
Cone-Based Abstract Interpretation for Nonlinear Positive
Invariant Synthesis

Guillaume O. Berger

UCLouvain

Belgium

guillaume.berger@uclouvain.be

Masoumeh Ghanbarpour

University of Colorado Boulder

USA

masoumeh.ghanbarpour@colorado.edu

Sriram Sankaranarayanan

University of Colorado Boulder

USA

first.lastname@colorado.edu

ABSTRACT
We present an abstract interpretation approach for synthesizing

nonlinear (semi-algebraic) positive invariants for systems of polyno-

mial ordinary differential equations (ODEs) and switched systems.

The key behind our approach is to connect the system under study

to a positive nonlinear system through a “change of variables”. The

positive invariance of the first orthant (R+) for a positive system

guarantees, in turn, that the functions involved in the change of

variables define a positive invariant for the original system. The

challenge lies in discovering such functions for a given system. To

this end, we characterize positive invariants as fixed points under

an operator that is defined using the Lie derivative. Next, we use

abstract-interpretation approaches to systematically compute this

fixed point. Whereas abstract interpretation has been applied to

the static analysis of programs, and invariant synthesis for hybrid

systems to a limited extent, we show how these approaches can

compute fixed points over cones generated by polynomials using

sum-of-squares optimization and its relaxations. Our approach is

shown to be promising over a set of small but hard-to-analyze non-

linear models, wherein it is able to generate positive invariants to

place useful bounds on their reachable sets.

ACM Reference Format:
GuillaumeO. Berger,MasoumehGhanbarpour, and Sriram Sankaranarayanan.

2024. Cone-Based Abstract Interpretation for Nonlinear Positive Invariant

Synthesis. In 27th ACM International Conference on Hybrid Systems: Compu-
tation and Control (HSCC ’24), May 14–16, 2024, Hong Kong, Hong Kong.ACM,

New York, NY, USA, 16 pages. https://doi.org/10.1145/3641513.3650127

1 INTRODUCTION
In this paper, we provide solutions to the problem of synthesizing

semi-algebraic positive invariants for ordinary differential equa-

tions (ODEs) whose right-hand sides are defined by polynomials

over the system variables. We show how our approach extends

to switched systems that contain multiple modes, each described

by polynomial ODEs along with transitions between these modes,

governed by semi-algebraic guard conditions. Positive invariants

of ODEs and switched systems help us prove bounds on the sets

of states that can be reached over an infinite time horizon, thus

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0522-9/24/05. . . $15.00

https://doi.org/10.1145/3641513.3650127

proving that a certain set of unsafe states will never be reached.

The problem of automatically synthesizing such positive invariants

has been of great interest for verification. Many approaches have

been studied for this problem that include constructing finite ab-

stractions [4, 6, 50], dynamic programming-based approaches [52],

approaches based on solving nonlinear constraints in order to con-

struct barrier functions and their generalizations [7, 8, 36, 37].

The key of our approach is to relate an ODE ¤𝒙 = 𝑓 (𝒙) to a pos-

itive system of the form ¤𝝎 = −_𝝎 + 𝐹 (𝒛,𝝎), wherein 𝝎 ∈ R𝑚 is

connected to the state 𝒙 ∈ R𝑛 through a polynomial map (𝜔1, . . . ,

𝜔𝑚) = (𝑔1 (𝒙), . . . , 𝑔𝑚 (𝒙)) such that _ is a fixed scalar quantity,

𝑔1, . . . , 𝑔𝑚 are polynomials and 𝐹 is a nonlinear function with the

property that for all 𝒛 ∈ R and 𝝎 ∈ R𝑚+ , we have 𝐹 (𝒛,𝝎) ∈ R𝑚+ .
Here, 𝒛 is taken to be an external input. In other words, we show

that our original vector field is “f-related” to that of a positive sys-

tem. Positive systems have a key property that if 𝝎 (0) ∈ R𝑚+ then

𝝎 (𝑡) ∈ R𝑚+ for all times 𝑡 over which the trajectory is defined. We

can use this property to infer that 𝑔1 ≥ 0, . . . , 𝑔𝑚 ≥ 0 is a positive

invariant set for the original ODE. There are many difficulties to this

approach, including: (a) choosing the dimensions of the unknown

state space 𝝎; (b) discovering the function 𝐹 ; and (c) synthesizing

the functions 𝑔1, . . . , 𝑔𝑚 . We propose a method to synthesize the

polynomials 𝑔1, . . . , 𝑔𝑚 that will implicitly define the positive sys-

tem, and thus, our positive invariant set. We require the user to fix

the constant _, an upper limit on the number𝑚, and a degree limit

on the polynomials 𝑔1, . . . , 𝑔𝑚 . Our approach either converges with

positive invariants (the function 𝐹 gets defined implicitly by the

generators upon convergence) or fails with a trivial answer.

To discover positive invariants, we iterate over finitely generated

polynomial cones that are defined by a basis set of polynomials. We

first derive a “refinement operator” of the cone from the given ODE.

We derive a closure condition based on this operator: i.e, for a given

finitely generated cone of polynomials 𝐶 , our closure condition

requires that every polynomial in 𝐶 is mapped by the refinement

operator to a related cone𝐶 . If𝐶 satisfies the closure condition, then

we prove that its generators form the required functions 𝑔1, . . . , 𝑔𝑚
that will map the original system dynamics to a positive nonlinear

system, as described above. Therefore, 𝑔1 ≥ 0, . . . , 𝑔𝑚 ≥ 0 will

define a positive invariant. Having defined the notion of positive

invariants in terms of closure of an operator, the challenge now

lies in computing cones that are closed in this manner. To do so,

we employ an approach based on abstract interpretation. Abstract

interpretation was originally proposed by Cousot and Cousot in

1977 as an approach for establishing invariants of programs [14, 15].

It has been very successful in proving properties of large safety-

critical software systems used in avionics [3, 16]. However, applying

abstract interpretation to our framework is challenging since we

https://orcid.org/0000-0002-0633-8948
https://orcid.org/0000-0001-8948-8628
https://orcid.org/0000-0001-7315-4340
https://doi.org/10.1145/3641513.3650127
https://doi.org/10.1145/3641513.3650127

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Guillaume O. Berger, Masoumeh Ghanbarpour, and Sriram Sankaranarayanan

will observe that the closure condition used leads us from finitely

generated polynomial cones to possibly infinitely generated cones.

We show how a finite set of generators can be selected and main-

tained using a projection operator defined in this paper. Finally,

we show that a “standard” widening operator commonly used in

abstract interpretation can force termination in finitely many steps.

We provide an empirical evaluation of our approach over a set

of nonlinear polynomial ODE benchmarks and switched systems,

some of which are taken from the related work. We demonstrate

that our approach can yield useful positive invariant sets. Even

though we employ floating-point numbers in the calculation of

these invariants, they have been successfully verified using the

exact-arithmetic-based nonlinear theorem prover Z3. We also com-

pare our approach with well-established approaches for synthesiz-

ing barrier functions based on sum-of-squares programming [36].

1.1 Related Work
There have been numerous techniques to directly synthesize posi-

tive invariants for ODEs and hybrid systems. This includes barrier

function synthesis [36], approaches based on constraint solving

by assuming a template form of the nonlinear invariant [20, 26,

35, 43, 46, 48, 51] and abstract-interpretation approaches based

on forward propagation and widening [21, 42], or in other cases

through forward propagation and extrapolation [22]. Additionally,

theorem provers such as Keymaera-X support proving properties

of practical hybrid systems using positive invariant synthesis to

support human reasoning [19, 32, 33, 35]. Due to space limitations,

we do not expand on these approaches, noting that some of the

recent textbooks cover these approaches and the theory behind

them [5, 29, 34, 39].

The closest related works to our approach include the notion

of comparison systems proposed by Sogokon et al. [46], the no-

tion of a change-of-basis transformation proposed by Sankara-

narayanan [40, 41], and abstract-interpretation-based iteration over

polyhedral cones for linear systems first proposed by Sankara-

narayanan et al. for linear hybrid systems [42]. Sogokon et al. [46]

propose the notion of vector barrier function which is a vector of

functions that relates the flow of a nonlinear ODE to that of a posi-

tive linear system of the form ¤𝝎 = Λ𝝎 + 𝒓 (𝑡), where Λ is a constant

Metzler (aka. essentially nonnegative) matrix and 𝒓 (𝑡) ≥ 0. Their

approach synthesizes the polynomials 𝑔1, . . . , 𝑔𝑚 by (a) assuming

that the matrix Λ is given by the user and (b) the degree limits of

the polynomials are specified. Our approach extends this concept to

matrices Λ whose off-diagonal entries are positive definite polyno-

mials and significantly does not require the user to provide us these
matrices. However, the computational complexity of our approach

is significant and we have to rely on heuristics to select generators

from an infinitely generated cone. Nevertheless, we show success on

small but interesting nonlinear systems. Sankaranarayanan [40, 41]

proposes a similar idea of a change-of-basis transformation from a

given nonlinear system to an autonomous linear system and uses an

iterative abstract-interpretation-based procedure similar to what is

being proposed here. However, the connection to an autonomous

system essentially requires the original nonlinear system to be in-

tegrable, or in other words, have equality invariants (though these

may not be necessarily be polynomial). Finally, the idea of abstract

interpretation on cones was developed in Sankaranarayanan et

al. [42]. But this work was restricted to linear systems where the

iterations need to be over polyhedral cones. This paper goes much

further and considers nonlinear systems as well as non-polyhedral

cones generated by polynomials.

The synthesis of positive invariants has received much attention

in the past. Taly and Tiwari provide a proof system that is sound

and relatively complete for a single polynomial inequality using

higher-order derivatives [49]. Liu et al. extend this to a powerful

relatively complete method for synthesizing semi-algebraic posi-

tive invariants for polynomial hybrid systems [26]. Their approach

fixes the form (aka. template) of the desired invariant and uses a

condition based on higher-degree Lie derivative. This is essentially

a refinement of the barrier set condition that states that the first

non-zero higher Lie derivative must be positive at the boundaries

of the invariant set. By cleverly connecting their approach to the

descending chain condition for ideals on a polynomial ring, they are

able to provide a relative completeness guarantee. The proof system

of Liu et al. is relatively complete unlike ours which is weaker than

that of Liu et al. because (a) our approach is limited to (closed) basic

semi-algebraic sets and (b) we use a weaker positive-invariance

condition based on relating to a positive nonlinear system. On the

other hand, our approach does not use expensive quantifier elimi-

nation over semi-algebraic sets: each iteration of our approach uses

sum-of-squares optimization. Ghorbal et al. provide a hierarchy of

proof rules for computing semi-algebraic invariants that places the

work of Liu et al. in context at the apex of a series of increasingly

more complex proof rules. They also provide interesting compar-

isons on the types of flows that each rule can handle [20]. Our

approach has two major differences: (a) we use the connection with

positive systems to avoid reasoning about the boundaries of the

invariant sets or explicitly compute higher-order derivatives; and

(b) we work on basic semi-algebraic sets defined as intersections of

polynomial inequalities. Our approach does not extend to general

semi-algebraic sets which are unions of these basic sets.

2 PROBLEM STATEMENT
Notation. Let N be the set of natural numbers, and R+ be the

set of nonnegative real numbers. Given 𝑛 ∈ N, let [𝑛] = {1, . . . , 𝑛}.
We will use bold-face to denote vectors 𝒙,𝒚, 𝒛 ∈ R𝑘 and capital

letters to describe matrices 𝐴, 𝐵,𝐶 ∈ R𝑚×𝑛
. For a vector 𝒙 ∈ R𝑛 ,

the 𝑖𝑡ℎ component for 𝑖 ∈ [𝑛] is denoted as 𝑥𝑖 . Let R[𝒙] be the ring
of polynomials over variables 𝒙 = (𝑥1, · · · , 𝑥𝑛). Given a function

𝑓 : 𝐴 → 𝐵, let dom(𝑓) = 𝐴.

2.1 Polynomial Systems
Consider a continuous-time dynamical system ODE(𝑓) : ¤𝒙 =

𝑓 (𝒙), wherein 𝑓 : R𝑛 → R𝑛 is locally Lipschitz continuous. A

trajectory of ODE(𝑓) is defined as a differentiable function 𝜙 :

[0,𝑇) → R𝑛 satisfying that for all 𝑡 ∈ [0,𝑇), ¤𝜙 (𝑡) = 𝑓 (𝜙 (𝑡)).

Remark 2.1. The trajectory may exist for all time, i.e, 𝑇 = ∞. How-

ever, since our focus is on safety, we simply assume that the trajec-

tory exists at least until some time 𝑇 > 0, and place no bound on

𝑇 . Also, since we assume local Lipschitz continuity, the trajectory

must exist and be unique [28].

Cone-Based Abstract Interpretation for Nonlinear Positive Invariant Synthesis HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

(a) Example 2.2 (b) Example 2.4

Figure 1: (a) The BSA set in Example 2.2 (green area). (b)
Vector field (blue arrows), initial set (yellow area) and sample
trajectories (colored curves) of the system in Example 2.4.

Let I ⊆ R𝑛 be an initial set. A system Σ B ⟨𝑓 ,I⟩ consists of a
dynamical systemODE(𝑓) and an initial set I. The system Σ is said

to be safe if no trajectory 𝜙 of ODE(𝑓) with 𝜙 (0) ∈ I reaches some

given unsafe set S
unsafe

. We wish to prove the safety of polynomial
systems, wherein (a) the dynamics are described by polynomials

and (b) the initial set is a basic semi-algebraic set, described by

polynomial inequalities, as follows.

Definition 2.1 (Basic Semi-Algebraic Sets). A basic semi-algebraic
set (BSA set) is a set described by a finite set of polynomial inequal-

ities of the form 𝑔𝑖 (𝒙) ≥ 0. More formally, for a set of polynomials

𝐺 = {𝑔1, . . . , 𝑔𝑚} ⊆ R[𝒙], we denote the BSA generated by 𝐺 as

𝑆 (𝐺) = {𝒙 ∈ R𝑛 : 𝑔𝑖 (𝒙) ≥ 0, 𝑖 = 1, . . . ,𝑚} .

Example 2.2. Fig. 1 (left) depicts the BSA set 𝑆 (𝐺) wherein𝐺 =

{1 + 1

2
𝑥2
1
+ 1

2
𝑥1𝑥2 − 1

2
𝑥2
2
, 1 − 𝑥2

1
− 1

2
𝑥2
2
}.

Definition 2.3 (Polynomial System). The system ⟨𝑓 ,I⟩ is a poly-
nomial system if (a) the vector field 𝑓 is defined by polynomials:

𝑓 (𝒙) = (𝑓1 (𝒙), . . . , 𝑓𝑛 (𝒙)) with 𝑓𝑖 ∈ R[𝒙]; (b)I is a BSA set 𝑆 (𝐺init)
for a finite set of polynomials 𝐺init ⊆ R[𝒙].

Example 2.4. Consider the following Vanderpol oscillator:

ODE(𝑓) :
[
¤𝑥1
¤𝑥2

]
=

[
𝑥2

1

2
𝑥2 − 𝑥1 − 1

2
𝑥2
1
𝑥2

]
,

with initial set I = {𝑥2
1
+ 𝑥2

2
≤ 1

4
}, i.e., 𝐺init = { 1

4
− 𝑥2

1
− 𝑥2

2
}. The

tuple ⟨𝑓 ,I⟩ is a polynomial system. The vector field and sample

trajectories of ODE(𝑓) are presented in Fig. 1 (right).

2.2 Constrained and Switched Polynomial
Systems

Next, we define constrained and switched systems.

Definition 2.5 (Constrained Polynomial System). A constrained
polynomial system is a triple ⟨𝑓 ,I,D⟩ wherein the dynamics is

given by ODE(𝑓) for 𝑓 (𝒙) = (𝑓1 (𝒙), . . . , 𝑓𝑛 (𝒙)) with 𝑓𝑖 ∈ R[𝒙],
D ⊆ R𝑛 is the domain of evolution (or constraint) that restricts the
state space of the system and I ⊆ D is the initial set. Furthermore,

I and D are nonempty BSA sets.

A trajectory of the constrained dynamics ODE(𝑓 ,D) is a trajec-
tory 𝜙 : [0,𝑇) → R𝑛 ofODE(𝑓) such that for all time 𝑡 ∈ [0,𝑇), the
state is in D, i.e., 𝜙 (𝑡) ∈ D. Consequently, a constrained system is

not allowed to reach a state outside of its domain of evolution. The

constrained system ⟨𝑓 ,I,D⟩ is said to be safe if no trajectory 𝜙 of

ODE(𝑓 ,D) with 𝜙 (0) ∈ I reaches some given unsafe set S
unsafe

.

Next, we define a switched system through a combination of a

finite number of constrained systems connected by transitions.

Definition 2.6 (Switched Polynomial System). A switched polyno-
mial system is defined by a set of modes𝑄 wherein each mode𝑞 ∈ 𝑄
is associated with a constrained polynomial system ⟨𝑓𝑞,I𝑞,D𝑞⟩
along with a finite set of transitions T . Each transition 𝜏 ∈ T is

a triple ⟨𝑎𝜏 , 𝑏𝜏 ,G𝜏 ⟩ with pre- and post-modes 𝑎𝜏 ∈ 𝑄 and 𝑏𝜏 ∈ 𝑄
respectively and a guard set G𝜏 ⊆ D𝑎𝜏 ∩ D𝑏𝜏 . We assume that G𝜏

is a basic semi-algebraic set given by 𝑆 (𝐺
guard,𝜏) for a finite set of

polynomials 𝐺
guard,𝜏 .

A trajectory of the switched dynamics ODE(𝑄, 𝑓𝑞∈𝑄 ,D𝑞∈𝑄 ,T)
is specified by (a) a finite, increasing sequence of times 0 = 𝑡0 <

𝑡1 < . . . < 𝑡𝑘 < 𝑡𝑘+1, (b) a sequence of modes 𝑞0, 𝑞1, . . . , 𝑞𝑘 ∈ 𝑄 ,
(c) a sequence of transitions 𝜏1, 𝜏2, . . . , 𝜏𝑘 ∈ T , and (d) a function

𝜙 : [0, 𝑡𝑘+1) → R𝑛 such that the following conditions hold:

(1) For each 𝑖 ∈ [𝑘], 𝜏𝑖 is a transition from 𝑞𝑖−1 to 𝑞𝑖 and the

guard condition 𝜙 (𝑡𝑖) ∈ G𝜏𝑖 holds.

