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Abstract. In this paper, we briefly examine the recent developments in artificial
pancreas controllers, that automate the delivery of insulin to patients with type-1
diabetes. We argue the need for offline and online runtime verification for these
devices, and discuss challenges that make verification hard. Next, we examine a
promising simulation-based falsification approach based on robustness semantics
of temporal logics. These ideas are implemented in the tool S-Taliro that automat-
ically searches for violations of metric temporal logic (MTL) requirements for
Simulink(tm)/Stateflow(tm) models. We illustrate the use of S-Taliro for finding
interesting property violations in a PID-based hybrid closed loop control system.

1 Introduction: Artificial Pancreas

Type-1 Diabetes (T1D) is a chronic condition caused by the inability of the pancreas to
secrete insulin, a hormone that is critical to maintaining blood glucose levels inside a
tight euglycemic range [42,59]. The standard treatment for T1D consists of delivering
insulin externally through injections, or more recently, through insulin pumps that de-
liver short acting artificial insulin analog, sub-cutaneously. Insulin pumps provide many
features, including the accurate delivery of insulin at varying rates over time. However,
insulin pumps are controlled manually by the patient, who is ultimately responsible for
increasing insulin delivery at meal times (meal bolus), or decreasing/disabling insulin
delivery during physical activity [11]. The manual control of insulin delivery poses a
heavy burden on the patients themselves, is error-prone and can sometimes lead to dan-
gerous outcomes [57]. Too much insulin causes a dangerous drop in blood glucose lev-
els (hypoglycemia), whereas too little insulin causes the blood glucose levels to remain
high (hyperglycemia), resulting in long term damage to organs such as the kidneys, eye
and peripheral nerves.

The artificial pancreas (AP) project envisions a series of increasingly sophisticated
control systems to automate the delivery of insulin to patients with T1D. At it’s core, the
AP system combines a continuous glucose monitor (CGM) which senses blood glucose
levels periodically, and an insulin pump that delivers insulin in a closed loop managed
by a software-based controller. Table 1 shows the original stage wise development for
the overall AP concept. A recently revised pathway acknowledges that all stages are



Table 1: Original pathway to the artificial pancreas project with representative pa-
pers showing technological feasibility. Source: Juvenile Diabetes Research Foundation
(JDRF). See [39] for a recently proposed revised pathway.

ID Description Refs.
1 Very Low Glucose Pump Shutoff [48]

Pump shutoff during hypoglycemia
2 Hypoglycemia Minimizer [10]

Pump shutoff in advance of predicted future hypoglycemia
3 Hypo/Hyperglycemia Minimizer [4,50,32]

Same as # 2 plus addition of insulin when glucose is above threshold
4 Hybrid Closed Loop [35,34,33]

Closed loop insulin delivery with manual bolus
5 Fully Autoamted Closed Loop [7,8,9,15,44,38,19]

#4 with all manual meal boluses eliminated
6 Multihormone Closed Loop [26,25]

Use glucagon and insulin to achieve bidirectional control

currently technologically feasible and classifies insulin delivery beyond stage 3 simply
as “insulin-only” control and “multihormonal” control [39]. The first (and simplest)
stage simply shuts off the pump when the blood glucose level is sensed below a widely
accepted threshold for hypoglycemia. Further improvements add the ability to forecast
future trends of the blood glucose and perform predictive pump shutoff, introduce extra
insulin when blood glucose levels are high, predict the onset of meals and finally a
fully closed loop that is expected to completely eliminate the need for manual control
of insulin infusions.

The AP project promises a drastically improved approach to treating T1D by im-
proving glucose control and reducing the burden of care to the patient. However, it’s
use potentially presents numerous risks to the patient. Too much insulin delivered to
the patient can drive their blood glucose levels too low, causing seizures, coma or even
death [6]. At the other end, a failure to deliver adequate insulin to cover meals can re-
sult in too high blood glucose levels that can lead to near-term complications such as
ketacidosis. In order to be successful, the AP controller must tolerate significant sen-
sor noise, and unpredictable events such as meals, physical activity and pump/sensor
failures [16,36]. Furthermore, software errors in the controller software can have fright-
ening and unexpected consequences [29].

