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Abstract. Martingale theory yields a powerful set of tools that have recently
been used to prove quantitative properties of stochastic systems such as stochas-
tic safety and qualitative properties such as almost sure termination. In this pa-
per, we examine proof techniques for establishing almost sure persistence and
recurrence properties of infinite-state discrete time stochastic systems. A persis-
tence property ♦�(P ) specifies that almost all executions of the stochastic sys-
tem eventually reach P and stay there forever. Likewise, a recurrence property
�♦(Q) specifies that a target set Q is visited infinitely often by almost all execu-
tions of the stochastic system. Our approach extends classic ideas on the use of
Lyapunov-like functions to establish qualitative persistence and recurrence prop-
erties. Next, we extend known constraint-based invariant synthesis techniques
to deduce the necessary supermartingale expressions to partly mechanize such
proofs. We illustrate our techniques on a set of interesting examples.
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1 Introduction

In this paper, we study persistence (♦�(·)) and recurrence (�♦(·)) properties for stochas-
tic systems. Stochastic systems are commonly used to model the effect of noise or ran-
dom uncertainties on systems. Examples include probabilistic programs [17,20] with
random number generating constructs for modeling uncertainties, cyber-physical sys-
tems under the influence of external stochastic disturbances, financial process models,
and biological models. Given a stochastic system, we attempt to find proofs that for a
subset of states T , the behaviors of the system satisfy a persistence property ♦�(T )
with probability 1 (almost surely), i.e., almost every behavior of the system eventually
enters T , and stays in T , forever. Similarly, we present an approach to prove �♦(T ), i.e.,
almost every behavior of the system hits T infinitely often. Such persistence properties
effectively prove facts about the asymptotic behavior of these processes which may take
many forms, including convergence towards an “equilibrium” region, or asymptotic di-
vergence away from a particular set. Recurrence properties can be used, for instance, to
show that the system keeps returning to a set of desirable configurations even if forced
to leave under the influence of stochastic disturbances.

Persistence and recurrence properties are also of independent interest to the verifica-
tion and control theory community [5,21]. In standard model checking approaches, we



rely on showing that the system is forced to almost surely reach a strongly connected
component [11,13] which is a subset of T , and additionally for proving ♦�(T ), that
it has no outgoing transition from it. However, Baier et al. have demonstrated that this
technique is restricted to finite state stochastic transition systems [5].

In comparison, the technique we propose here can handle infinite state, discrete
time, polynomial stochastic systems by automatically deriving supermartingale expres-
sions over the system variables and leveraging properties of these supermartingale ex-
pressions. Specifically, our work extends the infinite state probabilistic transition sys-
tems used in our earlier work [8], or the probabilistic guarded command language pro-
posed by McIver and Morgan [23] with polynomial guards and updates. However, the
ideas we present here can extend to a larger class of Markov models.

In this paper, we introduce two types of proof rule arguments for proving persis-
tence and recurrence that derive directly from classic rules for Markov chains such as
the Foster-Lyapunov condition [16,24]: (a) “Geometric” rules involve finding a nonneg-
ative function V (x) over the state variables x, whose expectation in the next time step
is some multiplicative factor α ∈ (0, 1) of its current value V (x). These are inspired by
Lyapunov functions used in control theory to prove exponential stability. (b) “Additive”
rules are analogous to ranking function arguments for (nondeterministic) program ter-
mination. These conditions were studied for program termination as “supermartingale
ranking functions” (SMRFs) in our previous work [8] and proven complete for certain
classes of probabilistic systems by Fioriti et al. [15] and more recently by Chatterjee
et al. [10]. However, SMRFs are designed to prove almost-sure termination proper-
ties of the form ♦(T ). In the current work, we show—rather counterintuitively—that
SMRFs cannot in general prove ♦�(T ) properties. We provide a suitable technical con-
dition (of bounded increase) under which SMRFs can prove ♦�(T ) properties. Next,
we also show that both types of proofs are equivalent under some technical conditions:
a proof using a geometric proof rule can be transformed into an equivalent proof using
an additive rule, and vice-versa. Nevertheless, both forms are useful when searching for
certificates of a given form such as a polynomial function over the state-variables.

Finally, we examine the problem of automatically synthesizing the functions V (x)
for polynomial, probabilistic transition systems to prove persistence and recurrence
properties. Assuming a parameterized “template” form of this function, we derive con-
ditions that must be satisfied over the parameters for proving a target property. We
conclude by illustrating our approach on a variety of small, but interesting examples.

1.1 Motivating Example 1: Room Temperature Control

In [3] Abate et al. present a room temperature control problem subject to stochastic tem-
perature perturbations. Suppose that there are two adjacent rooms, whose temperatures
change according to the following stochastic difference equation:

x′i := xi + bi(x0 − xi) + a ·
∑
i6=j

(xj − xi) + ci (1− σ (xi)) + νi, for i ∈ {1, 2},

where a = 0.0625, b1 = 0.0375, b2 = 0.025 are respectively the inter-room and
external heat convection constants, x0 = 6◦C is the outdoor temperature, c1 = 0.65,
c2 = 0.6 are the heat units supplied to the two rooms by the heater, and ν1, ν2 are i.i.d.
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Fig. 1. 100 simulations of the two-room controller system, with initial temperatures x1, x2
uniformly drawn from [15, 22]2, under two different types of stochastic noise: (LEFT) νi ∼
U(−0.01, 0.01), with the red horizontal lines indicating the intervals [17.8, 18.7] (for room 1)
and [18.4, 19.3] (for room 2); (RIGHT) νi ∼ N (0, 0.25), with the red horizontal lines indicating
the intervals [16.9, 19.6] (for room 1) and [17.3, 20.2] (for room 2).

stochastic noise. The behavior of the heater is governed by the controller unit term σ.
We focus on the evolution of the room temperatures within the range [6, 33]2.