(2) For each 𝑖 ∈ [𝑘] ∪ {0}, the function 𝜙𝑖 : [0, 𝑡𝑖+1 − 𝑡𝑖) → R𝑛
defined by 𝜙𝑖 (𝑡) = 𝜙 (𝑡 − 𝑡𝑖) is a trajectory of ODE(𝑓𝑞𝑖 ,D𝑞𝑖).

The switched system ⟨𝑓𝑞∈𝑄 ,I𝑞∈𝑄 ,D𝑞∈𝑄 ⟩ is said to be safe if no
trajectory ⟨𝜙, 𝑞

0:𝑘 , 𝑡0:𝑘+1⟩ of ODE(𝑄, 𝑓𝑞∈𝑄 ,D𝑞∈𝑄 ,T) with 𝜙 (0) ∈
I𝑞0 reaches some unsafe set S

unsafe
, i.e., satisfies 𝜙 (𝑡) ∈ S

unsafe,𝑞𝑖

for some 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1).

2.3 Forward Invariant Sets and Safety
An invariant of a dynamical system is a property that is preserved

along the trajectories of the system. They can be used to certify

safety, for instance, if the property holds for all initial conditions

and for no unsafe states.

Definition 2.7. A set P ⊆ R𝑛 is forward invariant for ODE(𝑓)
if for all trajectories 𝜙 of ODE(𝑓) with 𝜙 (0) ∈ P, and forall 𝑡 ∈
dom(𝜙), the state at time 𝑡 belongs to P: 𝜙 (𝑡) ∈ P.

Proposition 2.8. If P is a forward invariant for ODE(𝑓), I ⊆ P
and P ∩ S

unsafe
= ∅, then the system ⟨𝑓 ,I⟩ is safe.

Using Prop. 2.8 we prove safety of a given (constrained and

switched) system as follows: Search for a forward invariant set P
that includes the initial set I that excludes S: i.e, P∩S

unsafe
= ∅. If

such a forward invariant can be found, we conclude that the safety

property holds for the system.

In this paper, we seek to compute safe invariants for polyno-

mial systems in the form of basic semi-algebraic sets, that is, sets
described by polynomial inequalities. We remind below some back-

ground of polynomial inequalities. Extension of forward invariance

to constrained and switched systems will be discussed in Sec. 4.

2.4 Polynomial Inequalities
Note that the polynomial set 𝐺 = {𝑔1, . . . , 𝑔𝑚} defining 𝑆 (𝐺) is
not unique. In fact, for any 𝛼1, 𝛼2 ∈ R+ and 𝑖1, 𝑖2 ∈ [𝑚], it holds

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Guillaume O. Berger, Masoumeh Ghanbarpour, and Sriram Sankaranarayanan

that 𝛼1𝑔𝑖1 + 𝛼2𝑔𝑖2 and 𝑔𝑖1𝑔𝑖2 are also nonnegative on 𝑆 (𝐺). This
motivates the following definitions.

Definition 2.9 (Cone). A set 𝐾 ⊆ R[𝒙] is a cone if for all 𝛼1, 𝛼2 ∈
R+ and 𝑔1, 𝑔2 ∈ 𝐾 , it holds that 𝛼1𝑔1 + 𝛼2𝑔2 ∈ 𝐾 .
Given a set 𝐵 ⊆ R[𝒙], we define the conic hull of 𝐵 as

ch(𝐵) =
{

𝑚∑︁
𝑖=1

𝛼𝑖𝑔𝑖 :𝑚 ∈ N, 𝑔𝑖 ∈ 𝐵, 𝛼𝑖 ∈ R+

}
.

A cone 𝐾 ⊆ R[𝒙] is called finitely generated if there is a finite set

𝐵 = {𝑔1, . . . , 𝑔𝑚} ⊆ R[𝒙] such that 𝐾 = ch(𝐵).

Definition 2.10 (Product). Given two sets 𝐺1,𝐺2 ⊆ R[𝒙], their
product is defined by

𝐺1 ·𝐺2 = {𝑔1𝑔2 : 𝑔1 ∈ 𝐺1, 𝑔2 ∈ 𝐺2}.

Given 𝐺 ⊆ R[𝒙], we define 𝐺0 = {1}, and for ℓ ∈ N>0,

𝐺ℓ = 𝐺 ·𝐺 · · ·𝐺︸ ︷︷ ︸
ℓ times

, and 𝐺≤ℓ =
ℓ⋃

ℓ ′=0

𝐺ℓ ′ .

We are now able to define a set of polynomials that are nonneg-

ative on 𝑆 (𝐺):

Proposition 2.11. Let 𝐾 ⊆ R[𝒙] be a cone containing only non-
negative polynomials (i.e., ℎ(𝒙) ≥ 0 for all ℎ ∈ 𝐾 , 𝒙 ∈ R𝑛), and let
ℓ ∈ N. Then, the set ch(𝐾 ·𝐺≤ℓ) contains only polynomials nonnega-
tive on 𝑆 (𝐺) (i.e., 𝑔(𝒙) ≥ 0 for all 𝑔 ∈ ch(𝐾 ·𝐺≤ℓ), 𝒙 ∈ 𝑆 (𝐺)).

Example 2.12. Consider a set 𝐺 = {𝑔1, 𝑔2, 𝑔3} of polynomials in

R[𝒙] and 𝐾 = R+ the set of all nonnegative real numbers. The set

ch(𝐾 ·𝐺≤2) contains all polynomials of the form _0 + _1𝑔1 + _2𝑔2 +
_3𝑔1𝑔2 + _4𝑔2𝑔3 + _5𝑔1𝑔3 + _6𝑔2

1
+ _7𝑔2

2
+ _8𝑔2

3
for _0, . . . , _8 ∈ R+.

An example of cone 𝐾 of nonnegative polynomials is the set of

sum-of-squares (SOS) polynomials.

Definition 2.13 (Sum-of-Squares). A polynomial ℎ ∈ R[𝒙] is a
sum-of-squares if ℎ =

∑𝑚
𝑖=1 𝑝

2

𝑖
for𝑚 ∈ N and 𝑝𝑖 ∈ R[𝒙]. The set of

SOS polynomials is denoted by SOS[𝒙].

Remark 2.2. Not all nonnegative polynomials are SOS (e.g., the

so-called “Motzkin Polynomial”). However, whereas verifying that

a polynomial is nonnegative is NP-hard, SOS offer a practically

efficient way to certify positivity of polynomials [31, 45].

Remark 2.3. Note that Prop. 2.11 provides a sufficient but not nec-

essary condition for characterizing a set of positive polynomials

over a BSA set 𝑆 (𝐺). In general, for 𝐾 = SOS[𝒙] and a finite set

𝐺 , the set of polynomials ch(𝐾 ·𝐺≤1) is identical to Putinar’s pos-

itivstellensatz, while ch(𝐾 ·𝐺≤ |𝐺 |) recalls a positivstellensatz by
Schmüdgen [44].

Althoughwe assume that𝐾 is a cone of nonnegative polynomials,

we do not assume that 𝐾 is finitely generated (e.g., SOS[𝒙] is not
finitely generated). We also assume that 1 ∈ 𝐾 , which implies

that R+ ⊆ 𝐾 . We denote by K the set of cones 𝐾 of nonnegative

polynomials with 1 ∈ 𝐾 . For instance, SOS[𝒙] ∈ K .

3 FORWARD INVARIANCE FOR POLYNOMIAL
SYSTEMS

In this section, we present a sufficient condition on a BSA set to

be forward invariant for a polynomial dynamical system. Consider

a BSA set P � 𝑆 (𝐺) with 𝐺 = {𝑔1, . . . , 𝑔𝑚} ⊆ R[𝒙]. Given 𝑔 ∈ 𝐺 ,
the Lie derivative of 𝑔 along the field 𝑓 is defined by 𝐿𝑓 (𝑔) (𝒙) =
⟨∇𝑔(𝒙), 𝑓 (𝒙)⟩. Concretely, 𝐿𝑓 (𝑔) (𝒙) gives the rate of change of the
value of 𝑔 at 𝒙 along a trajectory of ODE(𝑓).

The idea of the sufficient condition for P � 𝑆 (𝐺) to be forward

invariant is that when a trajectory inside P reaches a point 𝒙 on

the boundary, i.e, some 𝑔𝑖 (𝒙) = 0, then its Lie derivative 𝐿𝑓 (𝑔𝑖) at
𝒙 should be nonnegative so that that 𝑔𝑖 stays nonnegative. We say

that Boundary𝑓 (𝐺) holds iff

∀𝑔 ∈ 𝐺. ∀𝒙 ∈ P . 𝑔(𝒙) = 0 ⇒ 𝐿𝑓 (𝑔) (𝒙) ≥ 0 . (1)

However, the Boundary𝑓 condition (inspired by the theory of Lya-

punov functions and barrier certificates [36]) does not imply for-

ward invariance of 𝑆 (𝐺) under 𝑓 , in general. We need additional

condition (e.g., those in Rem. 3.1 or (2) below). First, we note the

following counterexample by Platzer [32].

Example 3.1. Consider the set 𝐺 = {−𝑥2} defining P � 𝑆 (𝐺) =
{𝑥 : 𝑥2 ≤ 0} = {0} and ODE(𝑓) : ¤𝑥 = −1. Clearly, P is not forward

invariant for ODE(𝑓). However, whenever 𝑥2 = 0 (that is, 𝑥 = 0),

we have 𝐿𝑓 (−𝑥2) = −2𝑥 ¤𝑥 = 2𝑥 ≥ 0, i.e., Boundary𝑓 (P) holds. The
reason is because 𝐿𝑓 (−𝑥2) = 2𝑥 cannot be expressed as a Lipshitz

function of the polynomials in 𝐺 (compare with (2) below).

Remark 3.1. Let us note that if the condition 𝐿𝑓 (𝑔) (𝒙) ≥ 0 in (1)

is changed to 𝐿𝑓 (𝑔) (𝒙) > 0, then we can avoid cases such as those

mentioned above and prove soundness [13].

We refine the condition (1) using the notion of cone introduced

before. This will have the double advantage of (i) ensuring invari-

ance, and (ii) making the condition easier to verify/enforce numeri-

cally. We say that the predicate Forward𝑓 (𝐺 ; _, 𝐾, ℓ) holds iff

∀𝑔 ∈ 𝐺. 𝐿𝑓 (𝑔) + _𝑔 ∈ ch(𝐾 ·𝐺≤ℓ), (2)

wherein _ ∈ R, 𝐾 ∈ K and ℓ ∈ N are fixed.

Example 3.2. Consider the dynamicsODE(𝑓) with 𝑓 (𝑥) = 𝑥−𝑥3,
and let 𝐺 = {𝑔1, 𝑔2} with 𝑔1 = 𝑥 + 2 and 𝑔2 = 2 − 𝑥 . We show

that Forward𝑓 (𝐺 ; _, 𝐾, ℓ) holds for _ = 2, 𝐾 = SOS[𝒙] and ℓ = 1.

Indeed, 𝐿𝑓 (𝑔1) + _𝑔1 = −𝑥3 + 3𝑥 + 4 = (𝑥 + 1)2 · (2 − 𝑥) + 2, where

(𝑥 + 1)2, 2 ∈ SOS[𝒙]. The proof is similar for 𝑔2; thus omitted.

Remark 3.2. If Forward𝑓 (𝐺 ; _, 𝐾, ℓ) holds thenBoundary𝑓 (𝐺) holds,
but not vice-versa. In Example 3.1 above, we have Boundary𝑓 (𝐺)
but we can show that for any choice of 𝐾 ∈ K , _ ∈ R and ℓ ∈ N,
Forward𝑓 (𝐺 ; _, 𝐾, ℓ) does not hold.

We now prove that the condition Forward is sufficient to ensure

the forward invariance of P. The proof is by relating the evolu-

tion of 𝑔1 (𝜙 (𝑡)), . . . , 𝑔𝑚 (𝜙 (𝑡)) over a trajectory 𝜙 and a nonlinear

(internally) positive system. We briefly define such systems.

Definition 3.3. A dynamical system of the form ¤𝒙 = 𝑓 (𝒙, 𝒖) with
state 𝒙 ∈ R𝑛 , input 𝒖 ∈ R𝑘 and 𝑓 Lipschitz continuous in 𝒙 and

𝒖 is (internally) positive if every trajectory 𝜙 : [0,𝑇) → R𝑛 of the

Cone-Based Abstract Interpretation for Nonlinear Positive Invariant Synthesis HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

system with 𝜙 (0) ∈ R𝑛+ (and arbitrary input signal) satisfies that

for all 𝑡 ∈ dom(𝜙), 𝜙 (𝑡) ∈ R𝑛+.

Theorem 3.4. Let 𝐹 : R𝑛 ×R𝑘 → R𝑛 be Lipschitz continuous and
satisfy that for all 𝒙 ∈ R𝑛+ and 𝒖 ∈ R𝑘 , 𝐹 (𝒙, 𝒖) ∈ R𝑛+. Let _ ∈ R. The
dynamical system ¤𝒙 = −_𝒙 + 𝐹 (𝒙, 𝒖) is (internally) positive.

This theorem is proved in [23, Theorem 1] using ideas explained

in Arnold’s textbook [10]. Song [47] proves it from Nagumo theo-

rem [30] using the convexity of R𝑛+.

Proof. (Sketch) Using an argument based on Picard iteration,

we first show that for any trajectory if 𝜙 (0) ∈ R𝑛+, then there exists

an interval [0, 𝜖] such that 𝜙 (𝑡) ∈ R𝑛+ for 𝑡 ∈ [0, 𝜖]. This is proved
by induction on the Picard iterates that converge to the solution 𝜙

starting with 𝜙 (0) (𝑡) = 𝜙 (0).
Assume that there exists 𝑡 ∈ dom(𝜙) such that 𝜙 (𝑡) ∉ R𝑛+ and

let 𝑡∗ be the infimum of all such times 𝑡 . By the continuity of 𝜙 and

since 𝜙 (0) ∈ R𝑛+, it follows that 𝜙 (𝑡∗) ∈ R𝑛+. Then, by using Picard

iteration argument above, we conclude that there is 𝜖 > 0 such that

𝜙 (𝑡) ∈ R𝑛+ for all 𝑡 ∈ [𝑡∗, 𝑡∗ + 𝜖]. This is a contradiction with the

definition of 𝑡∗, concluding the proof. □

Soundness of the Forward condition: We now proceed to prove

the soundness of the Forward condition (2) for establishing forward

invariance of a set 𝑆 (𝐺) under a flow ODE(𝑓).

Theorem 3.5. If Forward𝑓 (𝐺 ; _, 𝐾, ℓ) holds, then P � 𝑆 (𝐺) is
forward invariant for ODE(𝑓).

Proof. Let 𝜙 be a trajectory of ODE(𝑓) with 𝜙 (0) ∈ P. We

will show that for all 𝑔 ∈ 𝐺 and 𝑡 ∈ dom(𝜙), 𝑔(𝜙 (𝑡)) ≥ 0. To do

this, consider the function 𝝎 : dom(𝜙) → R𝑚 defined by 𝝎 (𝑡) =
(𝑔1 (𝜙 (𝑡)), . . . , 𝑔𝑚 (𝜙 (𝑡))). It holds that𝝎 (0) ∈ R𝑚+ . Furthermore, for

all 𝑡 ∈ dom(𝜙), ¤𝝎 (𝑡) = (𝐿𝑓 (𝑔1) (𝜙 (𝑡)), . . . , 𝐿𝑓 (𝑔𝑚) (𝜙 (𝑡))). Hence,
Forward𝑓 (𝐺 ; _, 𝐾, ℓ) implies that for each 𝑖 ∈ [𝑚], 𝐿𝑓 (𝑔𝑖) + _𝑔𝑖 =∑𝑠𝑖

𝑗=1
ℎ𝑖, 𝑗𝑔𝑖, 𝑗 for some 𝑠𝑖 ∈ N, ℎ𝑖, 𝑗 ∈ 𝐾 and 𝑔𝑖, 𝑗 ∈ 𝐺≤ℓ

. It follows

that 𝝎 is a trajectory of the dynamical system

¤𝝎 = −_𝝎 (𝑡) + 𝐹 (𝝎, 𝜙 (𝑡)), (3)

wherein 𝐹 (𝝎, 𝒙) = (𝐹1 (𝝎, 𝒙), . . . , 𝐹𝑚 (𝝎, 𝒙)) satisfies that for all
𝑖 ∈ [𝑚], 𝝎 ∈ R𝑚+ and 𝒙 ∈ R𝑛 , 𝐹𝑖 (𝝎, 𝒙) ∈ R+. Thus, by Theorem 3.4,

(3) is a positive system and 𝝎 (𝑡) ∈ R𝑚+ for all 𝑡 ∈ dom(𝜙). □

Finally, note that Forward is monotonic with respect to _.

Proposition 3.6. Let 𝐾 ∈ K , and _1, _2 ∈ R such that _1 ≤ _2.
It holds that Forward𝑓 (𝐺 ; _1, 𝐾, ℓ) ⇒ Forward𝑓 (𝐺 ; _2, 𝐾, ℓ).

Proof. Let us assume Forward𝑓 (𝐺 ; _1, 𝐾, ℓ) holds. Then, for

each 𝑖 ∈ [𝑚], 𝐿𝑓 (𝑔𝑖) +_1𝑔𝑖 =
∑𝑠𝑖

𝑗=1
ℎ𝑖, 𝑗𝑔𝑖, 𝑗 for some 𝑠𝑖 ∈ N, ℎ𝑖, 𝑗 ∈ 𝐾

and 𝑔𝑖, 𝑗 ∈ 𝐺≤ℓ
. We have

𝐿𝑓 (𝑔𝑖) + _2𝑔𝑖 = 𝐿𝑓 (𝑔𝑖) + _1𝑔𝑖 + (_2 − _1)𝑔𝑖

= (_2 − _1)𝑔𝑖 +
𝑠𝑖∑︁
𝑗=1

ℎ𝑖, 𝑗𝑔𝑖, 𝑗 =

𝑠𝑖∑︁
𝑗=1

ℎ′𝑖, 𝑗𝑔𝑖, 𝑗

wherein ℎ′
𝑖, 𝑗

= ℎ𝑖, 𝑗 + (_2 − _1) if 𝑔𝑖, 𝑗 = 𝑔𝑖 and ℎ′𝑖, 𝑗 = ℎ𝑖, 𝑗 otherwise.
Note that ℎ′

𝑖, 𝑗
∈ 𝐾 since ℎ𝑖, 𝑗 ∈ 𝐾 , _2 − _1 ∈ R+ ⊆ 𝐾 and 𝐾 is closed

under addition since it is a cone. □

4 FORWARD INVARIANCE FOR
CONSTRAINED AND SWITCHED
POLYNOMIAL SYSTEMS

We extend the condition Forward𝑓 (𝐺 ; _, 𝐾, ℓ) to cover forward in-

variance for constrained and switched polynomial systems. First,

we consider a constrained continuous-time dynamics

ODE(𝑓 ,D) : ¤𝒙 = 𝑓 (𝒙), 𝒙 ∈ D,

wherein D = 𝑆 (𝐺
dom

) is a BSA set with finite set 𝐺
dom

⊆ R[𝒙].