Since it’s inception in 2001, the Runtime Verification (RV) community has pio-
neered numerous techniques in efficient monitoring of temporal requirements of sys-
tems both during deployment (online monitoring) and development (offline monitor-
ing). Progress in AP controllers bring about two important classes of challenges to the
larger verification community, and specifically to the runtime verification community:

1. AP controllers have large state-spaces, a rich set of behaviors and are subject to
large disturbances such as meals, exercise, sensor and infusion set failures, that
makes these systems hard to reason with for existing symbolic methods. We exam-
ine the use of simulation-based verification techniques, particularly for the artificial
pancreas controllers.



2. Beyond offline monitoring, it is also necessary to perform online monitoring of
deployed artificial pancreas control systems to detect failures, caused due to rare
events that may be hard to observe in clinical trials. In fact, the idea of robustness
of a trace with respect to a logical specification can also be used to perform online
monitoring for detecting potential failures early [21,23].

In this paper, we focus mainly on offline monitoring and illustrate how simulation-
based falsification techniques can be employed as a first step towards verified artificial
pancreas controllers.

2 Simulation-Based Falsification

In this section, we briefly survey simulation-based falsification approaches. We focus
primarily on robustness-guided falsification, a promising approach that combines the
notion of robustness of temporal logic formulas with stochastic optimization techniques
for automatically search for falsifying traces.

2.1 Simulation-Based Falsification

Model-based falsification techniques for cyber-physical systems (CPS) seek behaviors
of a system that violate a given property ϕ of interest. Falsification techniques can be
symbolic, exploring the system behavior using a constraint solver [5], or numeric, using
numerical simulations of the model to find property violations. In practice, significant
strides in symbolic falsification have been made towards faster constraint solvers that
support richer logics [20]. Nevertheless, the state-of-the-art for symbolic model check-
ing techniques are currently restricted to linear models that involve controllers with
linear assignments/conditionals and plants with linear dynamics [30]. Symbolic model
checkers for nonlinear models and nonlinear controllers are currently a topic of on-
going research [13,14,31]. However, significant algorithmic challenges currently limit
the scalability of these approaches. Furthermore, the use of these techniques on non-
linear, software-based control system with nonlinear plant models expressed in popular
frameworks such as Simulink(tm)/Stateflow(tm) in Matlab(tm) requires a significant
tool building effort.

Therefore, in this exposition, we focus on simulation-based approaches. Broadly,
a simulation-based falsification technique performs repeated simulations of the sys-
tem under various inputs and initial conditions, using results of past simulations to
guide the future inputs to the system. Simulation-based falsification techniques offer
two main features: (a) They are able to handle the system itself as a black box. This
is an enormous advantage when the model is specified in a widely-used formalism
such as Simulink(tm)/Stateflow(tm). Simulink/Stateflow models have complex seman-
tics that change substantially over successive versions of the Matlab(tm) framework. On
the other hand, the absence of detailed system knowledge is a drawback: repeated sim-
ulations are well-known to be inadequate for exploring systems with large state-spaces.
As a result, simulation-based falsification techniques typically have very weak mathe-
matical guarantees. (b) Simulation is cheap, parallelizable and can be performed quite
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Fig. 1: Trace robustness for temporal property ϕ : ♦S1 ∧ �S2. Traces x1,x2 both sat-
isfy the property: ρ(x1, ϕ) > ρ(x2, ϕ) > 0. Likewise, x3,x4 both violate the property:
ρ(x4, ϕ) < ρ(x3, ϕ) < 0. The robustness cylinder for x1 is highlighted.

accurately even for large nonlinear systems that are beyond the reach of many symbolic
tools. However, numerical simulation tools are approximate: the simulation trajectories
may deviate from the actual system trajectories due to integration and floating-point er-
rors. Many simulation-based approaches have been proposed, especially for falsifying
properties of CPS. We restrict our discussion below to two main approaches: (a) Rapid
Exploration of Random Trees (RRTs) and (b) Robustness-Guided Falsification.