Abate et al. construct a (nonlinear) sigmoidal controller σ(t) that keeps the tem-
peratures within a comfortable range S : [17, 22] × [16, 23] and focus on bounding the
probability that the system leaves S (i.e., stochastic safety) within finitely many steps
under the influence of Gaussian noise. Fig.1 shows 100 sample executions of the system
when the controller is approximated with a degree-7 polynomial:
σ(t) : 29.2−13.42t+2.55t2−0.26t3+0.015t4−5.13×10-4t5+9.23×10-6tt−6.87×10-8t7

under two different types of random noise: uniform U on a given range and normal N .
Controller σ was originally designed to keep the system in S with finite-time (100

min) guarantees in mind. We prove that under mild stochastic disturbances (LEFT) the
system satisfies the almost sure persistence property ♦�S, i.e., with probability 1 the
system eventually enters S and stays there forever. This is demonstrated by the proof
rule PERSIST-GEOM of Section 3.1 and the certificate V (x1, x2) : (x1−18.3)2+(x2−
18.8)2. When the level of stochastic disturbance is increased (RIGHT) the almost sure
persistence property no longer holds. This is consistent with the results in [3]; however,
a weaker, almost sure recurrence property: �♦(16.9 ≤ x1 ≤ 19.6 ∧ 17.3 ≤ x2 ≤
20.2) holds, i.e., with probability 1 the system visits the region infinitely often. This is
demonstrated by proof rule REC of Section 3.2 using the same certificate function V .

1.2 Motivating Example 2: Nonlinear Markov jump system

Mode q1
x′ := 0.4(x+ xy)
y′ := 0.4

(
1
3x+ 2

3y + xy
)

Mode q2
x′ := 0.4

(
x+ y + 2

3xy
)

y′ := 0.4
(
2y + 2

3xy
)

1
2

1
2

1
2

1
2

Fig. 2. A nonlinear Markov
jump system with 2 modes.

Fig.2 shows a nonlinear Markov jump system with two
modes q1, q2 and two state variables x : (x, y) that evolve
according to the mode-dependent difference equations.
The system jumps between modes with equal probability.

Observe that 0 is an equilibrium and X : [−0.5, 0.5]2
is an invariant of the system, i.e., all sample paths starting
in X , stay in the set forever. Fig.3(a) shows the sample
paths that start inside X converge towards 0. We establish
that the persistence property ♦�(|x| ≤ 0.1 ∧ |y| ≤ 0.1)
holds almost surely over all executions of the system, by
synthesizing the nonnegative certificate function V (x) :
2.3x2 + 4.15xy + 3.7y2. After one time step, the expected value of V is at most 1

2 -
fraction of its original value, i.e., (∀x ∈ X) E(V (x′)|x) ≤ 1

2V (x). Fig.3(b) plots the
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Fig. 3. Sample paths of the Markov jump system described in Figure 2.

function V over the sample paths, showing its convergence. We use the certificate V (x)
in PERSIST-GEOM (page 8) to establish the required property.

Outside X , the system appears unstable as shown in Fig.3(c), yet the behaviors
approach x = y asymptotically. Using the certificate V̂ (x) : (x − y)2 in SPERSIST-
GEOM (page 9) we can prove that (∀ ε > 0) ♦�(|x− y| ≤ ε).
Organization. Section 2 presents an infinite state discrete time stochastic system model
and formally states the problem of proving persistence and recurrence (Section 2.2).
Section 3 presents our main contribution in the form of proof rules for persistence and
recurrence properties with the soundness results of our analysis presented in Section 4.
Section 5 presents the results of our prototype implementation on a set of benchmarks,
followed by a summary of relevant related work (Section 6) and conclusion (Section 7).

2 Preliminaries
In this section, we present the basic computational model of discrete-time stochastic
dynamical systems that we study here and introduce the notion of tail invariant prop-
erties in the form of persistence and recurrence. We formulate a problem statement for
the rest of the paper and finally introduce supermartingales. The proofs of all statements
can be found in the extended version of the paper.

2.1 Discrete Time Stochastic Systems

We present a simple yet general model of an infinite-state discrete time stochastic sys-
tem, and then examine a model of polynomial stochastic transition systems. A purely
deterministic system with state-space X is described by a rule of the form x′ := F (x)
and x0 ∈ X0, where x ∈ X and x0 is the initial state belonging to initial set X0.
Stochastic systems studied here are described by x′ := F (x, r) and x0 ∼ D0, where r
is a vector of random variables and initial state x0 is drawn from initial distribution D0.

Definition 1 (DTSS). A discrete-time stochastic system (DTSS) Π is defined as the
tuple 〈Σ,R,F ,D0〉 with the following components:
1. a state space Σ and an associated Borel σ-algebra on it,
2. a probability spaceR : 〈R,FR, P 〉 (with individual samples denoted by r),
3. a transition function F : Σ × R → Σ, wherein F(x, r) denotes the next state

obtained from a state x ∈ Σ and random sample r ∈ R,
4. an initial probability distribution D0 over Σ.



LetΩ denote the sample setΣ×Rω , which consists of tuples 〈x0, r0, r1, · · · , rn, · · ·〉.
Here x0 ∈ Σ denotes the starting state sample, and r0, r1, . . . , rn, . . . denote succes-
sive draws of random variables from the sample setR of the probability spaceR. Given
a discrete-time Markov process, the model maps each ω : 〈x0, r0, . . .〉 ∈ Ω to a sample
path (or trace) π(ω) as follows π(ω) : x0

r0−→ x1
r1−→ x2

r2−→ · · · .
The stochastic process is defined by applying the Kolmogorov extension theorem

starting from finite-dimensional distributions Pt1,...,tk(B) where B ⊆ Σk is a measur-
able set. The semantics of the stochastic system is, therefore, equivalent to an infinite-
state discrete-time Markov chain (see the extended version of the paper for details).

Independence of Samples. The formulation above naturally assumes that the samples
of the random variable ri are independent of the current state xi and from previous
samples r0, . . . , ri−1. While this is somewhat restrictive, in practice it encompasses
nearly all example instances that we are aware of.