Definition 4.1. A set P ⊆ R𝑛 is forward invariant for ODE(𝑓 ,D)
if for all trajectory 𝜙 of ODE(𝑓 ,D) with 𝜙 (0) ∈ P, it holds that for

all 𝑡 ∈ dom(𝜙), 𝜙 (𝑡) ∈ P.

We say that Forward𝑓 ,D (𝐺 ; _, 𝐾, ℓ) holds iff

∀𝑔 ∈ 𝐺. 𝐿𝑓 (𝑔) + _𝑔 ∈ ch(𝐾 · (𝐺 ∪𝐺
dom

)≤ℓ), (4)

wherein _ ∈ R, 𝐾 ∈ K and ℓ ∈ N are fixed. Comparing (4) with (2)

for ODEs without constraints, we note that the set of polynomials

𝐺
dom

is combinedwith𝐺 . The soundness of the condition “Forward”

extends to constrained systems:

Theorem 4.2. If Forward𝑓 ,D (𝐺 ; _, 𝐾, ℓ) holds, then P � 𝑆 (𝐺) is
forward invariant for ODE(𝑓 ,D).

Proof. The proof follows the same structure as Theorem 3.5.

Again, we fix a trajectory 𝜙 of ODE(𝑓 ,D) with 𝜙 (0) ∈ P. Since for

all 𝑡 ∈ dom(𝜙), 𝜙 (𝑡) ∈ D, we conclude that for all ℎ ∈ 𝐺
dom

and

𝑡 ∈ dom(𝜙),ℎ(𝜙 (𝑡)) ≥ 0. Consider the function𝝎 : dom(𝜙) → R𝑚
defined by 𝝎 (𝑡) = (𝑔1 (𝜙 (𝑡)), . . . , 𝑔𝑚 (𝜙 (𝑡))). It holds that 𝝎 (0) ∈
R𝑚+ . Furthermore, Forward𝑓 ,D (𝐺 ; _, 𝐾, ℓ) implies that for each 𝑖 ∈
[𝑚], 𝐿𝑓 (𝑔𝑖) + _𝑔𝑖 =

∑𝑠𝑖
𝑗=1

ℎ𝑖, 𝑗𝑔𝑖, 𝑗 for some 𝑠𝑖 ∈ N, 𝑔𝑖, 𝑗 ∈ 𝐺≤ℓ
and

ℎ𝑖, 𝑗 ∈ 𝐾 · 𝐺≤ℓ
dom

. Thus, the only change from (3) in the proof of

Theorem 3.5 is that 𝐹 (𝝎, 𝒙) can be written in terms of polynomials

ℎ𝑖, 𝑗 ∈ 𝐾 ·𝐺≤ℓ
dom

. Sinceℎ𝑖, 𝑗 (𝜙 (𝑡)) ≥ 0 for all 𝑡 ∈ dom(𝜙), we conclude
that for all 𝝎 ∈ R𝑚+ , 𝑡 ∈ dom(𝜙), 𝐹 (𝝎, 𝜙 (𝑡)) ∈ R𝑚+ . The rest of the

proof is identical to that of Theorem 3.5. □

4.1 Forward Invariance for Switched
Polynomial Systems

We recall switched dynamics of the form ODE(𝑄, 𝑓𝑞∈𝑄 ,D𝑞∈𝑄 ,T)
and their semantics from Section 2.2:𝑄 is the finite set of modes and

each mode 𝑞 ∈ 𝑄 is associated with a constrained polynomial sys-

tem

〈
𝑓𝑞,D𝑞

〉
. Furthermore, T is a finite set of transitions wherein

each 𝜏 ∈ T is a triple ⟨𝑎𝜏 , 𝑏𝜏 ,G𝜏 ⟩ for pre-/post modes 𝑎𝜏 , 𝑏𝜏 ∈ 𝑄
and guard set G𝜏 = 𝑆 (𝐺

guard,𝜏).
We will consider a collection of sets𝔓 = {P𝑞}𝑞∈𝑄 wherein for

each 𝑞 ∈ 𝑄 , P𝑞 = 𝑆 (𝐺𝑞) for a finite set 𝐺𝑞 ⊆ R[𝒙].

Definition 4.3 (Forward Invariance for Switched System). 𝔓 is

a forward invariant for ODE(𝑄, 𝑓𝑞∈𝑄 ,D𝑞∈𝑄 ,T) if for all trajec-
tory ⟨𝜙, 𝑞

0:𝑘 , 𝑡0:𝑘+1⟩ of ODE(𝑄, 𝑓𝑞∈𝑄 ,D𝑞∈𝑄 ,T) with 𝜙 (0) ∈ P𝑞0 , it

holds that for all 𝑡 ∈ dom(𝜙), 𝜙 (𝑡) ∈ P𝑞𝑖 if 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1).

The condition Forward(𝑄,𝑓𝑞∈𝑄 ,D𝑞∈𝑄 ,T) ({𝐺𝑞}𝑞∈𝑄 ; _, 𝐾, ℓ) is:
(1) For each 𝑞 ∈ 𝑄 , Forward𝑓𝑞 ,D𝑞

(𝐺𝑞 ; _, 𝐾, ℓ) holds.

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Guillaume O. Berger, Masoumeh Ghanbarpour, and Sriram Sankaranarayanan

(2) For all 𝜏 ∈ T , we require that P𝑎𝜏 ∩ G𝜏 ⊆ P𝑏𝜏 . For that, we

enforce a sufficient condition over 𝐺𝑎𝜏 and 𝐺𝑏𝜏 :

𝐺𝑏𝜏 ⊆ ch(𝐾 · (𝐺𝑎𝜏 ∪𝐺
guard,𝜏)≤ℓ) .

Theorem 4.4. If Forward𝔖 ({𝐺𝑞}𝑞∈𝑄 ; _, 𝐾, ℓ) holds, then 𝔓 is
forward invariant for𝔖 = ODE(𝑄, 𝑓𝑞∈𝑄 ,D𝑞∈𝑄 ,T).

Proof. Let ⟨𝜙, 𝑞
0:𝑘 , 𝑡0:𝑘+1⟩ be a trajectory of 𝔖 with 𝜙 (𝑡0) ∈

P𝑞0), and let 𝜏1, . . . , 𝜏𝑘 be the associated sequence of transitions.

We will establish by induction the following two facts for all 𝑖 ∈
[𝑘] ∪ {0}: (a) 𝜙 (𝑡𝑖) ∈ P𝑞𝑖 ; and (b) for all times 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1), 𝜙 (𝑡) ∈
P𝑞𝑖 . These two facts will establish the forward invariance of𝔓.

For the base case 𝑖 = 0, we note that 𝜙 (𝑡0) ∈ P𝑞0 by assumption.

Since Forward𝔖 ({𝐺𝑞}𝑞∈𝑄 ; _, 𝐾, ℓ) implies Forward(𝑓𝑞
0
,D𝑞

0
) (𝐺𝑞0),

it follows by Theorem 4.2 that P𝑞0 is forward invariant for the

mode 𝑞0. Therefore, 𝜙 (𝑡) ∈ P𝑞0 for all 𝑡 ∈ [𝑡0, 𝑡1). The base case is
thus established.

Now, let us look at the case 𝑖 = 1. By continuity of 𝜙 and because

P𝑞0 is a closed set, we have that 𝜙 (𝑡1) ∈ P𝑞0 . Since 𝜙 (𝑡1) ∈ G𝜏1 ,

we have 𝜙 (𝑡1) ∈ P𝑞0 ∩ G𝜏1. Note that Forward𝔖 ({𝐺𝑞}𝑞∈𝑄 ; _, 𝐾, ℓ)
implies that P𝑞0 ∩ G𝜏1 ⊆ G𝑞1 . Thus, 𝜙 (𝑡1) ∈ P𝑞1 . We can then

conclude in the same as the base case that for all 𝑡 ∈ [𝑡1, 𝑡2), 𝜙 (𝑡) ∈
P𝑞1 . The case 𝑖 = 1 is thus established.

The proof for the cases 𝑖 > 1 is identical. □

We will now turn our attention to computing such forward

invariants for a given system with initial conditions.

5 REFINEMENT OPERATORS AND FIXED
POINT FORMULATION

Given a polynomial system ⟨𝑓 ,I⟩, we wish to compute a BSA set

P = 𝑆 (𝐺) for a finite set of polynomials 𝐺 ⊆ R[𝒙] such that

P ⊇ I (the initial set is contained) and P is forward invariant for

ODE(𝑓). Note that we do not explicitly enforce in this paper that

P ∩ S
unsafe

= ∅, as is common in many approaches to invariant

synthesis based on abstract interpretation. Explicit use of S
unsafe

(example for early termination) will be considered in future work.

Our approach is based on using the framework of abstract in-

terpretation, first introduced by Cousot and Cousot to compute

invariants for programs [14, 15]. We will present a similar approach

to compute polynomial invariants for polynomial systems. The first

step is to define the invariant we week as a pre-fixed point𝐺∗ of a
monotone operator on the space of cones in R[𝒙]. The set 𝑆 (𝐺∗)
will give us the invariant set P.

Let 𝐺 ⊆ R[𝒙] be a finite set of polynomials. Recall that ch(𝐺)
contains all the conic combinations of elements in 𝐺 . Let us fix a

cone 𝐾 ∈ K of nonnegative polynomials. We define a refinement

operator that takes us from ch(𝐺) to a new cone ch(𝐺 ′).

Definition 5.1 (Refinement Operator). Given𝐺 = {𝑔1, . . . , 𝑔𝑚} ⊆
R[𝒙], we define the refinement of 𝐺 as follows:

𝜕𝑓 (𝐺 ; _, 𝐾, ℓ) = {𝑔 ∈ ch(𝐺) : 𝐿𝑓 (𝑔) + _𝑔 ∈ ch(𝐾 ·𝐺≤ℓ)}.

First, note that 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ) is a cone (one can easily show that

it satisfies the axioms of Def. 2.9). Furthermore, as a corollary of

Theorem 3.5, it holds that any finitely generated pre-fixed point of

the refinement operator is a forward invariant set.

Algorithm 1: Fixed-Point Iterations
Data: BSA set I = 𝑆 (𝐺init), _ ∈ R, 𝐾 ∈ K , ℓ ∈ N.
Result: (Possibly trivial) forward invariant P for ODE(𝑓)

such that I ⊆ P.

1 Let 𝐺0 ⊆ R[𝒙] be a finite set such that I ⊆ 𝑆 (𝐺0)
2 for 𝜎 = 0, 1, . . . do
3 if IsFixedPoint(𝐺𝜎 ; _, 𝐾, ℓ) then return 𝐺𝜎

4 else let 𝐺𝜎+1 = FiniteRefinement(𝐺𝜎 ; _, 𝐾, ℓ)

Corollary 5.2. Let 𝐺 ⊆ R[𝒙] be finite and satisfy that 𝐺 ⊆
𝜕𝑓 (𝐺 ; _, 𝐾, ℓ). Then, 𝑆 (𝐺) is forward invariant.

Finally, as a corollary of Prop. 2.11, it holds that if 𝑆 (𝐺) includes
a set S, then so does 𝑆 (𝐺 ′) for any finite 𝐺 ′

in the refinement.
1

Corollary 5.3. Let 𝐺,𝐺 ′ ⊆ R[𝒙] be finite sets and satisfy that
𝐺 ′ ⊆ 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ). Then, 𝑆 (𝐺) ⊆ 𝑆 (𝐺 ′). In particular, if I ⊆ 𝑆 (𝐺),
then I ⊆ 𝑆 (𝐺 ′).

Using the refinement operator and Corollaries 5.2 and 5.3, we

would apply the refinement operator iteratively:𝐺𝑖+1 = 𝜕𝑓 (𝐺𝑖 ; _, 𝐾, ℓ)
until 𝐺 𝑗+1 = 𝐺 𝑗 for some 𝑗 ∈ N, wherein the initial iterate 𝐺0 sat-

isfies I ⊆ 𝑆 (𝐺0). However, we face two problems: (a) the refined

set 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ) need not be finitely generated even if 𝐺 is finite;

and (b) the process is not guaranteed to terminate in finitely many

steps even if we managed to keep the iterates 𝐺𝑖 finite. We will

address both issues using ideas from abstract interpretation theory,

which has been widely used in static analysis of programs [14] as

well as dynamical systems [38, 41]. Algo. 1 presents a high level

view of the approach: the procedure IsFixedPoint(𝐺 ; _, 𝐾, ℓ) checks
whether 𝐺 ⊆ 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ), whereas FiniteRefinement(𝐺 ; _, 𝐾, ℓ)
extracts a finite subset from 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ) in a manner that will

guarantee termination of this process in finitely many steps.

The choice of the initial iterate (line 1) will be discussed in Sec. 5.2

and how to guarantee termination of the above procedure will be

discussed in Sec. 5.3.

Implementation for finitely generated 𝐾 . As a warm-up, we start

with a specific case for which FiniteRefinement(𝐺 ; _, 𝐾, ℓ) can be

implemented in a lossless way, meaning that its output generates

𝜕𝑓 (𝐺 ; _, 𝐾, ℓ).2 This comes from the observation that if 𝐾 is finitely

generated, then 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ) is finitely generated as well. Examples

of finitely generated cones of positive definite polynomials include

𝐾 = R+ (the set of nonnegative reals) and the cone of diagonally
dominant SOS polynomials introduced by Ali Ahmadi et al [1].

Lemma 5.4. Assume that 𝐾 is finitely generated. Then, for any
finite set 𝐺 ⊆ R[𝒙], 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ) is finitely generated, i.e., there is a
finite set 𝐺 ′ ⊆ R[𝒙] such that 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ) = ch(𝐺 ′).

Proof. Let 𝐺 = {𝑔1, . . . , 𝑔𝑚}, and let 𝐻 = {ℎ1, . . . , ℎ𝑠 } ⊆ R[𝒙]
be such that 𝐾 = ch(𝐻). Note that any element of ch(𝐺) can be

written as

∑𝑚
𝑖=1 𝛼𝑖𝑔𝑖 for multipliers 𝛼𝑖 ≥ 0 and any element of𝐾 can

1
The property extends straightforwardly to infinite sets𝐺 ′

but we focus here on finite

sets𝐺 ′
, because this is sufficient for our needs and the operator 𝑆 (·) is defined only

for finite sets.

2
This result is presented for completeness, but as we will see the resulting implemen-

tation becomes rapidly intractable, so that a different approach will be proposed in

Sec. 5.1.

Cone-Based Abstract Interpretation for Nonlinear Positive Invariant Synthesis HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

Algorithm 2: IsFixedPoint using Projections
Data: Fine set 𝐺 ⊆ R[𝒙], _ ∈ R, 𝐾 ∈ K , ℓ ∈ N.

1 Let 𝐻 = 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ)
2 if for all 𝑔 ∈ 𝐺 , Proj(𝑔;𝐻) = 𝑔 then return True

3 else return False

be written as

∑𝑠
𝑖=1 𝛼𝑖ℎ𝑖 for multipliers 𝛼𝑖 ≥ 0. Also, note that 𝐺≤ℓ

is finite, i.e., 𝐺≤ℓ = {𝑔1, . . . , 𝑔𝑘 }. Any element of 𝐾 ·𝐺≤ℓ
can thus

be written as (∑𝑠
𝑖=1 𝛽𝑖ℎ𝑖)𝑔 𝑗 for multipliers 𝛽𝑖 ≥ 0. It follows that

any element of ch(𝐾 ·𝐺≤ℓ) can be written as

∑𝑘
𝑗=1

(∑𝑠
𝑖=1 𝛽𝑖, 𝑗ℎ𝑖

)
𝑔 𝑗

for multipliers 𝛽𝑖, 𝑗 ≥ 0. Hence, the condition that 𝑝 ∈ ch(𝐺) and
𝐿𝑓 (𝑝) +_𝑝 ∈ ch(𝐾 ·𝐺≤ℓ) can be written as two equality constraints

that are linear in the variables 𝛼𝑖 and 𝛽𝑖, 𝑗 . This, plus the nonnegativ-

ity constraints 𝛼𝑖 ≥ 0 and 𝛽𝑖, 𝑗 ≥ 0, defines a polyhedral cone 𝑃 over

these variables. Now, the projection 𝑃 ′ of 𝑃 over the𝑚 variables 𝛼𝑖
is also a polyhedral cone. Hence, 𝑃 ′ is finitely generated. Finally,

since 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ) = {∑𝑚
𝑖=1 𝛼𝑖𝑔𝑖 : (𝛼1, . . . , 𝛼𝑚) ∈ 𝑃 ′}, it holds that

𝜕𝑓 (𝐺 ; _, 𝐾, ℓ) is finitely generated, concluding the proof. □

The constructive proof of Lemma 5.4 provides a way of im-

plementing IsFixedPoint and FiniteRefinement when 𝐾 is finitely

generated. However, working with finitely generated cones 𝐾 is

impractical for two reasons: (i) Using a small set of generators 𝐻

often leads to an overly conservative refinement operator, thereby

preventing us from proving invariance even for simple systems;

(ii) The number of polynomials in 𝐺𝜎 grows extremely fast (super-

exponential in the number of iterations in the worst case), thereby

preventing from applying more than a few iteration.

Therefore, in the next section, we consider a different approach

using the SOS cone and wherein the size of 𝐺𝜎 is kept constant.

5.1 Bounded-Size Iterates
In this approach, we let 𝐾 be the set of SOS polynomials of degree

at most 2𝑑 , denoted by SOS𝑑 [𝒙]. Note that SOS𝑑 [𝒙] is not finitely
generated. The idea of the approach is to compute a finite set 𝐺 ′ =
{𝑔′

1
, . . . , 𝑔′𝑚} included in 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ), wherein 𝐺 = {𝑔1, . . . , 𝑔𝑚}.

Note that |𝐺 ′ | = |𝐺 |.
Sampling from a convex set is a problem that has received some

attention in the literature. We can for instance mention the hit-and-
run algorithm which is a Monte-Carlo method to sample random

points inside a given set [12, 27]. However, in this work, we consider

another approach based on projections.