RRTs explore the behaviors of the system by building a tree whose nodes are system
states and edges are trajectories connecting these states [41]. At each step, the tree is
grown towards a current target state through a local search technique. Many variants of
the basic RRT approach have been explored, some specifically designed for the falsifica-
tion of temporal logic properties of CPS [54,53,18,55,24]. Recently, the RRT approach
has been increasingly successful on larger benchmarks [24]. However, the performance
can be quite variable, depending on the specific RRT scheme used. Furthermore, the
techniques are also quite sensitive to the choice of distance metrics. Finally, the practi-
cal application of RRTs, specifically to Simulink(tm) /Stateflow(tm) models is currently
challenging due to the large costs of setting up a simulation run. This is disadvantageous
since the standard RRT approach relies on numerous simulations over a short time pe-
riod for the local search.

In contrast, robustness-guided approaches are based on two main ingredients: (a)
First, the notion of temporal property satisfaction is extended to allow us to have a
distance metric to property violation [27,56,23]. Such a metric is referred to as the
“trace robustness”. Intuitively, a trace with a smaller robustness is therefore “closer”
to a violation when compared to a trace that has a larger robustness. (b) In turn, the
robustness metric can be used as an objective function to guide the system towards
property violations in a systematic manner by seeking trajectories of ever decreasing ro-
bustness [49,1,3]. This is usually achieved inside a global optimization technique such
as Nelder-Mead, simulated annealing, ant-colony optimization or the cross-entropy
method that uses the robustness as an objective function to minimize.



We will now briefly outline the robustness-guided approach for falsifying Metric
Temporal Logic (MTL) properties of systems [40], following the work of Fainekos and
Pappas [27]. The TaLiRo tool implements the MTL monitoring algorithm inside Mat-
lab(tm). The ideas presented are conceptually similar to those of Donzé and Maler,
using the alternative formalism of Signal Temporal Logic (STL) [23]. This is imple-
mented in the Breach tool [22]. As mentioned earlier, the notion of robustness extends
the standard Boolean notion of property satisfaction of a trace (i.e, a trace either satis-
fies a property or it does not) to a real-valued notion. Let x : R≥0 → X be a trajectory,
mapping time t ≥ 0 to state x(t) ∈ X and ϕ be a MTL property.

Definition 1 (Robustness Metric). The robustness of x(·) w.r.t ϕ is a real number
ρ(x, ϕ) that has the following properties: (a) ρ(x, ϕ) > 0 if x |= ϕ, and (b) ρ(x, ϕ) <
0 if x 6|= ϕ. Furthermore, the magnitude v : |ρ(x, ϕ)| denotes the maximum radius of
a cylinder around the trace x so that any other trace in the cylinder also has the same
outcome for ϕ as x.

Example 1. Figure 1 illustrates robustness using the property ϕ : ♦S1 ∧ �S2 that
requires the trace to stay entirely inside the blue rectangle S2 while intersecting the red
circle S1. We see that traces x1,x2 satisfy the property. The robustness cylinder around
trace x1 is illustrated in the figure. The cylinder represents all perturbations of x1 that
also satisfy the property ϕ and the robustness ρ(x1, ϕ) is taken to be the radius of the
cylinder. It is evident upon a visual inspection that ρ(x1, ϕ) > ρ(x2, ϕ) > 0.

Similarly, we see that x3,x4 violate the property. The robustness cylinder around x3

represents all perturbations of x3 that will also violate ϕ. The robustness ρ(x3, ϕ) < 0
to denote the violation and |ρ(x3, ϕ)| is set to the radius of the robustness cylinder. It is
easy to see that ρ(x4, ϕ) < ρ(x3, ϕ) < 0.

In fact, robustness for a given trace and property can be computed efficiently using
polynomial time in the size of the formula and the number of sample points in the trace
x [28]. For convex sets as atomic predicates this requires solving convex optimization
problems. However, in practice, the atomic predicates are often described by boxes or
half-spaces, and the robustness computation can be optimized significantly.

From Robustness to Falsifications: The problem of finding a violation translates nat-
urally to the problem of finding a negative robustness trace. In turn, we will consider
the following optimization problem that seeks to minimize the robustness metric over
all traces of a system: ρ∗ : minimizex∈Traces ρ(x, ϕ). If the minimum robustness is
ρ∗ < 0, then we conclude that the system violates the property and the trace x∗ that
corresponds to the violation is obtained. On the other hand, the robustness function can
be quite complicated, even for simple systems. As a result, the optimization problem is
hard to solve precisely. To this end, numerous heuristic global optimization algorithms
such as simulated annealing [49,1], ant-colony optimization [2], genetic algorithms or
the cross-entropy method [58] can be applied to this problem. If these techniques dis-
cover a negative robustness trace, then a property violation is concluded. Otherwise, the
least robust trace often provides valuable information to the designer, as to how close
we get towards violating the property.
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Fig. 2: Illustration of the overall robustness-guided falsification setup.