No Demonic Nondeterminism. The formulation also precludes any demonic nonde-
terminism since F is a function.

In this work, we focus on polynomial (stochastic) systems, which are instances of
stochastic systems with piecewise polynomial update maps.
Definition 2 (Polynomial Stochastic System). A polynomial stochastic system Π is a
tuple 〈X,R, T ,D0〉, where (a) the state-space X ⊆ Rn is a semi-algebraic set (i.e.,
X is the solution set of finitely many polynomial inequalities), (b) R is a probability
space for the stochastic inputs written collectively as r : (rc, rb), wherein rc denotes
the (possibly multivariate) continuous random variable and rb denote the (discrete)
random variables that take on finitely many values, (c) T : {τ1, . . . , τm} is a finite set
of transitions, and (d) D0 is an initial state probability distribution over X .

Each transition τ ∈ T has two parts: a guard predicate ϕτ and an update function
fτ : X ×R→ X:

1. The guard ϕτ (x) is a conjunction of polynomial inequalities over x;
2. The update function fτ (x, r) : X × R → X is a piecewise polynomial function of

the form:

fτ (x, r) :


gτ,1(x, rc), if ψτ,1(rb)

...
gτ,j(x, rc), if ψτ,j(rb) ,

where gτ,1, . . . , gτ,j are multivariate polynomials over x, rc andψτ,1(rb), . . .,ψτ,j(rb)
represent mutually exclusive and exhaustive predicates over the random variables
with probability pτ,i : Prob(ψτ,i(rb)).

We refer to each function gτ,i as a fork of fτ guarded by ψτ,i with corresponding
fork probability pτ,i, for all i, 1 ≤ i ≤ j.

For a polynomial system to represent a stochastic system over X according to Def-
inition 1, we require that transitions together form a function over the state-space X:
1. The guards are pairwise mutually exclusive: ϕτi ∧ϕτj is unsatisfiable for all i 6= j.
2. The guards are mutually exhaustive:

∨k
j=1 ϕτj ≡ true .

With these conditions, it is easy to define an overall piecewise polynomial transition
function over F that casts any polynomial transition system as a stochastic system.



Example 1 (Strange Random Walk). Let {Yi} be a sequence of random variables over
R with Y0 distributed uniformly over [0, 1]. For all n ≥ 0, define:

Yn+1 =

{
Y 2
n , with probability 1

2 ,
2Yn − Y 2

n , with probability 1
2 .

The corresponding polynomial stochastic system is Π : 〈R,R, {τ},D0〉, where
R is the probability space for the uniform distribution U(0, 1), the initial probability
distribution D0 is U(0, 1), and transition τ : 〈true, fτ 〉, has update mapping

fτ (x, r) :

{
gτ,1(x) : x2, if ψτ,1(rb) : rb ≤ 1/2,
gτ,2(x) : 2x− x2, if ψτ,2(rb) : rb > 1/2,

and defines corresponding fork probabilities p1 = p2 = 1/2.
Pre-Expectations. Key to the analysis is the notion of pre-expectation. The defini-
tions below are inspired by [8,19,23] and are related to drift operators of Markov pro-
cesses [24]. We first formalize the notion of pre-expectations over general stochastic
systems and then provide a specialized definition for polynomial stochastic systems.

Consider a stochastic system 〈Σ,R,F ,D0〉, and a function h : Σ → R over the
state-space. The pre-expectation of hw.r.t toF yields another function ĥ : Σ → R such
that for any state x ∈ Σ, ĥ(x) yields the expected value of h(x′), where the expectation
is taken over all states x′ reached in one step from x. Formally, ĥ(x) : ER (h(F(x, r))).
The pre-expectation can be difficult to compute for a stochastic system, even if h(x) is
of a simple form, for example, polynomial.

Now, we translate this definition to polynomial stochastic transition systems. We
first define pre-expectations across transitions.

Definition 3 (Pre-Expectation across a Transition). Given a polynomial stochastic
transition system 〈X,R, T ,D0〉, a function h : X → R and a transition τ ∈ T
with forks gτ,1, . . . , gτ,j and corresponding fork probabilities pτ,1, . . . , pτ,j , the pre-
expectation of h across transition τ is a function preE(h, τ) : X → R defined as fol-
lows: ∀x ∈ X , preE(h, τ)(x) : ER[h (fτ (x, rc)) |x] =

∑j
i=1 pτ,iERc[h (gτ,i(x, rc))],

with expectation taken over R from which the random choices r = (rb, rc) are drawn.
We now define the pre-expectation transformation over an entire stochastic system.

Definition 4. The pre-expectation of a function h : X → R w.r.t. a polynomial stochas-
tic system Π : 〈X,R, {τ1, ..., τn},D0〉 is a function preE(h,Π) : X → R defined by

preE(h,Π)(x) :
∑n
i=1 1(ϕi(x)) · preE(h, τi)(x), for all x ∈ X,

where ϕi is the guard of transition τi and 1(ϕ) is the indicator function of predicate ϕ.

Related to the pre-expectation is the notion of a drift operator.

Definition 5 (Drift Operator). LetΠ be a stochastic transition system and h be a func-
tion over the state-space. The drift of h w.r.t.Π is the functionDΠh : preE(h,Π)−h.

Wherever the system Π is clear from the context, we use Dh to denote the drift
operator DΠ applied to the function h.
Example 2. We return to Example 1 and compute the pre-expectation of h(x) = x:

preE(h,Π) = 1(true) · preE(h, τ) = ER[p1h(g1(x)) + p2h(g2(x))]

= ER[ 12 (x
2) + 1

2 (2x− x
2)] = x.



It is clear that for any state x ∈ X , the value of h equals the value of preE(h,Π), or
equivalently, the drift Dh = 0. This function is an example of a martingale expression
and such functions are central to our analysis. We give their definition in Section 2.3
and present properties of martingale expressions relevant to our analysis.