Concretely, let ∥·∥ be a norm on R[𝒙]. Given a subset 𝐻 ⊆ R[𝒙],
define the projection on 𝐻 by Proj(𝑔;𝐻) = argminℎ∈𝐻 ∥ℎ − 𝑔∥.
The key insight is that using sum-of-squares (SOS) optimization,

we can compute Proj(𝑔;𝐻) where 𝐻 = 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ) when 𝐺 is

finitely generated set of polynomials and 𝐾 = SOS𝑑 [𝒙]. Using
the projection operator allows us to implement IsFixedPoint and

FiniteRefinement as shown in Algos. 2 and 3. The IsFixedPoint

procedure simply checks that Proj(𝑔𝑖 ;𝐻) = 𝑔𝑖 for each 𝑔𝑖 ∈ 𝐺 .

Similarly, the FiniteRefinement procedure computes the set 𝐺 ′ =
{Proj(𝑔𝑖 ;𝐻) | 𝑔𝑖 ∈ 𝐺} wherein 𝐺 = 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ).

Note that𝐻 = 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ) in Algos. 2 and 3 is a convex set that

can be represented by Linear Matrix Inequalities [24, 31]. Hence,

Algorithm 3: FiniteRefinement using Projections

Data: 𝐺 = {𝑔1, . . . , 𝑔𝑚} ⊆ R[𝒙], _ ∈ R, 𝐾 ∈ K , ℓ ∈ N.
1 Let 𝐻 = 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ)
2 for 𝑖 = 1, . . . ,𝑚 do let 𝑔′

𝑖
= Proj(𝑔𝑖 ;𝐻)

3 return {𝑔′
1
, . . . , 𝑔′𝑚}

Algorithm 4: FiniteRefinement using Robust Projections

Data: 𝐺 = {𝑔1, . . . , 𝑔𝑚} ⊆ R[𝒙], 𝜖 > 0, _ ∈ R, 𝐾 ∈ K , ℓ ∈ N.
1 Let 𝐻 = 𝜕𝑓 (𝐺, 𝜖 ; _, 𝐾, ℓ)
/* Same as lines 2–5 in Algo. 3 */

computing Proj𝑆 (𝑔𝑖) can be done efficiently, e.g., using semidefinite

programming [11].

As mentioned before, computing𝐺𝜎+1 as the output of Algo. 3 is
advantageous because it keeps the size of𝐺𝜎 constant throughout

the process. However, it might be slow to make progress, so that a

large number of iterations might be needed before finding invariant

(if we eventually find one). Another limitation of the approach is

the sensitivity to numerical errors. Indeed, when using a numerical

solver to compute Proj(𝑔;𝐻), we may get something close to but

not exactly in 𝐻 . In this case, we cannot certify that a “numerical”

fixed point is an actual fixed point. To address these limitations, we

define a robust version of the above approach.

5.1.1 Robust Projection and Acceleration. The robust projection
relies on an inner-approximation of 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ) parameterized by

a robustness parameter 𝜖 > 0:

𝜕𝑓 (𝐺, 𝜖 ; _, 𝐾, ℓ) = {𝑔 ∈ ch(𝐺) : 𝐿𝑓 (𝑔) + _𝑔 − 𝜖 ∥𝑔∥ ∈ ch(𝐾 ·𝐺≤ℓ)}.
The resulting implementation of FiniteRefinement is the same as

in Algo. 3 but with 𝐻 = 𝜕𝑓 (𝐺, 𝜖 ; _, 𝐾, ℓ); see Algo. 4.
The main result of this section is that if the output of Algo. 4 is

close to 𝐺 , then 𝑆 (𝐺) is forward invariant.

Lemma 5.5. Assume that 𝑆 (𝐺) is compact and let 𝜖 > 0. Denote
𝐻 = 𝜕𝑓 (𝐺, 𝜖; _, 𝐾, ℓ). There exists a constant ^ > 0 depending only
on𝐺 , 𝑓 , _ and 𝜖 , such that for all 𝑔 ∈ 𝐺 , if ∥𝑔 − Proj(𝑔;𝐻)∥ ≤ ^∥𝑔∥,
then 𝑆 (𝐺) is forward invariant.

Proof. Let 𝐷 : R[𝒙] → R[𝒙] be defined by 𝐷 (𝑔) = 𝐿𝑓 (𝑔) + _𝑔,
and let 𝛿 = max {|𝐷 (𝑔) (𝒙) | : 𝒙 ∈ 𝑆 (𝐺), ∥𝑔∥ ≤ 1}. Without loss of

generality, let 𝑔 ∈ 𝐺 be such that ∥𝑔∥ = 1, and assume that there is

𝑔′ ∈ 𝐻 such that ∥𝑔 − 𝑔′∥ ≤ ^ wherein we choose ^ < 𝜖
𝜖+𝛿 . Let us

set ^ (𝐺) = ^ . First, note that this implies that ∥𝑔′∥ ≥ 1−^ . Second,
by definition of 𝛿 , we note that |𝐷 (𝑔−𝑔

′

^) | ≤ 𝛿 since | |𝑔 − 𝑔′ | | ≤ ^.
𝐷 (·) being a linear operator, we obtain 𝐷 (𝑔) ≥ 𝐷 (𝑔′) −𝛿^ on 𝑆 (𝐺).
Finally, since 𝑔′ ∈ 𝐻 , it holds that 𝐷 (𝑔′) ≥ 𝜖 ∥𝑔′∥ on 𝑆 (𝐺). Hence,
𝐷 (𝑔′) ≥ 𝜖 − 𝜖^ on 𝑆 (𝐺). This implies that 𝐷 (𝑔) ≥ 𝜖 − 𝜖^ − 𝛿^ on

𝑆 (𝐺). By our choice of ^, it follows that 𝐷 (𝑔) > 0 on 𝑆 (𝐺). Hence,
𝑆 (𝐺) is forward invariant. □

Hence, in our algorithmic process, if at some point 𝐺 ′
is “close

enough” to𝐺 , then we stop the algorithm and return𝐺 . However,

estimating the value of ^, in practice, is hard. We will simply set it

to be a constant smaller than 𝜖 , typically 𝜖
10
, and use an SMT solver

such as Z3 to validate the final positive invariant.

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Guillaume O. Berger, Masoumeh Ghanbarpour, and Sriram Sankaranarayanan

Algorithm 5: Initial iterate using Sample Points

Data: Finite set 𝐺init ⊆ R[𝒙], 𝐾 ∈ K , template

{𝑝1, . . . , 𝑝𝑘 } ⊆ R[𝒙], sample points 𝒙1, . . . , 𝒙𝑁 ∈ R𝑛 .
1 Let B =

{ ∑𝑘
𝑖=1 𝛼 𝑗𝑝 𝑗 : 𝛼 𝑗 ∈ R

}
2 Let G =

{
𝑔 ∈ B : 𝑔(𝒙𝑖) ≥ 0, 𝑖 = 1, . . . , 𝑁

}
3 Let 𝐺−1 ⊆ R[𝒙] be a finite set such that G = ch(𝐺−1)
4 Let 𝐺0 = {Proj(𝑔; ch(𝐾 ·𝐺init)) : 𝑔 ∈ 𝐺−1}

Figure 2: The sets 𝑆 (𝐺𝜎) for 𝜎 = 0, . . . , 6 for the Vanderpol
oscillator from Example 2.4 and the template in Example 5.7.
The inner most curve corresponds to 𝜎 = 0, then 𝜎 = 1, etc.

5.2 Initial Iterate from Simulations
The only constraint we have on the initial iterate 𝐺0 (line 1) is that

I ⊆ 𝑆 (𝐺0). Hence, one could for instance just set 𝐺0 = 𝐺init. How-

ever, the more functions in𝐺0, the more expressive the subsequent

iterates since they are all subsets of ch(𝐺0). This is illustrated in

the example below.

Example 5.6. Let 𝐺init = {1 − 𝑥2
1
− 𝑥2

2
}, so that I is the ball of

radius one around the origin. If 𝐺0 = 𝐺init, then all sets 𝐺𝜎 are

subsets of ch(𝐺init) = {𝛼 + 𝛽 − 𝛼𝑥2
1
− 𝛼𝑥2

2
: 𝛼, 𝛽 ≥ 0}. Hence, the

iterates can only describe balls of radius at least one around the

origin. However, for instance, if we let 𝐺0 = {1 − 𝑥2
1
, 1 − 𝑥2

2
, 1 −

2𝑥1𝑥2}, then we still have that I ⊆ 𝑆 (𝐺0). However, the iterates
can describe a larger variety of sets such as ellipsoids.

In order to define a rich initial iterate, we use sample points

from simulations. Then, we define the initial iterate as the set of all

polynomials in a given template that are nonnegative at the sample

points. Finally, we project on ch(𝐾 ·𝐺init). This is implemented in

Algo. 5. Note that B is a linear subspace; then, G is a subset of B
obtained by imposing linear inequality constraints; hence, G is a

finitely generated cone; this allows to compute 𝐺−1 in line 3.

Example 5.7. Consider the system of Example 2.4. The sample

points are given by the trajectories in Fig. 1. We use {1, 𝑥2
1
, 𝑥1𝑥2, 𝑥

2

2
}

as template to allow any homogeneous quadratic curves. The first

seven iterates of the overall procedure are depicted in Fig. 2.

5.3 Finite Termination
Finitely, we discuss the termination of the algorithm. Unfortunately,

the approach in Sec. 5.1 does not guarantee that the iteration will

converge in finite time to a fixed point. Therefore, we introduce

Algorithm 6: FiniteRefinement with Widening

Data: 𝐺 = {𝑔1, . . . , 𝑔𝑚} ⊆ R[𝒙], _ ∈ R, 𝐾 ∈ K , ℓ ∈ N.
1 Let 𝐻 = 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ)
2 Let 𝐺 ′ = ∅
3 for 𝑖 = 1, . . . ,𝑚 do
4 if Proj(𝑔𝑖 ;𝐻) = 𝑔𝑖 then Add 𝑔𝑖 to 𝐺

′

5 return 𝐺 ′

a widening of the refinement operator, that can be applied only

a finite number of times before obtaining the empty set, thereby

ensuring termination of the algorithm in finite time.

The widened operator removes the generators that are not in the

refinement. This is implemented in Algo. 6. Note that the condition

in line 4 can be checked efficiently, e.g., if𝐾 = SOS𝑑 [𝒙] (see Sec. 5.1).
It holds that the output 𝐺 ′

of Algo. 6 has cardinality strictly lower

than the input 𝐺 if 𝐺 is not a fixed point.

Lemma 5.8. If 𝐺 is not a fixed point, i.e.,𝐺 ⊈ 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ), then
the output 𝐺 ′ of Algo. 6 satisfies |𝐺 ′ | < |𝐺 |.

Proof. If𝐺 ⊈ 𝜕𝑓 (𝐺 ; _, 𝐾, ℓ), then there is some 𝑔𝑖 ∈ 𝐺 such that

Proj(𝑔𝑖 ;𝐻) ≠ 𝑔𝑖 so that 𝑔𝑖 ∉ 𝐺
′
, concluding the proof. □

As a corollary, Algo. 6 can be applied recursively at most |𝐺0 |
times before reaching a (possibly trivial) fixed point. Note that the

widening operator is applied only after several iterations of the less

conservative projection-based refinement operator is applied.

6 NUMERICAL EXPERIMENTS
We applied the algorithmic process from Sec. 5 to compute invariant

BSA sets for several polynomial systems.

Implementation Details. We implemented the algorithm in Ju-

lia. To compute the projections in Secs. 5.1 and 5.2, we used the

package SumOfSquares.jl [53] with the SDP solver Mosek [9]. To

compute a finite set of initial iterates in Sec. 5.2, we used Polyhe-

dra.jl [25] with CDDLib [18]. We used only the robust projection

approach (Sec. 5.1.1); in particular, no widening as in Sec. 5.3 was

needed. The parameters we used for the robust projection were

_ = 1, 𝐾 = SOS𝑑 [𝒙] with 𝑑 inferred automatically by the solver,

ℓ = 1, 𝜖 = 0.1 and ^ = 10
−8
. We believe that 𝜖 is sufficiently large

and ^ sufficiently small to ensure sound invariants despite possible

numerical inaccuracies inherent to SDP solvers. However, a rigor-

ous analysis of the robustness to numerical errors is beyond the

scope of this paper. Therefore, whenever possible, we verified the

returned invariant using the SMT solver Z3 [17]. We compared

our approach, which uses multiple polynomials 𝑔1, . . . , 𝑔𝑚 , with

the one using a single polynomial 𝑔 possibly of higher degree.

Results. All computations were made on a laptop with processor

Intel Core i7-7600u and 16GB RAM running Windows. The timing

results, number of iterations and number of polynomials in the

invariants for the different numerical experiments are reported in

Table. 1. The invariants are reported in the Appendix.

Cone-Based Abstract Interpretation for Nonlinear Positive Invariant Synthesis HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

Table 1: Results from numerical experiments. ∗: a modifica-
tion of the invariant was verified. T/O: Time Out (>6 hours).

Experiment Time # Iterations # Invariants Z3

Sec. 6.1 50 sec. 94 8 → 3 Valid
∗

Sec. 6.2 (𝐻1) <1 sec. 8 1 Valid

Sec. 6.2 (𝐻2) 50 sec. 17 11 Valid

Sec. 6.3 (𝐻1) 1 sec. 4 12 Valid

Sec. 6.3 (𝐻2) 12 sec. 3 1 Valid

Sec. 6.4 (𝐻1) 2.5 sec. 8 11 Valid

Sec. 6.4 (𝐻2) 152 sec. 8 15 → 11 Valid
∗

Sec. 6.5 5.5 sec. 4 7 → 1 Valid
∗

Sec. 6.6 372 sec. 6 16 T/O

Sec. 6.7 110 sec. 3 + 3 41 + 4 Valid

Sec. 6.8 115 sec. 5 + 9 + 19 8 + 10 + 1 Valid

6.1 Vanderpol Oscillator
We finish the example of the Vanderpol oscillator (Example 2.4).

The algorithm generated a BSA set described by 10 polynomials,

depicted in Fig. 3a. We tried to verify this invariant using Z3, but

the SMT solver timed out (>6 hours) before returning an output (so

that we could not validate or invalidate the invariant). However, we

manually picked a subset of three polynomials from the invariant,

and this time Z3 was able to verify the invariant. This new invariant

is depicted in Fig. 3a as well. We synthesized a forward invariant

described by a single SOS polynomial 𝑔. For degree 𝑑 ∈ {2, 4, 6}, no
such𝑔 could be found. For𝑑 = 8, the solver returned the polynomial

given in the Appendix and depicted in Fig. 3a. However, due to

the high degree of the polynomial, Z3 timed could not verify the

polynomial within the 12 hour timeout.

6.2 Stable 2D Nonlinear System
We consider the dynamical system given by

¤𝑥1 = −1

2

𝑥3
1
+ 2𝑥2, ¤𝑥2 = −2𝑥2 .

with initial set I = {𝑥2
1
+ 𝑥2

2
≤ 1

4
}, depicted in Fig. 3b. We con-

sidered two templates to compute an invariant set for this system:

𝐻1 = {1, 𝑥2
1
, 𝑥2

2
} and 𝐻2 = {1, 𝑥2

1
, 𝑥1𝑥2, 𝑥

2

2
}. The invariants obtained

by the algorithm using each template are represented in Fig. 3b.

Both invariants were verified using Z3. A larger template provides

a stronger invariant, but requires a longer computation time. We

synthesized a forward invariant described by a single SOS polyno-

mial 𝑔 with degree 4 (given in the Appendix and depicted in Fig. 3b).

Z3 was able to verify the invariant. As seen in Fig. 3b, the forward

invariant is larger than those given by our approach.

6.3 System from [2, Example 6]
We consider the dynamical system given by

¤𝑥1 = −𝑥3
1
+ 1

2

𝑥2, ¤𝑥2 = −𝑥1 − 2𝑥2 ,

with initial setI = {𝑥2
1
+𝑥2

2
≤ 1

4
}, depicted in Fig. 3c. We considered

two templates to compute an invariant set for this system: 𝐻1 =

{1, 𝑥1, 𝑥2} and 𝐻2 = {1, 𝑥2
1
, 𝑥1𝑥2, 𝑥

2

2
}. The invariants obtained by

the algorithm using each template are represented in Fig. 3c. Both

invariants were verified using Z3.

6.4 Unstable 2D Nonlinear System
We consider the dynamical system given by

¤𝑥1 = 1 − 𝑥3
1
+ 𝑥3

2
, ¤𝑥2 = −1

2

+ 𝑥3
1
− 𝑥2 ,

with initial setI = {𝑥2
1
+𝑥2

2
≤ 1

4
}, depicted in Fig. 3d.We considered

two templates to compute an invariant set for this system: 𝐻1 =

{1, 𝑥1, 𝑥2} and𝐻2 = {1, 𝑥2
1
, 𝑥1𝑥2, 𝑥

2

2
}. The invariants obtained by the

algorithm using each template are represented in Fig. 3d. Note that

in this case, the invariants are not compact. Thus, Lemma 5.5 does

not apply. Hence, it is important to verify the invariants with Z3.

The first invariant (with 𝐻1) was easily verified using Z3. However,

the verification of the second invariant (with 𝐻2) using Z3 timed

out. Nevertheless, by manually removing four polynomials from

the invariant, we obtained a new set (depicted in Fig. 3d), for which

we could prove the invariance with Z3. We synthesized a forward

invariant described by a single SOS polynomial 𝑔. For degree 𝑑 ∈
{2, 4}, no such 𝑔 could be found. For 𝑑 = 6, the solver returned such

a 𝑔 (given in the Appendix and depicted in Fig. 3d). However, due to

the high degree of the polynomial, Z3 timed out in the verification

of the invariant (>12 hours).

6.5 3D Nonlinear System
We consider the dynamical system, inspired by [2, Example 7]:

¤𝑥1 = 1 − 𝑥1𝑥2
3
− 𝑥3

1
+ 𝑥1𝑥4

3
− 𝑥3

1
𝑥2
3
,

¤𝑥2 = −𝑥2 − 𝑥2𝑥2
3
− 𝑥2

1
𝑥2 − 𝑥2

1
𝑥2𝑥

2

3
,

¤𝑥3 = −4𝑥3 − 𝑥3
3
+ 3𝑥2

1
𝑥3 + 3𝑥2

1
𝑥3
3
,

with initial set I = {𝑥2
1
+𝑥2

2
+𝑥2

3
≤ 1

4
}. We considered the template

𝐻 = {1, 𝑥2
1
, 𝑥2

2
, 𝑥2

3
}. The algorithm generated a BSA set described

by 7 polynomials. The verification using Z3 timed out. However, by

manually selecting and keeping only one polynomial, we obtained

a larger set, for which we could verify the invariance with Z3.