2.2 S-Taliro Tool

Figure 2 shows a schematic diagram for S-Taliro 5, a robustness guided falsification tool
that supports MTL properties [3]. S-Taliro has been implemented inside the Matlab (tm)
environment, and can support models described inside Simulink/Stateflow (tm). The
tool uses the inbuilt simulator and computes the robustness for a trace. The resulting
robustness is used as an objective function by a global optimization engine that seeks
to minimize this value. The global optimizer, in turn, decides on future test inputs to
the simulator based on the past inputs and the robustness values of the resulting traces.
Currently, the tool supports many optimization engines including uniform random ex-
ploration, simulated annealing search, ant-colony optimization, cross-entropy method
and genetic algorithms. Since no single optimization engine can guarantee finding a
global minimum, the typical practice of using the tool consists of using multiple opti-
mization engines, repeatedly and in parallel. If the tool fails to discover a violation, one
of the key advantages of robustness metrics is that the least robust trace can provide a
relaxed property that can be violated by S-Taliro. S-Taliro is available as an open source
tool 6, and is built to be extensible through the addition of new solvers and alternative
robustness computation techniques. The latest version uses multiple cores to perform
numerous simulations in parallel. It also supports features such as property-directed pa-
rameter tuning for models and requirements. These features will be enhanced in future
releases of the tool.

3 AP Controller Falsification

We now illustrate the use of S-Taliro on an example PID-based controller design that
provides a hybrid closed loop for overnight insulin infusion control. Figure 3 shows
the overall diagram of the closed loop system. We note that the controller design here
simply serves to illustrate the ideas behind the use of robustness-guided falsification
to find potentially harmful scenarios. In particular, the results presented can be im-
proved through systematic and personalized tuning the key controller parameters. We

5 S-Taliro stands for System TemporAl LogIc RObustness
6 Cf. https://sites.google.com/a/asu.edu/s-taliro/s-taliro

https://sites.google.com/a/asu.edu/s-taliro/s-taliro
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Fig. 3: Closed loop diagram for the hybrid PID control system, and equations defining
the controller. The controller gains and other parameters are shown in blue.

will investigate the overnight use of this control system assuming manual boluses for
meals. Such overnight control has the benefit of preventing dangerous seizures due to
prolonged hypoglycemia through pump shutoff. Additionally, it helps bring the early
morning blood glucose levels inside a tight euglycemic range of [70, 150] mg/dl, lead-
ing to desirable longer term outcomes [43].

Controller Design: The controller used in this example is directly inspired by the PID
control scheme proposed by Steil et al. [61,60,62]. A detailed analysis of this control
scheme was presented by Palerm [51]. Let G(t) represent the value of the blood glu-
cose at time t. The controller operates through periodic sampling of the glucose sensor
readings with a period∆. The insulin level u(k) at the kth time period t = k∆ is calcu-
lated as shown in Figure 3. The insulin infusion rate is held constant for the subsequent
time period [k∆, (k + 1)∆). The overall insulin rate i(t) is derived as the sum of the
controller input and the patient’s manual meal bolus. The terms involved are Ie(k), the
integrated error at the kth period, D(k) the derivative term and IOB(k), an insulin-on-
board compensation term. These are calculated as shown in Figure 3. The parameters
for the controller include the target glucose value G0, taken to be 100mg/dl, the gains
Kp,Ki,Kd, γ that are chosen by trial and error starting from initial values based on
the total daily insulin requirements of the patient as explained by Weinzimer et al [62].
Likewise, the cutoff parameters umax that are adjusted by trial and error, starting from
the patient’s open loop basal rate. The parameters δ(j) for j = 0, . . . , N specify the
amount of active insulin in the blood at time t = j∆ corresponding to a unit bolus
at time t = 0, and is based on available physiological data [61]. Finally, the time pe-
riod ∆ is taken to be 5 minutes for our simulation. The controller code along with the
parameter values will be made available to researchers upon request.