Assume that for any polynomial p(rc) involving the continuous random variables
rc the expectation E(p(rc)) is finite. Then the drift of a polynomial is a polynomial.
Lemma 1. Assume that all cross moments exist for the random variable rc. For a poly-
nomial h(x), the pre-expectation preE(h, τ) across a transition τ is also a polynomial.
Moreover, the pre-expectation preE(h,Π) is a piecewise polynomial function of the
form:

∑m
j=1 1(ϕj)qj(x), where ϕj is a transition guard and qj(x) is a polynomial.

2.2 Persistence and Recurrence

Let Π be a polynomial stochastic system with a sample set Ω : X × Rω and an asso-
ciated σ-algebra generated by the Borel sets over X and R. Let Pr be the associated
measure that maps a measurable subset S ⊆ Ω to its probability Pr(S). Let π be a
function that maps each sample ω ∈ Ω to the corresponding sample path of the system
π(ω) : 〈x0,x1, . . . ,xm, . . .〉. Likewise, let πm map each sample ω ∈ Ω to the state
encountered at time m, i.e., πm(ω) : xm.

For a predicate ϕ over the system states, the persistence property ♦�ϕ is a collec-
tion of sample paths: J♦�ϕK : {ω ∈ Ω | ∃n ≥ 0,∀m ≥ n, πm(ω) |= ϕ}. It is easy to
show that this is a measurable set. The probability of the persistence property ♦�ϕ is
denoted Pr(♦�ϕ). We say the persistence property ♦�ϕ holds almost surely (a.s.) iff
Pr(♦�ϕ) = 1. Such a property is also known as qualitative (probability 1) persistence
property and can be stated in PCTL as P=1(♦� ϕ).

Similarly, a recurrence property �♦ϕ is a collection of sample paths: J�♦ϕK :
{ω ∈ Ω | ∀n ≥ 0, ∃m ≥ n, πm(ω) |= ϕ}. We say that the recurrence property �♦ϕ
holds almost surely iff Pr(�♦ϕ) = 1.
Problem Statement: Let Π be a polynomial stochastic system with state-space X
and let T ⊆ X be a measurable set of states. In this paper we are interested in two
related problems: (i) Establish that the persistence property ♦�(T ) holds a.s.; and/or,
(ii) Establish that the recurrence property �♦(T ) holds a.s.

2.3 Supermartingales and Their Properties

Following [32] we recall the notion of supermartingales and some key properties.

Definition 6. A discrete time real-valued stochastic processM = {Mi}∞i=0 is a super-
martingale if E(Mn+1|Mn = mn, . . . ,M0 = m0) ≤ mn, for all n ≥ 0 and mn.

Since our work mostly concerns Markov processes, we will write E(Mn+1|Mn =
mn) to mean E(Mn+1| Mn = mn, . . . ,M0 = m0). We now propose the key defi-
nitions of additive and multiplicative supermartingales that will be used in our work.

Definition 7 (Additive and Multiplicative Supermartingales). A supermartingaleM =
{Mi}∞i=0 is called (ε-)additive iff E(Mn+1|Mn = mn) ≤ mn − ε, for all n ≥ 0
and mn, for some ε > 0. The supermartingale M is called (α-)multiplicative iff
E(Mn+1|Mn = mn) ≤ αmn, for all n ≥ 0, mn ≥ 0, and for some 0 < α < 1.



First we state the following simple result about α-multiplicative supermartingales.

Lemma 2. LetM = {Mi}∞i=0 be a nonnegative α-multiplicative supermartingale for
some α ∈ (0, 1). Then M̂ = {M̂i :

Mi

αi }∞i=0 is a nonnegative supermartingale.
Following [8], we relate supermartingales to polynomial stochastic systems.

Definition 8 (Supermartingale Expressions). Let e be an expression over the state
variables of a polynomial transition system Π (i.e., e is a real-valued function over the
state-space X of Π). The expression e is a supermartingale expression for Π iff

(∀ x ∈ X) preE(e,Π) ≤ e(x), or equivalently, (∀ x ∈ X) De(x) ≤ 0.

The expression e is called (c-)additive or alternatively, a supermartingale ranking func-
tion (SMRF) iff there exists c > 0 such that

(∀x ∈ X) preE(e,Π) ≤ e(x)− c, or equivalently, (∀ x ∈ X) De(x) ≤ −c.
Similarly, e is an (α-)multiplicative supermartingale expression iff

(∃α ∈ (0, 1))(∀x ∈ X) preE(e,Π) ≤ αe(x).
By definition any (α-)multiplicative supermartingale expression of Π induces a(n)

(α-)multiplicative supermartingale when evaluated along the sample paths of Π .

3 Proof Rules for Persistence and Recurrence
In this section, we describe the main proof rules for persistence and recurrence proper-
ties. All proof rules involve finding a suitable “certificate” in the form of a stochastic
analogue of a Lyapunov-like function over the state-space X . The soundness of our ap-
proach (presented in Section 4) relies on certificate functions behaving as supermartin-
gale expressions over the state variables of the stochastic system.

Let X be the state-space of interest and T ⊆ X be a target set.

3.1 Proof Rules for Persistence

We provide a series of proof rules for proving persistence properties. The relation be-
tween these rules is examined in the extended version of the paper.

PERSIST-GEOM: Geometric rule for persistence
(p1) (∀ x ∈ X) V (x) ≥ 0, Positive semidef. of V .
(p2) (∃ ε > 0) (∀ x ∈ X \ T ) V (x) ≥ ε, Lower bnd. outside T .
(p3) (∀ x ∈ T ) DV (x) ≤ 0, Drift cond. inside T .
(p4) (∃ α ∈ (0, 1)) (∀ x ∈ X\T ) DV (x) ≤ (α− 1)V (x), Drift cond. outside T .

♦�(T ) almost surely.