6.6 4D Nonlinear System
We consider the dynamical system, inspired by [2, Example 9]:{

¤𝑥1 = −𝑥1 − 3𝑥3𝑥4 + 𝑥3
2
, ¤𝑥2 = 1

2
− 𝑥1 − 𝑥3

2
,

¤𝑥3 = −𝑥3 + 𝑥1𝑥4, ¤𝑥4 = 𝑥1𝑥3 − 𝑥3
4
,

with initial set I = {𝑥2
1
+ 𝑥2

2
+ 𝑥2

3
+ 𝑥2

4
≤ 1

4
}. We considered the

template 𝐻 = {1, 𝑥2
1
, 𝑥2

2
, 𝑥2

3
, 𝑥2

4
}. The algorithm generated a BSA set

described by 16 polynomials. The verification using Z3 timed out.

6.7 Switched System with Limit Cycle
We consider the switched dynamical system{

¤𝑥1 = − 1

4
− 𝑥2 − 1

4
𝑥1 + 1

4
𝑥2
2
+ 3

4
𝑥2
1
− 1

4
𝑥1𝑥

2

2
− 1

4
𝑥3
1
,

¤𝑥2 = −1 + 1

4
𝑥2 + 𝑥1 + 1

2
𝑥1𝑥2 − 1

4
𝑥3
2
− 1

4
𝑥2
1
𝑥2,

if 𝑥1 ≥ 0.{
¤𝑥1 = 1

4
− 𝑥2 − 1

4
𝑥1 − 1

4
𝑥2
2
− 3

4
𝑥2
1
− 1

4
𝑥1𝑥

2

2
− 1

4
𝑥3
1
,

¤𝑥2 = 1 + 1

4
𝑥2 + 𝑥1 + 1

2
𝑥1𝑥2 − 1

4
𝑥3
2
− 1

4
𝑥2
1
𝑥2,

if 𝑥1 ≤ 0.

with initial set I = {𝑥2
1
+ 𝑥2

2
≤ 1

4
}, depicted in Fig. 3e. We consid-

ered the template 𝐻 = {1, 𝑥2, 𝑥2
1
, 𝑥2

2
}. Our approach to compute an

invariant for this system was: (i) compute an invariant P1 for the

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Guillaume O. Berger, Masoumeh Ghanbarpour, and Sriram Sankaranarayanan

(a) Sec. 6.1 (b) Sec. 6.2 (c) Sec. 6.3

(d) Sec. 6.4 (e) Sec. 6.7 (f) Sec. 6.8

Figure 3: Green: invariant, or invariant using𝐻1 (if applicable). Red: invariant using𝐻2 (if applicable). Purple: invariant obtained
by picking some polynomials (if applicable). Blue: invariant obtained with a single SOS polynomial (if applicable).

first mode containing I; (ii) compute the intersection I12 between
P1 and the guard G12 from the first to the second mode, which

is a BSA set; (iii) compute an invariant P2 for the second mode

containing I and I12; (iv) compute the intersection I21 between
P2 and the guard G21 from the second to the first mode, which is a

BSA set; (v) check that I21 is contained in P1; since it was the case,

we stopped. The resulting invariant was verified using Z3.

6.8 Switched Bistable System
We consider the switched dynamical system{

¤𝑥1 = 0.1 − 𝑥2 − 0.3𝑥1 + 0.3𝑥2
1
− 0.1𝑥3

1
,

¤𝑥2 = −2 + 2𝑥1 − 0.1𝑥3
2
,

if 𝑥1 ≥ 0.{
¤𝑥1 = −0.125 − 2𝑥2 − 0.25𝑥1,

¤𝑥2 = 0.25 − 0.25𝑥2 + 0.5𝑥1,
if 𝑥1 ≤ 0.

with initial set I = {𝑥2
1
+𝑥2

2
≤ 1

4
}, depicted in Fig. 3f. We considered

the template 𝐻 = {1, 𝑥2
1
, 𝑥1𝑥2, 𝑥

2

2
}. We split the first mode into two

“sub-”modes, one for 𝑥2 ≥ 0 and one for 𝑥2 ≤ 0 and applied the

procedure described in Sec. 6.7 to compute invariants that were

successfully verified using Z3.

7 CONCLUSIONS
We provided an algorithmic framework to compute semi-algebraic

invariants for polynomial systems. We expressed the invariance

condition as a fixed point of a refinement operator over cones of

polynomials. A key element of the framework is the introduction

of the projection operator to compute the refinement, which allows

to keep the complexity and convergence of the refinement process

under control. In future work, we plan to apply this refine-by-

projection approach to other fixed-point approaches in abstract

interpretation. We also plan to improve the approach by allowing

to detect when the size of the iterates can be reduced because some

polynomials have become redundant.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their detailed comments

and suggestions. This research was funded in part by the Belgian-

American Education Foundation (BAEF) and the US National Sci-

ence Foundation (NSF) under award numbers 1836900 and 1932189.

Cone-Based Abstract Interpretation for Nonlinear Positive Invariant Synthesis HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

REFERENCES
[1] Amir Ali Ahmadi and Anirudha Majumdar. Dsos and sdsos optimization: More

tractable alternatives to sum of squares and semidefinite optimization. SIAM
Journal on Applied Algebra and Geometry, 3(2):193–230, 2019. doi: 10.1137/

18M118935X.

[2] Daniele Ahmed, Andrea Peruffo, and Alessandro Abate. Automated and sound

synthesis of lyapunov functions with smt solvers. In Tools and Algorithms for the
Construction and Analysis of Systems: 26th International Conference, TACAS 2020,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25–30, 2020, Proceedings, Part I 26, pages 97–114.
Springer, 2020.

[3] Fernando Alegre, Eric Feron, and Santosh Pande. Using ellipsoidal domains

to analyze control systems software. CoRR, abs/0909.1977, 2009. URL http:

//arxiv.org/abs/0909.1977.

[4] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete abstractions of

hybrid systems. Proceedings of the IEEE, 88(7):971–984, 2000. doi: 10.1109/5.871304.
[5] Rajeev Alur. Principles of Cyber-Physical Systems. MIT Press, 2015.

[6] Rajeev Alur, Thao Dang, and Franjo Ivančić. Predicate abstraction for reachability

analysis of hybrid systems. ACM Trans. Embed. Comput. Syst., 5(1):152–199, feb
2006. ISSN 1539-9087. doi: 10.1145/1132357.1132363. URL https://doi.org/10.1145/

1132357.1132363.

[7] Aaron D. Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil

Sreenath, and Paulo Tabuada. Control barrier functions: Theory and applications.

In European Control Conference (ECC), pages 3420–3431, 2019. doi: 10.23919/ECC.
2019.8796030.

[8] Mahathi Anand, Vishnu Murali, Ashutosh Trivedi, and Majid Zamani. Safety

verification of dynamical systems via k-inductive barrier certificates. In 2021 60th
IEEE Conference on Decision and Control (CDC), page 1314–1320. IEEE Press, 2021.

doi: 10.1109/CDC45484.2021.9682889. URL https://doi.org/10.1109/CDC45484.

2021.9682889.

[9] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 10.0.,
2022. URL http://docs.mosek.com/9.0/toolbox/index.html.

[10] Vladimir I. Arnold. Ordinary Differential Equations. Springer (Universitext), 2006.
Translated from Russian by R.Cooke.

[11] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization:
analysis, algorithms, and engineering applications. SIAM, 2001.

[12] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random

walks. In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory
of Computing, STOC ’02, page 109–115, New York, NY, USA, 2002. Association

for Computing Machinery. ISBN 1581134959. doi: 10.1145/509907.509926. URL

https://doi.org/10.1145/509907.509926.

[13] Franco Blanchini and Stefano Miani. Set-Theoretic Methods in Control. Birkhäuser,
Boston, MA, USA, 2008. ISBN 978-0-8176-4606-6. URL https://link.springer.com/

book/10.1007/978-0-8176-4606-6.

[14] Patrick Cousot. Principles of Abstract Interpretation. The MIT Press, Cambridge,

MA, USA, September 2021. ISBN 978-0-26204490-5. URL https://www.amazon.

com/Principles-Abstract-Interpretation-Patrick-Cousot/dp/0262044900.

[15] Patrick Cousot and Rhadia Cousot. Abstract Interpretation: A unified lattice

model for static analysis of programs by construction or approximation of fix-

points. In ACM Principles of Programming Languages, pages 238–252, 1977.
[16] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,

David Monniaux, and Xavier Rival. The astrée analyzer. In M. Sagiv, editor,

European Symposium on Programming (ESOP’05), volume 3444 of Lecture Notes
in Computer Science, pages 21–30. Springer-Verlag, 2005.

[17] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Inter-
national conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[18] Komei Fukuda. Cddlib reference manual. Report version 093a, McGill University,
Montréal, Quebec, Canada, 2003.

[19] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer.

KeYmaera X: An axiomatic tactical theorem prover for hybrid systems. In Amy P.

Felty and Aart Middeldorp, editors, CADE, volume 9195 of LNCS, pages 527–538.
Springer, 2015. doi: 10.1007/978-3-319-21401-6_36.

[20] Khalil Ghorbal, Andrew Sogokon, and André Platzer. A hierarchy of proof rules

for checking positive invariance of algebraic and semi-algebraic sets. Computer
Languages, Systems & Structures, 47:19–43, January 2017. doi: 10.1016/j.cl.2015.

11.003. URL https://doi.org/10.1016/j.cl.2015.11.003.

[21] Nicolas Halbwachs, Yann Eric Proy, and Pascal Raymond. Verification of linear

hybrid systems by means of convex approximations. In Baudouin Le Charlier,

editor, Static Analysis, pages 223–237, Berlin, Heidelberg, 1994. Springer Berlin
Heidelberg.

[22] Thomas A. Henzinger and Pei-Hsin Ho. A note on abstract interpretation strate-

gies for hybrid automata. In Panos Antsaklis, Wolf Kohn, Anil Nerode, and

Shankar Sastry, editors, Hybrid Systems II, pages 252–264, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

[23] Tadeusz Kaczorek and Kamil Borawski. Stability of positive nonlinear systems.

In 2017 22nd International Conference on Methods and Models in Automation and

Robotics (MMAR), pages 564–569. IEEE, 2017.
[24] Jean B Lasserre. Global optimization with polynomials and the problem of

moments. SIAM Journal on optimization, 11(3):796–817, 2001.
[25] Benoît Legat. Polyhedral computation. In JuliaCon, July 2023. URL https:

//pretalx.com/juliacon2023/talk/JP3SPX/.

[26] Jiang Liu, Naijun Zhan, and Hengjun Zhao. Computing semi-algebraic invariants

for polynomial dynamical systems. In Proc. of ACM International Conference on
Embedded Software (EMSOFT), EMSOFT ’11, page 97–106, New York, NY, USA,

2011. Association for Computing Machinery. ISBN 9781450307147.

[27] László Lovász and Santosh Vempala. Hit-and-run from a corner. SIAM Journal
on Computing, 35(4):985–1005, 2006.

[28] James D. Meiss. Differential Dynamical Systems. SIAM, 2017.

[29] Sayan Mitra. Verifying Cyber-Physical Systems: A Path to Safe Autonomy. MIT

Press. ISBN 978-0-262-04480-6. URL https://mitpress.mit.edu/contributors/sayan-

mitra.

[30] M. Nagumo. Uber die lage der integralkurven gewöhnlicher differentialgleichun-

gen. 24:551–559, 1942.

[31] Pablo A. Parrilo. Polynomial Optimization, Sums of Squares, and Applications,
chapter 3, pages 47–157. doi: 10.1137/1.9781611972290.ch3.

[32] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg, 2010. ISBN 978-3-642-14508-7. doi: 10.1007/978-

3-642-14509-4.

[33] André Platzer. A complete uniform substitution calculus for differential dynamic

logic. J. Autom. Reas., 59(2):219–265, 2017. doi: 10.1007/s10817-016-9385-1.
[34] André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, Cham,

2018. ISBN 978-3-319-63587-3. doi: 10.1007/978-3-319-63588-0.

[35] André Platzer and EdmundM. Clarke. Computing differential invariants of hybrid

systems as fixedpoints. In Aarti Gupta and Sharad Malik, editors, Computer Aided
Verification, pages 176–189, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[36] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using

barrier certificates. In Rajeev Alur and George J. Pappas, editors, Hybrid Systems:
Computation and Control, pages 477–492, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg. ISBN 978-3-540-24743-2.

[37] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. A framework for worst-case

and stochastic safety verification using barrier certificates. IEEE Transactions on
Automatic Control, 52(8):1415–1428, 2007. doi: 10.1109/TAC.2007.902736.

[38] Pierre Roux, Romain Jobredeaux, Pierre-Loïc Garoche, and Éric Féron. A generic

ellipsoid abstract domain for linear time invariant systems. In Proceedings of
Hybrid Systems: Computation and Control, HSCC ’12, page 105–114, New York,

NY, USA, 2012. Association for Computing Machinery.

[39] Ricardo Sanfelice. Hybrid feedback control, 2021.

[40] Sriram Sankaranarayanan. Automatic abstraction of non-linear systems using

change of variables transformations. In Hybrid Systems: Computation and Control
(HSCC), pages 143–152. ACM Press, 2011.

[41] Sriram Sankaranarayanan. Change of basis abstractions for non-linear hybrid

systems. Nonlinear Analysis: Hybrid Systems, 19:107–133, 2016.
[42] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Fixed point iteration

for computing the time elapse operator. In HSCC, volume 3927 of Lecture Notes
in Computer Science, pages 537–551. Springer, 2006.

[43] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Constructing in-

variants for hybrid systems. Formal Methods in System Design, 32(1):25–55, 2008.
[44] K. Schmüdgen. The k-moment problem for compact semi-algebraic sets. Math.

Ann., 289:203–206, 1991.
[45] Naum Z. Shor. An approach to obtaining global extrema in polynomial problems

of mathematical programming. Kibernetika (Kiev), (5):102–6, 1987.
[46] Andrew Sogokon, Khalil Ghorbal, Yong Kiam Tan, and André Platzer. Vector

barrier certificates and comparison systems. In K. Havelund, J. Peleska, B. Roscoe,

and E. de Vink, editors, FM’18, volume 10951, pages 418–437. Springer, 2018.

[47] Yunfei Song. Positive invariance condition for continuous dynamical systems

based on nagumo theorem, 2022.

[48] Thomas Sturm and Ashish Tiwari. Verification and synthesis using real quantifier

elimination. In Proceedings of the 36th International Symposium on Symbolic and
Algebraic Computation, ISSAC ’11, page 329–336, New York, NY, USA, 2011.

Association for Computing Machinery. ISBN 9781450306751. doi: 10.1145/

1993886.1993935. URL https://doi.org/10.1145/1993886.1993935.

[49] Ankur Taly and Ashish Tiwari. Deductive Verification of Continuous Dynamical

Systems. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, volume 4 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 383–394, 2009. ISBN 978-3-939897-13-2.

[50] A. Tiwari and G. Khanna. Series of abstractions for hybrid automata. In C. J.

Tomlin and M. R. Greenstreet, editors, Hybrid Systems: Computation and Control
HSCC, volume 2289 of LNCS, pages 465–478. Springer, March 2002.

[51] A. Tiwari and G. Khanna. Nonlinear systems: Approximating reach sets. In

R. Alur and G. Pappas, editors, Hybrid Systems: Computation and Control HSCC,
volume 2993 of LNCS, pages 600–614. Springer, March 2004.

[52] C.J. Tomlin, I. Mitchell, A.M. Bayen, and M. Oishi. Computational techniques for

the verification of hybrid systems. Proceedings of the IEEE, 91(7):986–1001, 2003.

http://arxiv.org/abs/0909.1977
http://arxiv.org/abs/0909.1977
https://doi.org/10.1145/1132357.1132363
https://doi.org/10.1145/1132357.1132363
https://doi.org/10.1109/CDC45484.2021.9682889
https://doi.org/10.1109/CDC45484.2021.9682889
http://docs.mosek.com/9.0/toolbox/index.html
https://doi.org/10.1145/509907.509926
https://link.springer.com/book/10.1007/978-0-8176-4606-6
https://link.springer.com/book/10.1007/978-0-8176-4606-6
https://www.amazon.com/Principles-Abstract-Interpretation-Patrick-Cousot/dp/0262044900
https://www.amazon.com/Principles-Abstract-Interpretation-Patrick-Cousot/dp/0262044900
https://doi.org/10.1016/j.cl.2015.11.003
https://pretalx.com/juliacon2023/talk/JP3SPX/
https://pretalx.com/juliacon2023/talk/JP3SPX/
https://mitpress.mit.edu/contributors/sayan-mitra
https://mitpress.mit.edu/contributors/sayan-mitra
https://doi.org/10.1145/1993886.1993935

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Guillaume O. Berger, Masoumeh Ghanbarpour, and Sriram Sankaranarayanan

doi: 10.1109/JPROC.2003.814621.

[53] Tillmann Weisser, Benoît Legat, Chris Coey, Lea Kapelevich, and Juan Pablo

Vielma. Polynomial and moment optimization in julia and jump. In JuliaCon,
2019. URL https://pretalx.com/juliacon2019/talk/QZBKAU/.