Patient Model: Patient modeling is an important part of the overall in silico verification
process. To this end, many detailed models of insulin-glucose regulation have been
proposed. The monograph by Chee and Fernando provides a detailed, historical account
of numerous mathematical models [12]. For this simulation study, we use the Dalla-Man
et al. model [17,45,47]. This model is a nonlinear ordinary differential equation (ODE)
with 10 state variables. The model and corresponding parameters are available as part



Table 2: Inputs that are set by S-Taliro to falsify properties for the AP control system.

T1 [0, 60] mins. Dinner time.
X1 [50, 150] gms Amount of CHO in dinner.
T2 [180, 300] mins. Snack time.
X2 [0, 40] gms Amount of CHO in snack.
IC1, IC2 [0, 0.01] U/gm Insulin-to-CHO ratio for meal boluses.
δ1, δ2 [−15, 15] min timing of insulin relative to meal j
d(100), d(105), . . . , d(720) [−20, 20] mg/dl sensor error at each sample time.

of the FDA approved T1DM simulator that can now be used as an alternative to animal
testing [46]. The model has been increasingly popular inside a simulation environment
for “in-silico” or “virtual” clinical trials [52,44].

Nevertheless, to the best of our knowledge, the typical use of this model is through
a finite set of fixed “in-silico clinical protocol”, that is simulated for multiple sets of
patient parameters [52]. The performance statistics such as total time in the euglycemic
range or number of hypoglycemic events are reported for each “virtual” patient defined
by values of the model parameters. In this exposition, we illustrate a different approach
that uses S-Taliro to search over a set of possible scenarios to potentially discover the
worst case, as defined by the robustness metric, for a given property.

Verification Protocol: For the purposes of falsifying properties of the proposed con-
troller, we use a set of possible scenarios, as specified below. Let t = 0 represent 7 pm
in the evening. Each usage scenario is as follows:

(a) The patient consumes dinner, and manually infuses an insulin bolus at some time
T1 ∈ [0, 60] minutes. The amount of carbohydrates consumed at dinner X1 can
vary between [50, 150] grams. The bolus is delivered using an insulin-to-CHO ratio
IC1 that can also vary between [0, 0.01] U/gram. Finally, the timing of the bolus
relative to the meal time can vary in the range δ1 ∈ [−15, 15] minutes.

(b) The controller is turned on at some time Tc ∈ [40, 60] minutes, each night.
(c) The patient may possibly consume a snack after the controller is turned on. The

snack is consumed sometime between T2 ∈ [180, 300], and can vary betweenX2 ∈
[0, 40] grams of carbohydrates. The insulin-to-CHO ratio IC2 and relative timing
δ2 fall in the same ranges as for dinner.

(d) The controller is turned off at “wake up time” Tw = 720.

Finally, we assume that a sensor error of d(t) ∈ [−20, 20] mg/dl is possible at each
sampling instant. This is the error between the sensor output of the Dalla-Man model
and the value input to the controller. To decrease the number of parameters, we simply
use the values at d(100), d(105), . . . , d(720) as parameters input to the simulator. These
parameters lie in the range [−20, 20] mg/dl, and are also controlled by the S-Taliro tool
while exploring the worst-case.

Table 2 summarizes the inputs that S-Taliro can modify to obtain various behaviors
of the model. Including the sensor noise inputs, the search space for S-Taliro has nearly
130 parameters. We employed three solvers: uniform random exploration, simulated
annealing and the cross-entropy method.



Fig. 4: Least robust trace found by S-Taliro for property
ψ1 : �[100,700](G(t) ≥ 70). The top plot for shows the
blood glucose levels (mg/dl) over time (minutes) while the
bottom plots show the insulin infusion (U/hr) over time
(mins). The red impulses represent Bolus amounts in U/hr
assuming the bolus amount is delivered over 5 minutes.