PERSIST-ADD: Additive rule for persistence
(p1) (∀ x ∈ X) V (x) ≥ 0, Positive semidef. of V .
(p2) (∃ ε > 0) (∀ x ∈ X \ T ) V (x) ≥ ε, Lower bnd. outside T .
(p3) (∀ x ∈ T ) DV (x) ≤ 0, Drift condition inside T .
(p5) (∃ c < 0) (∀ x ∈ X \ T ) DV (x) ≤ −c, Drift condition outside T .

♦�(T ) almost surely.



Both PERSIST-GEOM and PERSIST-ADD state that a polynomial stochastic systemΠ
satisfies ♦�(T ) almost surely if there exists a nonnegative certificate function V (con-
dition (p1)) whose value outside T is lower bounded by some ε > 0 (condition (p2)).
Moreover, the drift conditions ensure that in expected value V in the next step does not
increase inside T (condition (p3)), and decreases by some fixed non-zero quantity out-
side T (an additive constant in (p5), or, a multiplicative factor in (p4)). Intuitively, these
conditions together guarantee that V is a supermartingale whose drift condition outside
T forces its value to decrease along almost all sample paths and eventually reach a value
ε at which point the sample path is “forced” to enter T and persists forever.
Applications. We present an application of each rule and defer soundness to Section 4.

Example 3. Consider a stochastic system Π with a single variable x over R, and a
single transition: x′ := 0.1(1 + w)x, where w is a standard Gaussian random variable.
We show that the almost sure persistence property ♦�(T : |x| ≤ 0.1) holds.

Consider the function m(x) : x2, which is nonnegative on X and m(x) ≥ 0.01
for all x ∈ X \T (conditions (p1), (p2)). Moreover, for all x ∈ X , preE(m,Π) =
Ew(m(xn+1)|xn) = 0.02x2n, so Dm(x) ≤ −0.98m(x). Hence, m(x) defines a 0.02-
multiplicative supermartingale expression (conditions (p3), (p4)).

Applying PERSIST-GEOM, we conclude that ♦�(−0.1 ≤ x ≤ 0.1) holds a.s.

Example 4. For the polynomial stochastic system of Example 1 over the state-space
X = [0, 1], we establish the almost sure persistence property ♦�(x ≤ 0.05∨x ≥ 0.95).

Consider the certificate function V (x) = x(1 − x). For all x ∈ X , V (x) ≥ 0,
and for all x ∈ X \ T = (0.05, 0.95), V (x) ≥ 0.0475 (conditions (p1), (p2)). Next,
note that preE(V,Π) = x(1 − x)(1 − x + x2), and DV (x) = x(1 − x)(x2 − x).
It is easy to check that for all x ∈ (0.05, 0.95), DV (x) ≤ −0.00225625, and for all
x ∈ [0, 0.05] ∪ [0.95, 1], DV (x) ≤ 0 (conditions (p3), (p5)).

Applying PERSIST-ADD, we conclude that ♦�(x ≤ 0.05 ∨ x ≥ 0.95) holds a.s.

Note 1. In both examples, the certificatesm(x) and V (x) can be used in both PERSIST-
GEOM and PERSIST-ADD: Dm(x) ≤ −0.98x2 ≤ −0.0098, for all x ∈ X \ T , and
DV (x) ≤ x(1− x)(x2 − x) ≤ −0.0475V (x). We expand on this point next.

Strong Persistence. Rules PERSIST-GEOM and PERSIST-ADD present sufficient condi-
tions under which certificates V prove that ♦�(T ) holds almost surely. Unfortunately,
the difference in constraints inside and outside T may force V to be a high degree
polynomial (or a piecewise polynomial function). To simplify constraints and make
the search for certificates for almost sure persistence properties tractable we propose a
stronger version of proof rules for persistence of the form: (∀ ε > 0) ♦�(V (x) ≤ ε).

SPERSIST-GEOM: Geometric rule for strong persistence
(p1) (∀ x ∈ X) V (x) ≥ 0, Positive semidef. of V .
(p6) (∃ α ∈ (0, 1)) (∀ x ∈ X) DV (x) ≤ (α− 1)V (x), Drift condition.

(∀ ε > 0) ♦�(V (x) ≤ ε) almost surely.

Similarly, we provide an additive version of strong persistence rule. We say a func-
tion V (x) has bounded increase over Π iff there is a constant C > 0 such that, for
every possible next state x′ reached from x (i.e., x r−→ x′), |V (x′)− V (x)| ≤ C.



SPERSIST-ADD: Additive rule for strong persistence

(p7) (∃ c < 0) (∀ x ∈ X) DV (x) ≤ −c, Drift condition.
(p8) (∀ x ∈ X) V (x) has bounded increase, (See above, and Def. 9 on page 12).

(∀K) ♦�(V (x) ≤ K) almost surely.

SPERIST-GEOM presents a stronger, yet simpler to state and encode, version of
the drift requirement dictated by PERSIST-GEOM (viz. inside the region T ). Similarly,
SPERSIST-ADD does not insist on V being positive definite but only V decreasing in ex-
pectation by−c everywhere. The benefit of the stronger formulations of the persistence
rule is that each level set of the Lyapunov-like certificate V acts as a tail invariant: a set
S that almost all traces of the stochastic system reach and asymptotically confine to.

Relations Between Proof Rules. In Note 1 we allude to the fact that certificates for rule
PERSIST-GEOM can equivalently be used for rule PERSIST-ADD to prove persistence
properties of polynomial stochastic systems. We state the main result of importance
here and defer all proofs and relationship between proof rules to the extended version.

Theorem 1. Let m(x) be an ε-additive supermartingale expression that has bounded
increase in Π . Then there exist positive constants λ > 1 and α < 1 such that λm(x)

is an α-multiplicative supermartingale expression. Moreover, let κ ∈ R be such that
{x ∈ X | m(x) ≤ κ} is nonempty. Then the system Π satisfies the tail invariance
property m(x) ≤ κ almost surely.