A COMPUTED INVARIANTS FOR THE
NUMERICAL EXPERIMENTS

A.1 Invariants in Sec. 6.1
Computed invariant:

−0 . 993031954986876 + 0 . 0 3 7 7 8 1 5 3 8 4 9 8 8 9 9 9 8 ∗ x2

^2 − 0 . 0 6 6 6 2 5 6 0 3 2 8 6 1 1 8 7 ∗ x1 ∗ x2 −

0 . 0 8 9 5 6 0 7 0 9 6 3 5 1 9 5 5 7 ∗ x1 ^2 ,

−0 . 9992011592628854 + 0 . 0 0 7 9 5 5 0 7 1 7 5 9 0 3 8 8 7 6 ∗

x2 ^2 + 0 . 0 0 4 1 0 1 8 0 4 7 1 9 4 5 5 3 4 6 6 ∗ x1 ∗ x2 +

0 . 0 3 8 9 4 7 8 5 4 3 5 7 5 5 9 3 5 4 ∗ x1 ^2 ,

−0 . 9991994975155781 + 0 . 0 0 7 5 6 2 0 2 0 5 8 9 2 1 1 8 5 4 ∗

x2 ^2 + 0 . 0 0 4 2 4 8 5 1 9 8 8 7 8 8 8 8 4 4 ∗ x1 ∗ x2 +

0 . 0 3 9 0 5 2 9 1 3 9 5 0 0 0 8 2 7 5 ∗ x1 ^2 ,

−0 . 9992137430067909 + 0 . 0 0 8 7 7 1 0 3 4 1 9 6 8 6 9 5 8 4 ∗

x2 ^2 + 0 . 0 0 3 6 8 8 0 1 9 8 4 4 1 7 1 2 7 6 6 ∗ x1 ∗ x2 +

0 . 0 3 8 4 8 8 4 8 2 1 0 9 6 5 4 0 2 ∗ x1 ^2 ,

−0 . 9992827480108409 + 0 . 0 1 1 5 2 6 9 7 2 2 5 9 6 2 1 1 9 8 ∗

x2 ^2 + 0 . 0 0 1 6 6 3 9 3 9 0 4 2 8 5 7 4 2 4 ∗ x1 ∗ x2 +

0 . 0 3 6 0 3 2 6 2 0 5 7 2 0 5 5 1 2 ∗ x1 ^2 ,

−0 . 9993785554131969 + 0 . 0 1 5 3 7 3 6 9 3 3 7 6 5 8 7 5 5 ∗ x2

^2 − 0 . 0 0 1 7 6 4 3 8 0 8 6 7 4 3 5 4 9 7 4 ∗ x1 ∗ x2 +

0 . 0 3 1 6 7 0 7 9 8 7 3 2 4 1 9 4 8 ∗ x1 ^2 ,

−0 . 9985171136578682 + 0 . 0 3 2 8 6 5 5 4 0 1 6 4 7 3 8 8 4 6 ∗

x2 ^2 − 0 . 0 3 5 7 9 2 6 4 2 2 0 2 6 4 7 7 9 4 ∗ x1 ∗ x2 −

0 . 0 2 4 5 4 2 1 4 2 6 5 6 9 3 3 3 7 ∗ x1 ^2 ,

−0 . 9988802212890721 + 0 . 0 3 1 4 9 4 1 0 3 9 2 2 9 5 6 2 1 4 ∗

x2 ^2 − 0 . 0 3 1 3 5 8 8 5 7 5 0 9 5 9 4 6 2 ∗ x1 ∗ x2 −

0 . 0 1 6 2 1 8 7 2 3 4 7 8 6 5 6 9 8 6 ∗ x1 ^ 2 .

Invariant after removing seven polynomial:

−0 . 993031954986876 + 0 . 0 3 7 7 8 1 5 3 8 4 9 8 8 9 9 9 8 ∗ x2

^2 − 0 . 0 6 6 6 2 5 6 0 3 2 8 6 1 1 8 7 ∗ x1 ∗ x2 −

0 . 0 8 9 5 6 0 7 0 9 6 3 5 1 9 5 5 7 ∗ x1 ^2 ,

−0 . 9991994975155781 + 0 . 0 0 7 5 6 2 0 2 0 5 8 9 2 1 1 8 5 4 ∗

x2 ^2 + 0 . 0 0 4 2 4 8 5 1 9 8 8 7 8 8 8 8 4 4 ∗ x1 ∗ x2 +

0 . 0 3 9 0 5 2 9 1 3 9 5 0 0 0 8 2 7 5 ∗ x1 ^2 ,

−0 . 9993785554131969 + 0 . 0 1 5 3 7 3 6 9 3 3 7 6 5 8 7 5 5 ∗ x2

^2 − 0 . 0 0 1 7 6 4 3 8 0 8 6 7 4 3 5 4 9 7 4 ∗ x1 ∗ x2 +

0 . 0 3 1 6 7 0 7 9 8 7 3 2 4 1 9 4 8 ∗ x1 ^ 2 .

Single SOS polynomial:

−14 . 147180353695786 + 3 . 0 1 1 9 3 4 6 0 0 1 2 1 8 6 5 6 e

−16 ∗ x2 − 2 . 7 2 2 0 3 5 0 6 2 5 4 4 4 4 4 e −16 ∗ x1 −

1 . 1 4 4 6 4 6 6 1 3 9 0 6 2 4 7 4 ∗ x2 ^2 +

2 . 3 6 4 9 8 9 1 5 0 8 4 5 0 8 6 ∗ x1 ∗ x2 −

0 . 5 8 5 6 0 5 2 9 2 8 0 9 0 4 9 8 ∗ x1 ^2 −

3 . 4 3 1 5 3 4 1 4 1 3 2 2 6 8 8 e −16 ∗ x2 ^3 +

1 . 1 8 9 6 3 9 7 0 1 7 1 9 9 8 3 2 e −15 ∗ x1 ∗ x2 ^2 −

1 . 0 6 5 8 6 6 2 8 6 1 4 0 6 0 2 1 e −15 ∗ x1 ^2 ∗ x2 +

1 . 4 3 0 0 3 4 0 1 2 7 3 7 9 5 3 e −16 ∗ x1 ^3 +

0 . 0 8 1 3 6 3 2 9 3 8 5 1 5 9 5 2 4 ∗ x2 ^4 −

0 . 2 7 0 4 3 4 2 7 8 0 6 4 2 2 7 8 ∗ x1 ∗ x2 ^3 +

0 . 9 4 3 1 6 4 6 9 1 5 7 1 3 3 7 2 ∗ x1 ^2 ∗ x2 ^2 −

1 . 1 0 2 2 3 3 1 8 8 9 4 5 2 6 2 1 ∗ x1 ^3 ∗ x2 +

0 . 1 0 5 3 4 3 5 0 1 3 2 4 1 0 8 6 5 ∗ x1 ^4 +

3 . 7 8 5 2 3 9 1 9 7 7 7 1 5 5 6 5 e −17 ∗ x2 ^5 −

1 . 8 0 9 9 0 7 3 2 0 4 5 8 3 0 5 2 e −16 ∗ x1 ∗ x2 ^4 +

2 . 7 1 7 8 7 7 1 7 1 9 6 7 5 9 8 4 e −16 ∗ x1 ^2 ∗ x2 ^3 −

4 . 6 4 7 9 3 6 7 2 6 0 8 8 3 8 9 e −16 ∗ x1 ^3 ∗ x2 ^2 +

1 . 5 4 7 4 4 7 8 9 5 2 9 4 9 9 2 e −16 ∗ x1 ^4 ∗ x2 +

8 . 3 7 0 9 2 4 1 1 5 6 5 3 6 2 1 e −20 ∗ x1 ^5 −

0 . 0 2 8 6 7 6 9 3 4 7 5 7 9 1 4 2 4 3 ∗ x2 ^6 +

0 . 1 2 2 8 2 0 2 1 3 4 0 7 4 2 4 5 4 ∗ x1 ∗ x2 ^5 −

0 . 3 8 1 9 5 2 1 8 0 7 1 1 2 9 0 3 ∗ x1 ^2 ∗ x2 ^4 +

0 . 2 4 6 2 7 9 2 5 1 7 5 3 4 6 3 9 6 ∗ x1 ^3 ∗ x2 ^3 −

0 . 3 4 5 2 4 5 8 7 1 3 7 4 2 7 3 5 4 ∗ x1 ^4 ∗ x2 ^2 +

0 . 1 0 7 7 1 5 7 3 5 3 5 3 6 9 3 7 8 ∗ x1 ^5 ∗ x2 +

3 . 9 7 8 1 3 0 8 8 8 9 3 3 9 1 8 e −6 ∗ x1 ^6 −

9 . 7 7 0 9 7 7 1 0 1 7 9 5 8 6 8 e −19 ∗ x2 ^7 +

6 . 6 6 3 7 4 2 3 9 6 8 8 5 9 2 0 6 e −18 ∗ x1 ∗ x2 ^6 −

1 . 3 6 0 3 2 3 4 7 8 6 5 1 5 4 3 1 e −17 ∗ x1 ^2 ∗ x2 ^5 +

3 . 4 1 4 5 5 2 7 4 7 3 1 2 8 1 4 e −17 ∗ x1 ^3 ∗ x2 ^4 −

1 . 6 5 9 9 0 9 9 6 7 3 2 8 1 6 4 5 e −17 ∗ x1 ^4 ∗ x2 ^3 +

4 . 0 6 5 5 4 7 5 4 4 8 2 1 1 5 2 e −17 ∗ x1 ^5 ∗ x2 ^2 +

2 . 4 7 4 2 3 7 6 7 4 0 6 0 6 3 2 4 e −20 ∗ x1 ^6 ∗ x2 −

1 . 0 7 2 3 5 4 3 1 5 9 8 9 7 1 0 7 e −22 ∗ x1 ^7 +

0 . 0 0 2 6 8 0 0 1 6 8 0 7 0 4 9 0 4 6 ∗ x2 ^8 −

0 . 0 1 4 2 0 4 6 3 9 1 9 0 9 9 9 4 3 5 ∗ x1 ∗ x2 ^7 +

0 . 0 4 4 2 3 4 1 0 0 0 6 9 3 7 2 3 2 6 ∗ x1 ^2 ∗ x2 ^6 −

0 . 0 4 9 1 0 4 7 1 8 7 9 1 7 6 6 2 9 ∗ x1 ^3 ∗ x2 ^5 +

0 . 0 6 1 3 5 0 4 5 7 9 2 3 6 8 5 2 7 ∗ x1 ^4 ∗ x2 ^4 −

0 . 0 0 9 9 0 2 6 3 2 8 3 3 0 3 2 1 7 ∗ x1 ^5 ∗ x2 ^3 +

0 . 0 2 7 0 4 0 5 7 3 2 6 1 3 9 7 6 5 ∗ x1 ^6 ∗ x2 ^2 −

8 . 0 6 2 1 2 4 6 2 7 2 1 5 0 4 4 e −9 ∗ x1 ^ 8 .

A.2 Invariants in Sec. 6.2
Computed invariant with 𝐻1:

−0 . 3772320184363528 + 0 . 9 1 6 7 8 4 4 4 2 7 0 7 9 8 4 4 ∗ x2

^2 + 0 . 1 3 1 1 5 7 5 0 0 2 6 2 2 6 3 3 ∗ x1 ^ 2 .

Computed invariant with 𝐻2:

https://pretalx.com/juliacon2019/talk/QZBKAU/

Cone-Based Abstract Interpretation for Nonlinear Positive Invariant Synthesis HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

−0 . 37162601840205317 + 0 . 9 1 8 0 9 3 3 8 3 9 4 1 4 4 0 7 ∗ x2

^2 + 0 . 0 5 8 1 8 6 6 9 6 5 2 1 5 4 4 1 2 ∗ x1 ∗ x2 +

0 . 1 2 4 9 5 1 7 8 7 3 3 2 1 5 8 7 8 ∗ x1 ^2 ,

−0 . 36289098847525536 + 0 . 8 5 8 1 2 5 4 7 3 6 3 4 7 1 2 7 ∗ x2

^2 − 0 . 2 9 6 8 4 0 4 6 1 2 1 4 4 7 7 4 ∗ x1 ∗ x2 +

0 . 2 0 9 3 2 4 0 1 3 3 5 8 7 8 3 9 8 ∗ x1 ^2 ,

−0 . 3654505214636404 + 0 . 8 6 5 8 4 8 4 4 5 4 1 3 3 3 0 6 ∗ x2

^2 − 0 . 2 7 3 1 5 5 6 5 3 9 9 3 2 1 6 6 ∗ x1 ∗ x2 +

0 . 2 0 5 2 7 6 3 3 7 2 3 5 4 6 8 6 8 ∗ x1 ^2 ,

−0 . 35555787489000495 + 0 . 5 6 4 2 8 5 8 4 9 0 1 4 2 2 1 5 ∗ x2

^2 − 0 . 6 8 6 8 7 7 5 9 4 7 8 0 1 2 8 2 ∗ x1 ∗ x2 +

0 . 2 8 8 7 2 0 0 1 6 6 1 6 5 6 3 8 ∗ x1 ^2 ,

−0 . 3466720162664112 + 0 . 4 0 5 6 4 5 1 2 9 1 5 6 3 5 1 3 ∗ x2

^2 − 0 . 7 8 9 2 2 1 4 1 2 2 3 2 1 2 6 6 ∗ x1 ∗ x2 +

0 . 3 0 3 9 7 3 8 5 5 4 6 1 0 1 8 ∗ x1 ^2 ,

−0 . 3157508057881853 − 0 . 0 0 6 4 8 3 3 5 0 1 5 0 5 1 7 5 0 8 ∗

x2 ^2 − 0 . 8 9 8 0 8 2 7 7 4 4 9 0 8 4 9 8 ∗ x1 ∗ x2 +

0 . 3 0 6 1 1 5 5 4 1 8 7 5 5 3 9 ∗ x1 ^2 ,

−0 . 27099616631001205 − 0 . 3 4 9 5 3 9 8 4 8 2 9 1 2 5 4 2 3 ∗

x2 ^2 − 0 . 8 5 5 9 1 4 7 9 9 9 1 0 7 4 7 5 ∗ x1 ∗ x2 +

0 . 2 6 7 9 4 1 8 3 6 2 1 7 3 9 3 7 ∗ x1 ^2 ,

−0 . 3305122564921238 + 0 . 1 7 6 4 5 1 8 7 9 8 9 0 2 2 8 8 ∗ x2

^2 − 0 . 8 7 3 5 3 9 3 4 7 8 5 7 0 3 5 9 ∗ x1 ∗ x2 +

0 . 3 1 0 7 3 3 6 3 2 1 3 0 7 9 0 6 ∗ x1 ^2 ,

−0 . 36139139688398925 + 0 . 6 7 1 7 8 3 6 2 7 8 8 3 4 4 ∗ x2 ^2

− 0 . 5 8 6 8 7 6 1 0 7 4 4 1 5 5 4 6 ∗ x1 ∗ x2 +

0 . 2 7 1 4 3 9 5 8 8 2 7 0 1 1 8 8 ∗ x1 ^ 2 .

Single SOS polynomial:

−1 . 3180825884858496 − 4 . 1 0 5 3 8 2 6 6 2 4 9 8 5 1 1 e −17 ∗

x2 + 1 . 0 6 2 1 0 5 3 4 8 3 7 7 1 2 7 2 e −16 ∗ x1 −

0 . 5 8 8 0 0 6 3 5 2 1 4 0 2 9 5 4 ∗ x2 ^2 −

0 . 3 1 3 1 0 7 5 5 5 2 3 8 9 9 7 7 ∗ x1 ∗ x2 −

0 . 3 7 6 3 3 8 6 0 6 3 3 4 9 3 2 2 7 ∗ x1 ^2 +

1 . 2 7 6 2 4 3 1 7 1 8 7 2 9 7 0 4 e −16 ∗ x2 ^3 −

4 . 5 7 3 3 9 8 2 6 0 3 0 5 8 4 2 5 e −17 ∗ x1 ∗ x2 ^2 +

1 . 4 4 4 8 3 4 2 9 7 5 7 5 5 3 6 4 e −16 ∗ x1 ^2 ∗ x2 −

1 . 0 5 2 7 2 2 1 5 4 9 8 5 2 1 3 1 e −17 ∗ x1 ^3 +

1 . 0 7 9 9 0 5 4 6 7 8 0 2 2 0 2 2 ∗ x2 ^4 +

0 . 3 5 6 5 0 8 9 7 3 1 9 7 1 2 7 7 7 ∗ x1 ^2 ∗ x2 ^2 −

0 . 2 1 1 2 5 7 1 4 7 7 3 8 3 5 3 7 5 ∗ x1 ^3 ∗ x2 +

0 . 2 3 6 2 0 7 0 6 8 6 3 0 3 6 6 1 ∗ x1 ^ 4 .

A.3 Invariants in Sec. 6.3
Computed invariant with 𝐻1:

−0 . 5367809350302005 + 0 . 7 3 6 4 7 0 9 8 8 1 4 6 8 1 9 1 ∗ x2

+ 0 . 4 1 1 6 7 5 4 9 2 8 4 1 3 2 9 1 5 ∗ x1 ,

−0 . 5826353338500777 + 0 . 0 0 5 1 1 8 3 0 6 5 3 9 4 5 8 8 5 7 ∗

x2 + 0 . 8 1 2 7 1 7 5 8 3 5 9 6 8 9 5 4 ∗ x1 ,

−0 . 5254628183196984 + 0 . 0 9 4 3 0 8 5 6 3 5 1 0 3 9 7 6 7 ∗ x2

+ 0 . 8 4 5 5 7 3 6 0 4 9 6 4 1 8 3 3 ∗ x1 ,

−0 . 5785554785195461 + 0 . 0 1 1 2 4 7 9 1 5 8 0 5 6 7 5 1 4 5 ∗

x2 + 0 . 8 1 5 5 6 5 4 7 4 1 7 4 2 3 6 7 ∗ x1 ,

−0 . 5254539445790127 + 0 . 2 2 7 5 7 7 7 8 7 6 8 3 4 3 1 3 4 ∗ x2

+ 0 . 8 1 9 8 2 1 0 1 8 6 8 6 0 7 3 4 ∗ x1 ,

−0 . 6209349329339116 − 0 . 7 2 7 0 2 9 0 1 3 0 2 3 1 6 5 2 ∗ x2

− 0 . 2 9 3 0 3 3 4 8 4 9 2 0 9 5 7 6 ∗ x1 ,

−0 . 6182634217029666 − 0 . 7 2 7 3 0 9 3 1 0 1 4 6 3 1 1 8 ∗ x2

− 0 . 2 9 7 9 4 5 4 7 9 5 0 6 9 6 5 7 6 ∗ x1 ,

−0 . 5254420058132805 − 0 . 7 1 4 6 5 0 9 2 7 5 1 5 5 3 3 7 ∗ x2

− 0 . 4 6 1 7 1 9 3 4 1 5 1 3 9 8 0 4 ∗ x1 ,

−0 . 5254551868283345 − 0 . 2 7 8 5 0 3 5 9 0 4 1 2 8 7 8 6 ∗ x2

− 0 . 8 0 3 9 4 8 1 3 0 6 4 1 7 3 2 1 ∗ x1 ,

−0 . 5618213044784532 − 0 . 0 2 1 6 9 6 9 4 9 1 4 0 1 4 7 6 1 6 ∗

x2 − 0 . 8 2 6 9 7 4 0 4 0 8 4 5 3 8 1 7 ∗ x1 .