Hypoglycemia: The first
property concerns worst
case hypoglycemia (low
blood glucose levels) pos-
sible for this controller.
We wish to check whether
the system satisfies the
MTL property: ψ1 :
�[100,700](G(t) ≥ 70),
which states that during
the time period t ∈
[100, 700], the blood glu-
cose level should remain
above 70mg/dl in all sce-
narios. The time interval
[100, 700] is used to allow
a run-in period with the
controller switched on. As
a result, property violations before the controller has warmed up will not be considered.
We used three parallel process to search using the simulated-annealing, uniform ran-
dom and cross-entropy method. While, S-Taliro could not violate the property, the least
robust scenario (found by the uniform random search) involves G(t) ∼ 75mg/dl. In
other words, the trace approaches quite close to violating the property. The search takes
nearly 3200 seconds using three parallel Matlab (tm) R2014 instances on a 4 core, 800
MHz 64 bit AMD Phenom(tm) II processor with 8 GB RAM running Linux. Figure 4
shows the resulting output trace obtained from S-Taliro.

Fig. 5: Least robust trace found by S-Taliro for property
ψ2 : �[100,700](G(t) ≤ 350).

Hyperglycemia: The next
property concerns whether
hyperglycemia (high blood
glucose levels) are pos-
sible. We wish to check
the MTL property ψ2 :
�[100,700](G(t) ≤ 350),
which states that during
the time period t ∈
[100, 700], can the blood
glucose level go above
350mg/dl. S-Taliro finds
a violation of this prop-
erty with the maximum
glucose level of 472 mg/dl.
This is found by the cross
entropy solver requiring under 5 seconds of total running time. Figure 5 shows the vio-
lation trace produced by S-Taliro.



Insulin Infusion below Target: The next property concerns whether the controller can
infuse insulin while the blood glucose level is below a target level of 90mg/dl: ψ3 :
�[100,700](G(t) ≤ 90 ⇒ u(t) = 0). The property states that whenever G(t) ≤ 90
mg/dl, the controller should not command additional insulin, or in other words u(t) = 0
should hold. Infusing insulin when the blood glucose is low, can be quite dangerous,
worsening the hypoglycemia. The property is violated by S-Taliro in nearly 90 seconds.
While all three engines discover a violation, the least robust violation is discovered by
the cross entropy (CE) solver.

Hyperglycemia at Wakeup: One of the important objectives of nighttime insulin infu-
sion control is to provide a blood glucose level as close to the normal range as possible
at wake up time. Recent clinical evidence indicates that starting off with a normal blood
glucose level at wake up time can have beneficial longer term outcomes [43]. To this
end, we check whether the morning wakeup blood glucose level can exceed 200mg/dl.

ψ4 : �[600,700](G(t) ≤ 200) .

The property states that the blood glucose levels must remain below 200 mg/dl during
the time period t ∈ [600, 700]. S-Taliro cannot violate the property. The minimal robust-
ness trace shows a blood glucose level of 180mg/dl at wakeup time, and is discovered
by the uniform random search after 3500 seconds.

Fig. 6: Least robust trace found by S-Taliro
for the prolonged hyperglycemia property ψ5 :
¬♦[200,600] �[0,180] (G(t) ≥ 240).

Prolonged Hyperglycemia:
We now focus on the
possibility of prolonged
hyperglycemia that can
potentially give rise to
ketacidosis: ψ5 in Fig-
ure 6. The property states
that during the time t ∈
[200, 600] the blood glu-
cose cannot be continu-
ously above 240 mg/dl
for more than 180 min-
utes. S-Taliro easily fal-
sifies this property: the
cross-entropy search dis-
covers the least robust
trace within 3 seconds.

Prolonged Hypoglycemia:
Finally, we conclude by
searching for the possibility of a prolonged hypoglycemia that can potentially lead to
seizures [6]: ψ6 : ¬♦[200,600] �[0,150] (G(t) ≤ 70). The property states that there
cannot be a contiguous interval of 150 minutes during which G(t) ≤ 70 mg/dl. The
property cannot be violated by S-Taliro. The least robust trace is discovered by uniform
random search in 3550 seconds shows a scenario where G(t) ≤ 85 over a 150 minute
interval.



4 Conclusions

In conclusion, we have outlined the need for verifying artificial pancreas controllers
and the challenges faced by current verification technique. We have illustrated the use
of simulation-based falsification as a first step towards full formal verification. Ongo-
ing work is addressing important gaps in our verification framework including careful
modeling of disturbances such as meals, exercise and various sources of sensor noise.
We are also working towards making the tool S-Taliro more user friendly to allow con-
trol designers to directly use the tool. To this end, we envision simpler and more visual
formalisms for specifying temporal properties [37].
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