Under some technical conditions, it is possible to prove the converse of Theorem 1.
This shows that any positive α-multiplicative supermartingale expression used to prove
a tail invariant property has an equivalent additive supermartingale (more precisely,
SMRF) formulation and vice versa.
Incompleteness. We demonstrate that although sound, our approach is incomplete.
The existence of a nonnegative α-multiplicative supermartingale expression or a SMRF
of bounded increase is sufficient but not a necessary condition for the system to almost
surely satisfy a tail invariant property. Example 8 in Section 4.2 demonstrates this result.

3.2 Proof Rule for Recurrence

We now focus on proof rules for proving the almost sure recurrence property: �♦(T ),
i.e., T is visited infinitely often by almost all sample paths. The proof rule is almost
identical to a related rule that establishes “positive recurrence” in Markov chains [24].

REC: Rule for Recurrence
(r1) (∀ x ∈ X) V (x) ≥ 0, Positive semidef. of V .
(r2) (∃ ε > 0) (∀ x ∈ X \ T ) V (x) ≥ ε, Lower bnd. outside T .
(r3) (∃ H) (∀ x ∈ T ) DV (x) ≤ H, Drift condition inside T .
(r4) (∃ c > 0) (∀ x ∈ X \ T ) DV (x) ≤ −c, Drift condition outside T .

�♦(T ) almost surely



4 Soundness of Proof Rules

4.1 Supermartingales as Certificates of Geometric Persistence Rules

We state two theorems that formally relate supermartingales and persistence properties.
The first establishes the convergence of nonnegative α-multiplicative supermartingales.

Theorem 2. LetM = {Mi}∞i=0 be nonnegative α-multiplicative supermartingale for
some α ∈ (0, 1). ThenM converges almost surely (samplewise) to 0.

This result can be applied directly to stochastic transition systems. Let m(x) be a
nonnegative α-multiplicative supermartingale expression for a transition system Π for
some α ∈ (0, 1). For a sample path {xi}∞i=0 of Π , we say that m(xi) upcrosses a level
κ > 0 iff m(xi) ≤ κ and m(xi+1) > κ. If m(x) converges almost surely to 0 on all
sample paths, then the number of upcrossings of m(x) on any sample path is a.s. finite.

Lemma 3. Letm(x) be a nonnegative α-multiplicative supermartingale expression for
a polynomial stochastic system Π . Then for all κ > 0, the number of κ-upcrossings of
m(x) is almost surely finite, i.e.,

Pr
({
ω ∈ Ω

∣∣ {i |m(πi(ω)) ≤ κ ∧m(πi+1(ω)) > κ} is finite
})

= 1.

Proof. The result follows directly from the almost sure convergence of m(x) to zero
on sample paths of Π .

This means that for any threshold κ > 0, m(x) ≤ κ is a tail invariant property: i.e.,
♦�(ϕ : m(x) ≤ κ) holds almost surely.

Theorem 3 (Soundness of PERSIST-GEOM). A polynomial stochastic systemΠ satis-
fies the almost sure persistence property ♦�(T ) if there exists a function V that satisfies
conditions (p1)-(p4) of PERSIST-GEOM.

Necessity. The two conditions on the multiplicative supermartingale m(x) are α ∈
(0, 1) and m(x) nonnegative. We show their necessity through the following example.
Example 5. Consider a stochastic transition system with a single variable x defined
over the state space [0,∞) with two transitions τ1 and τ2. Transition τ1 has a guard
x ≥ 1 and does not alter the value of x. Transition τ2 has a guard x < 1 and chooses
between x′ := 2x or x′ := x

2 with equal probabilities. That is:

x′ :=


x if x ≥ 1, and
2x if x < 1,with prob. 12
x
2 if x < 1,with prob. 12

The initial value of x is exponentially distributed over [0,∞). Note that m(x) : x is a
nonnegative α-multiplicative supermartingale only when α = 1. Clearly, m does not
converge almost surely to zero.

Consider another transition system involving x ∈ R having two forks: x′ := x with
probability 2

3 , and x′ := −x with probability 1
3 . Clearly, m(x) : x is a 1

3 -multiplicative
supermartingale. However, m is not nonnegative over the state-space R, so m does not
prove any persistence property. Indeed, ♦�(x≤1) is not a tail invariant for the system.



4.2 Supermartingales as Certificates of Additive Persistence Rules

Recall that an additive supermartingale expressions m(x) of Π satisfies the condition

(∀ x ∈ X) preE(m(x), Π) ≤ m(x)− ε,
for some constant ε > 0. (See Definition 7.) Given an additive supermartingale expres-
sion m, let Mκ : {x ∈ X|m(x) ≤ κ}. For any κ where Mκ 6= ∅, we can prove ♦(Mκ)
holds a.s. [8,10,15]. Yet in general, the property ♦�(Mκ) does not hold a.s.

Example 6 (MOONWALK). A MOONWALK system consists of a random walk over the
state-space X : Z≤0 of the nonpositive integers:

xn+1 :=

{
xn − 1 with prob. p(xn),
0 with prob. 1− p(xn),

wherein p(x) : x−0.5
x−1 = 1 − 0.5

1−x , for x < 0, and p(0) = 1. In other words, the
random walk either chooses to decrease x by 1 with probability p(x) or jumps to 0 with
probability 1− p(x). The initial state follows a negative Poisson distribution.

The function m(x) : x is an additive supermartingale expression for the MOON-
WALK system: for xn < 0, E(m(xn+1)|xn) = xn−0.5, and E(m(xn+1)|0) = xn−1.
Yet the sublevel sets of the functionm cannot be used for establishing persistence prop-
erties, because of the following result.
Lemma 4. For any η < 0, the probability that a sample path of MOONWALK satisfies
♦�(x ≤ η) is 0.

Using an additive supermartingale expression m to prove tail invariance properties
of the form ♦�(m(x) ≤ κ) requires additional assumptions on the expression m. One
such condition is the bounded increase (which was assumed in Theorem 1, for estab-
lishing the soundness of proving persistence properties via additive supermartingales).