Computed invariant with 𝐻2:

−0 . 2702171797894011 + 0 . 6 8 0 8 0 1 9 8 7 3 0 0 6 5 8 4 ∗ x2

^2 + 1 . 5 7 1 6 6 0 1 9 9 8 8 8 2 4 6 e −8 ∗ x1 ∗ x2 +

0 . 6 8 0 8 0 1 9 7 5 4 9 2 2 4 ∗ x1 ^ 2 .

A.4 Invariants in Sec. 6.4
Computed invariant with 𝐻1:

−0 . 5494478511158494 − 0 . 0 1 9 6 7 9 7 8 6 6 3 8 9 2 9 2 7 ∗ x2

− 0 . 8 3 5 2 9 6 2 1 3 8 6 7 8 8 3 8 ∗ x1 ,

−0 . 7084226824177525 − 0 . 0 1 4 0 9 1 8 6 5 7 7 8 7 6 2 7 8 7 ∗

x2 − 0 . 7 0 5 6 4 7 7 3 2 4 8 0 5 2 7 1 ∗ x1 ,

−0 . 9981365603664998 − 7 . 1 5 6 7 3 2 5 7 6 6 2 1 8 3 8 e −5 ∗

x2 − 0 . 0 6 1 0 1 9 6 8 3 2 0 0 1 8 0 3 6 ∗ x1 ,

−0 . 5724744460351411 − 0 . 8 0 6 3 2 5 8 4 5 8 4 6 5 7 1 6 ∗ x2

− 0 . 1 4 8 6 9 9 8 2 8 3 6 7 6 5 0 8 3 ∗ x1 ,

−0 . 9219306401837807 − 0 . 3 8 7 3 5 4 9 6 7 9 9 2 9 5 8 7 7 ∗ x2

− 0 . 0 0 0 1 5 3 1 7 1 4 6 6 0 7 0 3 7 8 3 ∗ x1 ,

−0 . 5612419612399377 − 0 . 8 1 1 3 2 0 1 7 7 7 0 2 9 9 7 7 ∗ x2

− 0 . 1 6 3 6 0 6 3 2 6 8 8 1 0 9 7 0 5 ∗ x1 ,

−0 . 5254741199710673 − 0 . 8 1 4 3 0 1 1 6 0 4 4 8 5 6 1 8 ∗ x2

− 0 . 2 4 6 5 5 7 4 3 6 1 7 4 1 2 5 3 2 ∗ x1 ,

−0 . 5254687744128949 − 0 . 7 1 4 6 3 7 0 0 2 8 4 1 6 5 3 4 ∗ x2

− 0 . 4 6 1 7 1 0 4 3 0 1 2 5 3 2 0 7 6 ∗ x1 ,

−0 . 5803704215825563 − 0 . 0 1 8 5 9 6 7 4 8 2 7 1 7 6 3 6 6 3 ∗

x2 − 0 . 8 1 4 1 4 0 2 4 2 6 5 2 2 1 1 9 ∗ x1 ,

−0 . 5254709394084618 − 0 . 2 7 8 4 9 9 9 6 4 1 9 0 9 6 7 6 ∗ x2

− 0 . 8 0 3 9 3 9 0 9 0 8 4 1 3 5 1 2 ∗ x1 ,

−0 . 5406994519179427 − 0 . 0 1 9 9 9 5 8 2 7 8 7 6 5 2 7 0 6 ∗ x2

− 0 . 8 4 0 9 7 8 1 6 2 3 5 8 0 7 7 3 ∗ x1 .

Computed invariant with 𝐻2:

−0 . 6267041594156744 + 0 . 4 0 5 7 5 7 5 8 6 3 2 5 0 4 6 7 7 ∗ x2

^2 − 0 . 6 3 0 4 1 9 2 5 0 6 2 5 2 3 6 5 ∗ x1 ∗ x2 +

0 . 2 1 2 5 4 2 3 3 9 6 6 8 7 8 3 3 3 ∗ x1 ^2 ,

−0 . 6133900277700439 + 0 . 3 1 3 7 4 9 6 1 1 1 5 7 2 3 8 3 ∗ x2

^2 − 0 . 6 4 4 8 0 7 4 9 5 4 4 2 1 6 7 8 ∗ x1 ∗ x2 +

0 . 3 3 0 9 6 3 9 6 9 5 6 8 5 0 9 9 ∗ x1 ^2 ,

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Guillaume O. Berger, Masoumeh Ghanbarpour, and Sriram Sankaranarayanan

−0 . 6167085200410728 + 0 . 1 1 3 1 4 3 2 2 1 8 3 0 2 8 6 8 1 ∗ x2

^2 − 0 . 6 8 6 8 5 1 5 7 5 1 7 1 7 2 5 1 ∗ x1 ∗ x2 +

0 . 3 6 7 5 6 5 1 3 2 1 1 5 0 2 ∗ x1 ^2 ,

−0 . 6332960744235467 + 0 . 0 5 4 8 9 4 4 6 8 2 7 6 4 9 6 8 7 ∗ x2

^2 − 0 . 6 4 6 8 8 4 4 2 3 6 6 1 6 7 3 3 ∗ x1 ∗ x2 +

0 . 4 2 1 2 6 3 8 3 8 8 1 8 7 0 3 8 ∗ x1 ^2 ,

−0 . 6785689434622717 + 0 . 2 5 8 1 3 9 5 9 5 1 2 2 5 1 6 9 4 ∗ x2

^2 − 0 . 5 9 8 5 6 9 5 3 6 8 7 6 4 5 6 6 ∗ x1 ∗ x2 +

0 . 3 3 8 5 5 9 6 6 6 7 0 8 8 1 4 8 ∗ x1 ^2 ,

−0 . 7387678166947391 + 0 . 3 0 7 5 7 1 7 1 9 5 9 8 8 7 8 4 7 ∗ x2

^2 − 0 . 5 4 9 3 8 9 9 6 2 3 5 2 1 2 ∗ x1 ∗ x2 +

0 . 2 4 0 4 0 0 5 3 9 9 0 3 3 3 1 3 5 ∗ x1 ^2 ,

−0 . 7639271328813163 + 0 . 3 2 2 3 9 4 1 4 8 4 5 3 6 9 2 8 5 ∗ x2

^2 − 0 . 5 2 3 5 8 2 8 2 0 6 6 2 9 4 8 5 ∗ x1 ∗ x2 +

0 . 1 9 5 8 0 1 8 8 6 0 9 1 9 9 0 8 ∗ x1 ^2 ,

−0 . 7245646226772867 + 0 . 1 1 9 7 1 5 3 4 1 0 2 6 7 6 1 3 7 ∗ x2

^2 − 0 . 5 4 8 7 2 6 7 5 3 7 9 8 1 9 5 8 ∗ x1 ∗ x2 +

0 . 3 9 9 4 6 6 2 6 1 8 4 6 3 0 5 8 5 ∗ x1 ^2 ,

−0 . 7561425268451387 + 0 . 1 3 8 7 7 8 9 9 4 0 4 7 3 2 3 8 6 ∗ x2

^2 − 0 . 5 2 4 0 9 4 0 4 3 7 6 4 0 2 0 8 ∗ x1 ∗ x2 +

0 . 3 6 6 4 8 9 1 5 8 3 6 4 2 5 3 1 6 ∗ x1 ^2 ,

−0 . 8040538669652494 + 0 . 2 4 9 7 1 4 7 0 2 4 8 0 6 3 6 3 5 ∗ x2

^2 − 0 . 4 8 5 4 1 1 7 2 5 6 8 3 6 5 1 8 ∗ x1 ∗ x2 +

0 . 2 3 5 6 1 7 0 6 8 4 6 5 0 3 1 9 ∗ x1 ^2 ,

−0 . 6797764489635506 + 0 . 0 2 4 2 7 6 7 3 3 3 5 0 1 9 0 8 2 3 ∗

x2 ^2 − 0 . 5 7 4 7 8 4 0 3 9 0 4 0 1 8 1 9 ∗ x1 ∗ x2 +

0 . 4 5 4 9 0 4 3 0 6 5 4 9 1 9 4 6 ∗ x1 ^2 ,

−0 . 6929429879867485 + 0 . 0 5 5 7 1 4 2 4 2 4 4 5 1 5 8 5 4 ∗ x2

^2 − 0 . 5 6 6 6 8 2 3 4 7 3 3 7 0 0 7 8 ∗ x1 ∗ x2 +

0 . 4 4 2 2 6 3 5 5 9 2 1 0 3 1 7 3 5 ∗ x1 ^2 ,

−0 . 6797412642498962 + 0 . 0 2 4 2 6 5 9 5 4 5 6 0 2 7 9 8 5 3 ∗

x2 ^2 − 0 . 5 7 4 8 1 4 4 0 1 7 1 3 0 0 7 1 ∗ x1 ∗ x2 +

0 . 4 5 4 9 1 9 0 9 2 4 8 6 2 8 9 2 6 ∗ x1 ^2 ,

−0 . 6322792310032767 − 0 . 0 4 2 6 8 0 6 6 6 0 7 9 1 4 2 6 9 ∗ x2

^2 − 0 . 6 3 7 7 1 7 5 0 7 5 7 1 4 1 4 7 ∗ x1 ∗ x2 +

0 . 4 3 7 8 5 5 8 1 5 6 7 6 6 3 1 8 4 ∗ x1 ^2 ,

−0 . 6478252149391743 + 0 . 3 9 4 6 5 1 3 0 2 0 7 8 0 2 6 6 ∗ x2

^2 − 0 . 6 1 6 4 7 1 5 9 4 1 0 3 5 3 2 5 ∗ x1 ∗ x2 +

0 . 2 1 1 0 3 4 6 2 8 2 4 9 9 1 5 9 8 ∗ x1 ^ 2 .

Invariant after removing four polynomials:

−0 . 6133900277700439 + 0 . 3 1 3 7 4 9 6 1 1 1 5 7 2 3 8 3 ∗ x2

^2 − 0 . 6 4 4 8 0 7 4 9 5 4 4 2 1 6 7 8 ∗ x1 ∗ x2 +

0 . 3 3 0 9 6 3 9 6 9 5 6 8 5 0 9 9 ∗ x1 ^2 ,

−0 . 6167085200410728 + 0 . 1 1 3 1 4 3 2 2 1 8 3 0 2 8 6 8 1 ∗ x2

^2 − 0 . 6 8 6 8 5 1 5 7 5 1 7 1 7 2 5 1 ∗ x1 ∗ x2 +

0 . 3 6 7 5 6 5 1 3 2 1 1 5 0 2 ∗ x1 ^2 ,

−0 . 6785689434622717 + 0 . 2 5 8 1 3 9 5 9 5 1 2 2 5 1 6 9 4 ∗ x2

^2 − 0 . 5 9 8 5 6 9 5 3 6 8 7 6 4 5 6 6 ∗ x1 ∗ x2 +

0 . 3 3 8 5 5 9 6 6 6 7 0 8 8 1 4 8 ∗ x1 ^2 ,

−0 . 7387678166947391 + 0 . 3 0 7 5 7 1 7 1 9 5 9 8 8 7 8 4 7 ∗ x2

^2 − 0 . 5 4 9 3 8 9 9 6 2 3 5 2 1 2 ∗ x1 ∗ x2 +

0 . 2 4 0 4 0 0 5 3 9 9 0 3 3 3 1 3 5 ∗ x1 ^2 ,

−0 . 7245646226772867 + 0 . 1 1 9 7 1 5 3 4 1 0 2 6 7 6 1 3 7 ∗ x2

^2 − 0 . 5 4 8 7 2 6 7 5 3 7 9 8 1 9 5 8 ∗ x1 ∗ x2 +

0 . 3 9 9 4 6 6 2 6 1 8 4 6 3 0 5 8 5 ∗ x1 ^2 ,

−0 . 8040538669652494 + 0 . 2 4 9 7 1 4 7 0 2 4 8 0 6 3 6 3 5 ∗ x2

^2 − 0 . 4 8 5 4 1 1 7 2 5 6 8 3 6 5 1 8 ∗ x1 ∗ x2 +

0 . 2 3 5 6 1 7 0 6 8 4 6 5 0 3 1 9 ∗ x1 ^2 ,

−0 . 6797764489635506 + 0 . 0 2 4 2 7 6 7 3 3 3 5 0 1 9 0 8 2 3 ∗

x2 ^2 − 0 . 5 7 4 7 8 4 0 3 9 0 4 0 1 8 1 9 ∗ x1 ∗ x2 +

0 . 4 5 4 9 0 4 3 0 6 5 4 9 1 9 4 6 ∗ x1 ^2 ,

−0 . 6929429879867485 + 0 . 0 5 5 7 1 4 2 4 2 4 4 5 1 5 8 5 4 ∗ x2

^2 − 0 . 5 6 6 6 8 2 3 4 7 3 3 7 0 0 7 8 ∗ x1 ∗ x2 +

0 . 4 4 2 2 6 3 5 5 9 2 1 0 3 1 7 3 5 ∗ x1 ^2 ,

−0 . 6797412642498962 + 0 . 0 2 4 2 6 5 9 5 4 5 6 0 2 7 9 8 5 3 ∗

x2 ^2 − 0 . 5 7 4 8 1 4 4 0 1 7 1 3 0 0 7 1 ∗ x1 ∗ x2 +

0 . 4 5 4 9 1 9 0 9 2 4 8 6 2 8 9 2 6 ∗ x1 ^2 ,

−0 . 6322792310032767 − 0 . 0 4 2 6 8 0 6 6 6 0 7 9 1 4 2 6 9 ∗ x2

^2 − 0 . 6 3 7 7 1 7 5 0 7 5 7 1 4 1 4 7 ∗ x1 ∗ x2 +

0 . 4 3 7 8 5 5 8 1 5 6 7 6 6 3 1 8 4 ∗ x1 ^2 ,

−0 . 6478252149391743 + 0 . 3 9 4 6 5 1 3 0 2 0 7 8 0 2 6 6 ∗ x2

^2 − 0 . 6 1 6 4 7 1 5 9 4 1 0 3 5 3 2 5 ∗ x1 ∗ x2 +

0 . 2 1 1 0 3 4 6 2 8 2 4 9 9 1 5 9 8 ∗ x1 ^ 2 .

Single SOS polynomial:

Cone-Based Abstract Interpretation for Nonlinear Positive Invariant Synthesis HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

−0 . 28675786254623603 − 0 . 1 8 2 8 0 0 8 6 9 0 2 7 1 1 7 7 3 ∗

x2 + 0 . 1 2 1 4 0 1 0 2 4 1 7 7 6 5 5 1 2 ∗ x1 −

0 . 1 5 4 6 0 7 5 4 3 8 0 0 6 1 7 6 1 ∗ x2 ^2 +

0 . 1 3 0 9 4 0 2 3 7 3 3 9 5 7 5 7 2 ∗ x1 ∗ x2 +

0 . 0 1 7 9 8 6 2 0 9 9 8 9 8 1 5 7 ∗ x1 ^2 +

2 . 2 5 1 8 5 9 3 4 6 9 1 6 2 8 3 8 ∗ x2 ^3 −

5 . 2 6 3 5 3 9 8 0 9 4 2 6 8 0 1 ∗ x1 ∗ x2 ^2 +

5 . 3 2 4 5 4 6 7 7 0 7 0 2 8 7 3 ∗ x1 ^2 ∗ x2 −

2 . 1 1 9 3 0 8 2 8 6 9 2 5 8 0 7 ∗ x1 ^3 −

4 . 2 3 0 2 8 7 4 4 2 0 9 5 7 3 7 ∗ x2 ^4 +

1 5 . 5 8 7 3 5 7 1 8 2 7 5 1 1 0 7 ∗ x1 ∗ x2 ^3 −

2 2 . 3 9 2 4 7 7 8 4 2 1 0 4 4 9 8 ∗ x1 ^2 ∗ x2 ^2 +

1 4 . 8 8 9 4 7 0 2 3 3 6 6 6 1 4 7 ∗ x1 ^3 ∗ x2 −

3 . 8 3 3 7 2 6 4 7 8 4 5 8 3 3 2 ∗ x1 ^4 −

0 . 0 3 8 8 9 5 4 7 3 7 6 5 6 5 6 4 9 6 ∗ x2 ^5 +

0 . 6 8 3 0 5 1 6 6 5 3 5 3 7 3 5 ∗ x1 ∗ x2 ^4 −

2 . 7 9 9 0 9 1 1 6 0 9 4 8 9 3 3 ∗ x1 ^2 ∗ x2 ^3 +

3 . 6 1 5 0 9 4 6 2 7 5 3 8 0 0 3 4 ∗ x1 ^3 ∗ x2 ^2 −

1 . 8 0 9 8 4 1 7 5 3 8 3 7 6 0 2 ∗ x1 ^4 ∗ x2 +

0 . 5 9 5 3 4 4 3 3 6 4 3 0 0 4 6 5 ∗ x1 ^5 +

6 . 3 6 6 0 9 6 8 3 9 1 0 3 9 4 2 5 ∗ x2 ^6 −

2 6 . 9 2 1 7 6 5 3 9 8 8 9 3 3 1 7 ∗ x1 ∗ x2 ^5 +

5 1 . 0 9 0 2 0 2 7 1 5 4 6 6 2 2 ∗ x1 ^2 ∗ x2 ^4 −

6 0 . 6 7 9 3 2 7 8 0 6 5 5 0 3 5 ∗ x1 ^3 ∗ x2 ^3 +

5 0 . 3 0 0 1 6 0 9 9 5 4 0 6 7 9 ∗ x1 ^4 ∗ x2 ^2 −

2 6 . 4 6 2 8 7 7 3 8 5 1 7 3 2 4 7 ∗ x1 ^5 ∗ x2 +

6 . 0 3 9 7 8 3 4 5 8 3 8 8 7 5 5 ∗ x1 ^ 6 .

