 (2) is obtained as

a minimum of 19 polynomial functions, and 𝐵 (3) is obtained as a

minimum of 33 polynomial functions.

5.5 Certifying Sum-Of-Square (SOS) Programs
We have, thus far, relied exclusively on using SOS programming

to synthesize successive barrier functions. SOS programming uses

semi-definite programming solvers to synthesize functions 𝐵(x).
In order to certify that 𝐵 satisfies the conditions for being a bar-

rier/successive barrier, we need to verify that the results are not

invalidated due to numerical issues [34]. Note that each barrier

consists of multiple entailment relations of the form:

𝑝1 (x) ≥ 0, . . . , 𝑝𝑚 (x) ≥ 0 |= 𝑝 ≥ 0 .

SOS programming certifies this through a Putinar positivstellensatz

proof that states that

∃ 𝜎1, . . . , 𝜎𝑚 ∈ SOS𝑑 [x] 𝑝 − 𝜎1𝑝1 − · · · − 𝜎𝑚𝑝𝑚 ∈ SOS𝑑 [x] ,
wherein SOS𝑑 [x] represents the set of all SOS polynomials over x
of degree at most 𝑑 , and 𝑑 is a parameter chosen by the user/SOS

modeling package [19].

We verified the results of the SOS programming package used

(SumOfSquares.jl) by outputting the polynomials 𝜎1, . . . , 𝜎𝑚 and

computing the “residue” 𝑝 − 𝜎1𝑝1 − · · · − 𝜎𝑚𝑝𝑚 . In each case, we

obtain a representation 𝜎𝑖 = 𝑚(x)⊤𝑄𝑖𝑚(x), wherein 𝑚(x) is a
monomial basis whose entries consist of monomials of degree ≤ 𝑑

2

and 𝑄𝑖 is a |𝑚(x) | × |𝑚(x) | matrix. We verify that 𝑄𝑖 is positive

semi-definite by computing its Cholesky decomposition. The C++

library Eigen was used for this purpose: we used 512 bit floating

point representation to carry out the Cholesky decomposition.

Using this process, we verified that all the SOS programming

results obtained in the process of generating the successive barrier

functionwere verified using high precision floating point arithmetic.

In the future, we will improve this process by enabling verifica-

tion through rational arithmetic: a process that cannot work for

Cholesky decomposition since it involves taking square roots. We

will also explore the use of interval arithmetic approaches to certify

positive semi-definiteness along the lines of Roux et al [34].

5.6 Comparison with FOSSIL
FOSSIL[13] is a tool for computing verified neural certificates. A

comparison showing the effectiveness of our approach for barrier

synthesis was conducted for multiple dynamical systems. The re-

sults are displayed in Table 1. The neural certificate was trained on

a 2-layer network having 10 neurons each, with sigmoid and square

activations, respectively; and was verified using dReal. In these eval-

uations, a timeout limit was set at 10
4
seconds, beyond which the

experiment was considered a failure. The comparisons show that

although FOSSIL swiftly computes barriers for low-dimensional

systems, it does not terminate for high dimensions. On the contrary,

our SOS-based successive barriers approach, although takes some

time is successful in computing the barrier functions for multiple

levels of the hierarchy, even for higher dimensions.

Another comparison was the size of the controlled invariant set

computed using the two approaches. The results are shown in Ta-

ble 2. The comparison for done over 1000 test points sampled using

a fixed seed over the same domains. It turns out that the succes-

sive barriers approach improves the size of the safe sets defined by

the neural CBFs computed using FOSSIL. Hence, using successive

barrier functions results in less conservative approximations of the

controlled invariant set.

6 Conclusion
We develop the concept of successive control barrier functions for

tight over-approximations of unsafe sets for nonlinear systems. A

runtime monitor is also presented which utilizes a shield based on

the successive barriers to ensure collision avoidance. The switching

strategy between the successive barriers respects minimum transit

time constraints. For future work, we plan on improving the algo-

rithm to include multiple fixed and moving obstacles, along with

more challenging system dynamics.
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Table 1: Barrier synthesis comparison

FOSSIL Ours

system dim inputs success time(s) success time(s):𝐵 (1) # barriers max degree time(s):𝐵 (2) # barriers

poly1 2 1 ✓ 3.2 ✓ 0.6 2 2 34.1 1

poly2 2 1 ✓ 1.9 ✓ 1.0 2 2 36.9 3

van der Pol 2 1 ✓ 4.8 ✓ 2.0 2 2 247.4 7

inv pendulum 2 1 ✓ 3.2 ✓ 2.0 2 2 207.3 1

poly3 2 2 ✓ 1.3 ✓ 7.6 4 4 194.1 12

poly4 3 2 ✓ 74.8 ✓ 6.8 4 4 281.2 8

poly5 4 2 ✗ - ✓ 36.4 4 4 587.2 27

coord turn 5 2 ✗ - ✓ 108.4 4 4 2290.8 15

planar multirotor 6 2 ✗ - ✓ 131.6 4 4 3305.5 9

Table 2: Controlled invariant set comparison for 1000 test points. 𝑆 denotes points in the safe region(inside the control invariant
set) and𝑈 denotes points in the unsafe region(outside the control invariant set)

system dimensions inputs FOSSIL(S) Ours(S) FOSSIL(U) & Ours(S) Ours(U) & FOSSIL(S)

poly1 2 1 417 649 375 143

poly2 2 1 716 922 215 9

van der Pol 2 1 507 649 322 180

inv pendulum 2 1 683 798 193 78

poly3 2 2 556 977 421 0
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