Definition 9 (Bounded Increase Expression). An expression m(x) has bounded in-
crease for a stochastic transitions system Π iff there exists M > 0 so that for all possi-
ble states x ∈ X and all possible next states x′ reachable from x, |m(x′)−m(x)| ≤M .

We give an example of bounded increase expressions, which do not have to be
bounded functions: whether a particular expression m(x) has bounded increase on a
system depends as much on the system itself as on the growth of m.

Example 7. Consider a stochastic system over R, in which xn+1 := xn− 1+wn, with
wn a uniform random variable over [−1, 1]. Then the function m(x) : x has bounded
increase property.

If each wn is a Gaussian random variable, then m(x) does not satisfy the bounded
increase property. Restricting the set of support of distribution wn to a compact set (by
truncation), however, allows x to satisfy the bounded increase property again.

Returning to the MOONWALK system in Example 6, the additive supermartingale
m(x) : x, whose sublevel sets do not prove any tail invariance property (due to Lemma
4), does not satisfy the bounded increase property since it is possible to move from
x = −j, for any j > 0, to x = 0 with nonzero probability.

We close the section by demonstrating the incompleteness: an additive supermartin-
gale does not always need the bounded increase property for a tail invariant property to
be established.



Example 8 (Incompleteness). Consider the MOONWALK system with modified prob-
ability p(x) : 1 − 0.5

(x−1)2 , for x < 0, and p(0) = 1. The probability of the event
{x > κ} is

∑∞
j=−κ

0.5
(j+1)2 , which converges. By the Borel-Cantelli Lemma [14, 2.3.1],

Pr(x > κ i.o.) = 0 holds, i.e., the tail invariant ♦�(x < κ) holds; however, the system
does not have the bounded increase property.

5 Implementation and Evaluation

Given a polynomial stochastic system and a semi-algebraic target set, the problem of
finding “certificates” V that prove persistence or recurrence properties is in general
intractable. In practice, we impose several restrictions on the proof rules so that their
solutions are tractable, based on sum-of-squares (SOS) optimization techniques (see
e.g. [4,6] and the references therein). For illustration, we only focus on SPERSIST-GEOM
and PERSIST-GEOM; the formulations for the other proof rules are similar.

Recall that for proving strong persistence properties via the geometric rule SPERSIST-
GEOM, we need to find a function V such that conditions (p1), (p6) hold. We impose
the following restrictions to make the feasibility problem tractable. First, we require
that V is a polynomial of degree at most some integer d. This means that DV is also
a polynomial, which can be expressed in terms of the coefficients of V and the mo-
ments of the random variable rc. Second, we replace the nonnegativity constraints by
the more restrictive sum-of-squares (SOS) constraints, i.e., we require that both V and
−DV be sums of squares of some unknown polynomial functions. We also require that
V is positive definite, which is a common regularity condition assumed in semidefi-
nite optimization and allows us to find an α ∈ (0, 1) such that the condition (p6) in
SPERSIST-GEOM holds. Under these two restrictions, the generally intractable feasi-
bility problem from SPERSIST-GEOM is equivalent to a linear semidefinite feasibility
problem: a polynomial being a sum of squares (of polynomial functions) is equivalent
to its vector of coefficients being the image of an unknown positive semidefinite ma-
trix under a predetermined linear transformation. (For more details on SOS relaxation
techniques for solving polynomial feasibility/optimization problems, see e.g. [4,6].)

For proving persistence properties with respect to a nonempty set T via the geo-
metric rule PERSIST-GEOM, we need to find a function V such that conditions (p1)-
(p4) hold. Again, we require that V is a polynomial of degree at most d, and that
T = {x | g1(x) ≥ 0 ∧ · · · ∧ g`(x) ≥ 0} for some polynomials g1, . . . , g`. Then we re-
place those constraints pertaining to the elements in T , by truncated quadratic module
membership. For instance, we replace the condition (p3) by the tractable constraint:
DV = s0 + s1g1 + · · ·+ s`g`, s0, s1, . . . , s` SOS of degree at most some integer d̃.

(The tractability is due to the fact that the polynomials si being SOS can be phrased
as semidefinite feasibility constraints.) Similar treatment can be applied on those con-
straints pertaining to the elements in X \ T , which is also a semialgebraic set.

Many standard semidefinite optimization solvers1 and SOS optimization front-ends
(such as SOSTOOLS [25]) are available for solving the SOS optimization problems
outlined above. Below we present some simple examples on the use of SPERSIT-GEOM

1 See e.g. the list in http://plato.asu.edu/sub/nlores.html#semidef.

http://plato.asu.edu/sub/nlores.html#semidef


rules for proving persistence. In each example, an α-multiplicative supermartingale ex-
pression is obtained using SDPT3-4.0 [31] on MATLAB R2014b, taking less than 10
seconds on a Linux machine with Intel(R) Core(TM) i7-4650U CPU @ 1.70GHz.

Example 9. (Rimless wheel model [7,22,27]) A rimless wheel with 8 equally spaced
inelastic spokes of length L rolls down a hill with stochastic slope angle γ. Let ωn be
the angular velocity at the n-th impact (which occurs when the stance leg is vertical).
In [7,27], the dynamics of the rimless wheel is described as:

xn+1 := cos2 θ
(
xn + 2g

L

(
1− cos

(
θ
2 + γ

)))
− 2g

L

(
1− cos

(
θ
2 − γ

))
,

where xn = ω2
n, g is the gravitational constant, θ = 45◦ is the angle between two

consecutive spokes and γ ∼ N (8, 1) (in degrees). We approximate the functions ξ 7→
cos( θ2 ± ξ) over the interval [5, 11] by degree 2 polynomials, and find that the angular
velocity in the approximated stochastic system goes to 0 almost surely when L = 2g:
the function V (x) : 0.00085x3 + x4 satisfies the conditions (p1), (p6) with X : [0,∞)
and α = 0.95: V and −DV are nonnegative on X and DV (x) ≤ −0.05V (x) for all
x ≥ 0. Hence V is a α-multiplicative supermartingale for this system over X , and
♦�(V (x) ≤ ε) holds a.s. for any ε > 0. In other words, despite the randomness in the
slope of the terrain, the rolling rimless wheel (with very long spokes) would eventually
become stationary almost surely.

Example 10. (Room temperature control [3]) In the two-room temperature control ex-
ample from Section 1.1, we are interested in the evolution of the room temperatures
within the range X = [6, 33]2. Consider the nonnegative function V (x1, x2) : (x1 −
18.3)2+(x2−18.8)2. When the noise follows the uniform distribution U(−0.01, 0.01),
DV is nonpositive on X , and V (x1, x2) ≥ 0.09 and DV (x1, x2) ≤ −0.01V (x1, x2)
for all x ∈ X \ [17.8, 18.7] × [18.4, 19.3]. Hence conditions (p1)-(p4) hold, implying
the persistence property ♦�(17.8 ≤ x1 ≤ 18.7 ∧ 18.4 ≤ x2 ≤ 19.3).

In the case of Gaussian noise N (0, 0.25), DV (x1, x2) ≤ 0.25 for all (x1, x2) ∈
[16.9, 19.6] × [17.3, 20.2], and V (x1, x2) ≥ 0.8 and DV (x1, x2) ≤ −6 × 10-5 for all
(x1, x2) ∈ X \ [16.9, 19.6] × [17.3, 20.2]. Hence conditions (r1)-(r4) hold, implying
the recurrence property �♦(16.9 ≤ x1 ≤ 19.6 ∧ 17.3 ≤ x2 ≤ 20.2).

We list some additional examples in which a system is proved to satisfying a per-
sistence or recurrence property via some of the proof rules from Section 3. The details
of these examples can be found in the extended version of the paper.

ADDITIONAL STOCHASTIC SYSTEMS NOISE uj (I.I.D.) SUPERMARTINGALE V (x, y)

x′ := x+ 1
2y + u1,

y′ := 1
2x+ y − u2

N (−1, 1) max(x− y, 0)

(overX = R2) (for proving recurrence)

x′ := 0.5(x+ y) + 0.4u1

√
x2 + y2,

y′ := 0.5(x− y) + 0.4u2

√
x2 + y2,

N (0, 1) x2 + y2

(overX = R2) (0.82-multi.)
x′ := 0.75y4 + 0.1u1,
y′ := 0.75x4 + 0.1u2,

U(−1, 1) 0.78x2 + 1.23xy + 0.78y2

(overX = {(x, y) | x2 + y2 ≤ 1}) (0.75-multi.)

x′ := 0.1(y(3x2 + 2y2 − 0.5) + u1

√
x2 + y2),

y′ := 0.1(y(2x2 + 4xy + 3y2 − 0.5) + u2

√
x2 + y2),

U(−
√
3,
√
3) 1.55x2 + 2.36xy + 1.34y2

(overX = {(x, y) | x2 + y2 ≤ 1}) (0.5-multi.)



6 Related Work

Martingale analysis has been used to prove almost sure termination [8,15,10], derive in-
ductive invariant expressions [9] in probabilistic programs, and prove stochastic reach-
ability and safety [26,27] in the context of stochastic hybrid systems. Our paper extends
this set of properties to include tail invariant, or qualitative persistence, properties.

Qualitative persistence properties are expressible in PCTL [18] and have been stud-
ied by the model-checking community [5,21] in the context of finite-state Markov pro-
cesses. The approach leverages the fact that the system ends up a.s. in a bottom strongly
connected component (BSCC[11,12,13], a strongly connected component with no out-
going edges), then uses a graph algorithm to efficiently check that all states in the BSCC
satisfy ϕINV. Baier et al. [5] have shown that while such results suffice for the analysis
of finite-state Markov chains, they, however, do not extend to infinite-state models.

Abate [1,2] and Tkachev et al. [29] present approaches to reducing the verifica-
tion problem of infinite-state Markov processes to that over finite-state Markov chains.
Specifically, [1,2] presents a framework for proving probabilistic bisimulation between
the original infinite-state system and its discretized (approximate) finite-state version.
Guarantees on the quality of the results are proved using supermartingale bisimula-
tion functions. Tkachev et al. [29] present a framework for analyzing infinite-horizon
reach-avoid properties (♦ϕ and �ϕ) for Markov processes. They use locally-excessive
(i.e., supermartingale) value functions to identify a subset of the state-space where dis-
cretization guarantees a precise approximate solution. In [28,30] Tkachev et al. tackle
quantitative reachability, invariance and reach-while-avoid properties operating directly
over the infinite-state model. [28] provides a characterization of the statespace based on
harmonic functions defining absorbing or stochastically attractive sets. Unfortunately,
the sufficient conditions for certificates in [28] define problems that in general have no
analytical or computation solution. Our paper can be seen as a set of practical suffi-
cient conditions that yield efficiently computable problems (SOS, SDP) for qualitative
repeated reachability.

The problem of stability and identifying the limiting behavior of a stochastic system
has been well-studied in the theory of Markov chains [24]. Similar “Foster-Lyapunov” [16]
drift criteria have been derived to argue recurrence and transience for sets of states. Un-
fortunately, most results rely on the topological properties of the infinite-state Markov
chains that may be difficult to check automatically.

7 Conclusion
We presented an analysis framework capable of proving that the limiting behavior
of an infinite-state discrete-time polynomial stochastic system eventually settles al-
most surely within a region S of the statespace (i.e., ♦�(S)). Our analysis employs
constraint-based invariant generation techniques to efficiently infer polynomial func-
tions over the states of the system: nonnegative α-multiplicative supermartingale ex-
pressions and additive supermartingale expressions of bounded increase. We established
that both types of functions constitute certificates verifying tail invariant properties and
we demonstrated their equivalence. Finally, we highlighted the individual strengths of
each of the two types but also the incompleteness of the general approach through the
means of numerous simple, yet intricate examples.
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