A.5 Invariants in Sec. 6.5
Computed invariant:

−0 . 871872297547406 − 0 . 2 1 1 7 7 4 6 1 3 1 9 0 3 4 8 1 3 ∗ x3

^2 + 0 . 1 0 5 0 1 5 4 5 3 6 2 5 8 4 4 4 4 ∗ x2 ^2 +

0 . 4 2 8 9 0 7 8 7 4 1 1 4 2 9 4 9 3 ∗ x1 ^2 ,

−0 . 8535189933667975 − 0 . 1 7 8 8 8 0 9 7 8 2 4 4 2 0 4 6 2 ∗ x3

^2 + 0 . 0 0 7 8 0 7 1 1 8 7 8 9 0 7 2 9 9 2 ∗ x2 ^2 +

0 . 4 8 9 3 3 2 1 6 9 8 8 1 2 9 6 9 ∗ x1 ^2 ,

−0 . 8650501279681401 − 0 . 2 0 0 0 9 6 0 6 7 6 4 0 8 7 6 ∗ x3 ^2

+ 0 . 0 8 7 7 1 1 8 0 7 3 3 0 1 9 9 4 ∗ x2 ^2 +

0 . 4 5 1 6 1 5 4 1 0 1 3 5 4 7 4 0 7 ∗ x1 ^2 ,

−0 . 6906501877035409 + 0 . 6 1 2 1 2 0 2 8 9 1 7 8 7 4 9 8 ∗ x3

^2 − 0 . 0 0 3 0 5 5 0 6 4 9 6 7 5 0 0 6 2 6 6 ∗ x2 ^2 +

0 . 3 8 5 0 9 9 6 4 4 7 3 9 9 4 5 0 7 ∗ x1 ^2 ,

−0 . 3329552584068616 + 0 . 9 3 1 6 1 1 3 0 1 5 9 6 6 5 6 4 ∗ x3

^2 + 0 . 0 2 8 9 9 7 3 9 4 1 3 8 4 6 0 0 4 ∗ x2 ^2 +

0 . 1 4 2 8 2 9 7 2 2 9 9 1 3 3 8 2 ∗ x1 ^2 ,

−0 . 33337674127559513 + 0 . 9 3 3 2 4 2 7 7 5 0 4 4 4 0 0 2 ∗ x3

^2 − 0 . 0 0 3 2 3 0 8 7 2 2 1 1 7 3 1 5 8 9 4 ∗ x2 ^2 +

0 . 1 3 3 8 1 8 6 5 5 9 0 6 5 7 9 2 4 ∗ x1 ^2 ,

−0 . 33307532808420715 + 0 . 9 3 2 1 4 8 3 4 6 2 5 2 8 0 7 5 ∗ x3

^2 − 0 . 0 0 2 2 8 7 3 8 5 4 8 8 9 8 4 7 4 9 7 ∗ x2 ^2 +

0 . 1 4 1 9 6 8 4 9 7 4 4 7 0 7 0 2 7 ∗ x1 ^ 2 .

Invariant after removing all but one polynomial:

−0 . 3329552584068616 + 0 . 9 3 1 6 1 1 3 0 1 5 9 6 6 5 6 4 ∗ x3

^2 + 0 . 0 2 8 9 9 7 3 9 4 1 3 8 4 6 0 0 4 ∗ x2 ^2 +

0 . 1 4 2 8 2 9 7 2 2 9 9 1 3 3 8 2 ∗ x1 ^2 ,

A.6 Invariant in Sec. 6.6
Computed invariant:

−0 . 2965286550303196 + 0 . 3 1 2 0 8 1 7 0 9 7 0 3 8 9 8 7 6 ∗ x4

^2 + 0 . 7 0 8 2 1 0 5 0 7 2 1 7 0 9 2 8 ∗ x3 ^2 +

0 . 2 1 6 4 0 2 2 5 6 1 8 5 0 7 1 4 5 ∗ x2 ^2 +

0 . 5 1 6 0 2 6 8 4 4 4 5 6 2 9 4 ∗ x1 ^2 ,

−0 . 2931285206057089 + 0 . 1 5 2 9 3 5 7 1 6 4 5 3 8 7 9 3 2 ∗ x4

^2 + 0 . 7 3 2 2 8 1 1 5 5 7 9 3 0 2 0 3 ∗ x3 ^2 +

0 . 2 3 6 7 9 9 9 9 5 5 1 9 0 8 0 3 2 ∗ x2 ^2 +

0 . 5 4 6 2 3 8 4 1 6 8 4 0 8 9 6 4 ∗ x1 ^2 ,

−0 . 30196009738646706 − 0 . 1 7 9 2 2 2 3 6 8 5 3 4 3 7 7 6 2 ∗

x4 ^2 + 0 . 6 6 7 4 8 1 0 2 9 2 3 5 7 3 0 7 ∗ x3 ^2 +

0 . 2 6 3 1 0 0 4 5 9 9 6 0 3 8 7 3 ∗ x2 ^2 +

0 . 6 0 1 6 2 0 0 3 4 3 9 2 4 1 0 6 ∗ x1 ^2 ,

−0 . 27948055374478004 − 0 . 1 9 4 1 5 0 1 6 0 5 4 9 8 6 3 0 3 ∗

x4 ^2 + 0 . 7 1 7 7 6 4 3 3 3 1 8 4 2 4 9 6 ∗ x3 ^2 +

0 . 2 5 0 4 3 7 5 3 4 3 2 7 2 8 8 1 6 ∗ x2 ^2 +

0 . 5 5 3 4 3 6 3 0 0 4 4 0 8 1 0 6 ∗ x1 ^2 ,

−0 . 28404229752500015 − 0 . 1 0 3 8 4 9 9 7 5 2 8 4 3 3 6 0 5 ∗

x4 ^2 + 0 . 7 3 6 1 3 0 0 0 2 7 4 7 2 6 2 3 ∗ x3 ^2 +

0 . 2 5 0 5 9 6 8 7 5 1 3 5 1 2 8 0 7 ∗ x2 ^2 +

0 . 5 5 1 2 2 4 9 8 2 2 6 9 4 7 8 4 ∗ x1 ^2 ,

−0 . 28351426258665674 − 0 . 1 5 6 5 1 2 9 5 0 6 0 3 6 2 8 ∗ x4

^2 + 0 . 7 3 4 0 2 0 2 6 2 8 3 2 5 8 5 4 ∗ x3 ^2 +

0 . 2 5 3 5 4 2 0 1 9 6 2 7 5 7 2 8 ∗ x2 ^2 +

0 . 5 4 0 4 2 0 2 5 9 8 3 2 7 0 1 1 ∗ x1 ^2 ,

−0 . 28737838494253265 + 0 . 0 9 5 2 1 6 8 7 5 4 3 9 5 3 7 8 4 ∗

x4 ^2 + 0 . 7 4 9 4 4 5 3 9 9 9 7 4 3 3 5 9 ∗ x3 ^2 +

0 . 2 3 8 8 0 8 6 6 8 4 7 7 7 8 8 7 ∗ x2 ^2 +

0 . 5 3 8 1 9 0 8 7 9 5 3 6 7 3 6 6 ∗ x1 ^2 ,

−0 . 28698981149979436 + 0 . 3 0 3 7 7 9 7 3 6 7 0 2 8 8 2 6 ∗ x4

^2 + 0 . 7 3 3 0 5 3 4 7 1 7 0 0 6 8 4 5 ∗ x3 ^2 +

0 . 2 0 6 9 4 7 0 8 8 0 2 7 9 2 7 2 7 ∗ x2 ^2 +

0 . 4 9 5 1 3 6 5 7 7 1 6 6 7 1 9 8 ∗ x1 ^2 ,

−0 . 3653836818924293 + 0 . 6 4 2 9 3 4 3 9 5 9 9 3 2 7 4 6 ∗ x4

^2 + 0 . 3 6 2 8 9 8 1 8 6 3 5 7 9 5 3 9 ∗ x3 ^2 +

0 . 1 4 4 3 9 6 6 3 4 3 7 2 0 3 4 3 4 ∗ x2 ^2 +

0 . 5 4 8 2 5 6 0 0 3 8 6 6 4 7 1 1 ∗ x1 ^2 ,

−0 . 328972906493326 + 0 . 5 4 9 8 6 6 4 5 1 6 4 4 4 4 6 1 ∗ x4 ^2

+ 0 . 5 7 1 7 3 1 7 7 9 1 4 3 4 1 3 7 ∗ x3 ^2 +

0 . 1 3 5 6 2 0 2 3 3 6 4 0 3 7 8 9 8 ∗ x2 ^2 +

0 . 4 9 4 1 1 9 0 5 1 5 3 9 3 1 8 2 ∗ x1 ^2 ,

−0 . 29127724671601685 + 0 . 3 1 8 6 4 0 6 6 5 1 9 5 6 3 3 3 3 ∗

x4 ^2 + 0 . 7 2 2 7 1 8 4 5 9 6 4 0 7 0 0 3 ∗ x3 ^2 +

0 . 2 0 2 2 8 9 5 6 7 2 2 9 0 2 7 3 3 ∗ x2 ^2 +

0 . 5 0 0 3 8 2 5 0 4 8 0 4 1 6 2 4 ∗ x1 ^2 ,

HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Guillaume O. Berger, Masoumeh Ghanbarpour, and Sriram Sankaranarayanan

−0 . 3126218214440174 + 0 . 3 2 7 2 2 3 8 9 7 7 2 3 1 2 3 2 7 ∗ x4

^2 + 0 . 6 6 4 7 0 7 4 3 6 0 0 4 0 8 6 2 ∗ x3 ^2 +

0 . 2 2 9 9 3 2 8 0 7 1 0 6 4 7 0 0 2 ∗ x2 ^2 +

0 . 5 4 8 1 6 6 9 8 7 5 6 2 1 1 5 1 ∗ x1 ^2 ,

−0 . 290576915490207 − 0 . 1 8 9 8 5 0 2 4 2 4 5 0 7 6 7 5 4 ∗ x4

^2 + 0 . 7 6 2 2 0 0 7 9 6 6 5 6 1 1 3 3 ∗ x3 ^2 +

0 . 2 6 1 7 1 0 0 8 1 7 8 3 6 4 7 1 3 ∗ x2 ^2 +

0 . 4 7 9 6 6 6 2 5 9 2 8 3 6 4 5 2 ∗ x1 ^2 ,

−0 . 29141740062966376 + 0 . 3 6 8 8 5 7 9 3 2 0 8 4 4 3 6 2 4 ∗

x4 ^2 + 0 . 7 5 0 2 1 0 1 1 1 6 8 4 5 8 8 5 ∗ x3 ^2 +

0 . 2 0 2 0 7 0 4 1 7 2 8 9 0 0 3 2 ∗ x2 ^2 +

0 . 4 1 8 7 7 4 4 7 3 1 1 3 4 9 9 3 ∗ x1 ^2 ,

−0 . 29992514407576354 + 0 . 6 5 9 8 0 6 3 8 2 1 3 9 7 2 9 9 ∗ x4

^2 + 0 . 6 6 2 6 7 1 4 5 6 3 5 0 8 6 1 6 ∗ x3 ^2 +

0 . 1 0 0 5 2 5 2 2 5 0 9 0 5 4 9 4 7 ∗ x2 ^2 +

0 . 1 5 9 5 6 7 1 2 0 9 7 7 7 7 3 8 7 ∗ x1 ^2 ,

−0 . 3422412216869133 + 0 . 8 2 6 4 0 2 9 9 7 1 3 4 1 0 1 8 ∗ x4

^2 + 0 . 4 1 5 7 0 1 3 0 5 9 7 3 5 2 0 2 3 ∗ x3 ^2 +

0 . 0 9 7 7 9 1 0 4 6 1 7 2 5 4 6 5 1 ∗ x2 ^2 +

0 . 1 3 2 5 0 7 9 9 2 2 3 5 9 8 3 6 7 ∗ x1 ^ 2 .

A.7 Invariants in Sec. 6.7
Computed invariant for mode 1:

Not shown because too long .

Computed invariant for mode 2:

−0 . 9002692709392969 + 0 . 4 2 7 4 6 1 1 0 5 6 1 2 4 6 6 2 ∗ x2

− 0 . 0 4 7 0 0 1 8 8 1 8 4 1 9 8 5 3 6 6 ∗ x2 ^2 +

0 . 0 6 7 6 9 8 3 4 6 3 1 8 8 5 1 8 5 ∗ x1 ^2 ,

−0 . 8983116911689949 + 0 . 4 3 2 7 2 0 2 8 2 5 4 7 7 7 5 4 5 ∗ x2

− 0 . 0 3 9 2 0 2 9 5 4 1 0 3 1 0 8 4 8 5 ∗ x2 ^2 +

0 . 0 6 5 2 1 0 3 5 9 3 7 9 9 6 0 4 8 ∗ x1 ^2 ,

−0 . 8994367184266815 + 0 . 4 2 9 6 6 2 6 0 6 3 0 3 5 8 3 0 5 ∗ x2

− 0 . 0 4 3 7 9 8 2 2 6 8 1 3 3 4 7 2 9 ∗ x2 ^2 +

0 . 0 6 6 9 7 2 7 5 2 8 0 4 8 6 4 8 4 ∗ x1 ^2 ,

−0 . 9640047759616999 − 0 . 0 5 1 8 4 5 8 7 1 5 3 9 0 5 2 2 8 ∗ x2

+ 0 . 2 4 1 4 3 1 5 0 5 0 5 8 0 9 0 2 7 ∗ x2 ^2 +

0 . 0 9 8 5 7 8 0 1 9 3 1 8 5 7 8 6 8 ∗ x1 ^ 2 .

A.8 Invariants in Sec. 6.8
Computed invariant for mode 1:

−0 . 9857936879547902 + 0 . 0 9 9 0 9 6 9 1 8 6 5 3 9 9 0 3 4 ∗ x2

^2 + 0 . 0 0 0 3 8 7 6 1 8 9 2 7 2 2 5 2 7 9 ∗ x1 ∗ x2 +

0 . 1 3 5 6 1 1 4 1 2 6 9 5 7 8 0 3 4 ∗ x1 ^2 ,

−0 . 986140544056003 + 0 . 0 9 7 2 0 5 9 8 7 9 3 0 2 5 1 5 ∗ x2 ^2

− 0 . 0 0 3 0 2 7 4 9 2 0 9 3 9 3 4 7 4 8 ∗ x1 ∗ x2 +

0 . 1 3 4 4 1 9 7 0 6 7 8 0 8 7 0 4 5 ∗ x1 ^2 ,

−0 . 9847674411170849 + 0 . 1 0 4 6 7 6 3 3 7 3 8 1 9 2 3 2 4 ∗ x2

^2 + 0 . 0 1 0 8 2 5 8 7 5 4 5 0 4 3 8 6 5 ∗ x1 ∗ x2 +

0 . 1 3 8 4 1 5 1 4 2 7 0 0 3 0 6 4 1 ∗ x1 ^2 ,

−0 . 9834456725348417 + 0 . 1 1 2 3 3 2 1 3 6 1 0 9 2 7 1 7 6 ∗ x2

^2 + 0 . 0 2 5 7 7 8 1 9 2 0 1 4 4 7 0 7 8 8 ∗ x1 ∗ x2 +

0 . 1 3 9 8 2 6 9 8 3 0 4 0 0 6 1 9 4 ∗ x1 ^2 ,

−0 . 9834072352067391 + 0 . 1 1 2 9 6 1 4 5 9 6 4 8 9 0 5 5 1 ∗ x2

^2 + 0 . 0 2 6 9 9 7 5 2 6 8 5 1 2 7 4 8 ∗ x1 ∗ x2 +

0 . 1 3 9 3 5 9 4 3 4 2 7 3 1 7 9 8 7 ∗ x1 ^2 ,

−0 . 9834072342091401 + 0 . 1 1 2 9 5 9 5 3 6 5 8 7 5 5 1 5 2 ∗ x2

^2 + 0 . 0 2 6 9 9 5 3 7 5 0 9 9 4 8 8 9 3 3 ∗ x1 ∗ x2 +

0 . 1 3 9 3 6 1 4 1 6 9 0 6 8 7 8 9 5 ∗ x1 ^2 ,

−0 . 9850066759345267 + 0 . 1 1 8 3 5 2 9 3 3 3 6 4 1 8 7 5 3 ∗ x2

^2 + 0 . 0 3 7 5 5 2 6 5 8 9 8 6 4 2 6 7 9 ∗ x1 ∗ x2 +

0 . 1 1 9 7 6 7 3 9 6 7 8 0 4 0 7 8 2 ∗ x1 ^2 ,

−0 . 9842843646648725 + 0 . 1 1 5 7 5 2 6 6 9 2 0 1 9 2 9 5 ∗ x2

^2 + 0 . 0 3 2 3 8 0 8 9 0 2 2 9 0 4 0 3 5 ∗ x1 ∗ x2 +

0 . 1 2 9 3 7 1 8 9 4 1 5 3 5 2 9 5 4 ∗ x1 ^ 2 .

Computed invariant for mode 2:

−0 . 9817527300995846 + 0 . 1 4 1 2 6 8 4 2 7 7 8 6 6 6 9 6 2 ∗ x2

^2 − 0 . 0 2 2 1 1 3 0 6 2 6 8 2 1 2 6 8 5 4 ∗ x1 ∗ x2 +

0 . 1 2 5 3 6 2 7 5 6 4 7 6 9 9 7 0 4 ∗ x1 ^2 ,

−0 . 9430521512391482 + 0 . 1 2 7 4 8 1 1 4 9 1 9 3 4 9 4 9 ∗ x2

^2 − 0 . 2 8 2 9 0 2 1 2 0 9 8 1 1 4 4 3 7 ∗ x1 ∗ x2 +

0 . 1 1 9 8 6 4 8 6 8 0 3 0 1 7 2 7 ∗ x1 ^2 ,

−0 . 959675273017751 + 0 . 0 6 9 6 3 9 8 9 3 1 7 1 3 2 5 8 6 ∗ x2

^2 − 0 . 2 4 3 3 8 1 8 2 4 9 0 1 8 6 4 3 6 ∗ x1 ∗ x2 +

0 . 1 2 2 2 2 4 9 6 8 5 8 1 8 3 0 2 ∗ x1 ^2 ,

−0 . 9460438614272869 + 0 . 1 1 4 9 7 4 9 9 2 5 9 7 3 0 2 5 2 ∗ x2

^2 − 0 . 2 7 8 0 5 0 6 2 5 8 8 9 5 4 1 5 ∗ x1 ∗ x2 +

0 . 1 2 0 2 8 9 7 0 3 5 3 0 4 0 6 0 6 ∗ x1 ^2 ,

−0 . 944755121852421 + 0 . 1 2 0 1 3 6 9 8 2 8 6 7 4 6 6 4 8 ∗ x2

^2 − 0 . 2 8 0 3 1 9 5 3 1 9 3 5 4 3 5 9 ∗ x1 ∗ x2 +

0 . 1 2 0 1 0 7 5 5 6 3 6 7 6 8 7 2 9 ∗ x1 ^2 ,

−0 . 9664456245483404 + 0 . 0 4 9 9 4 2 9 2 7 3 3 0 9 7 9 0 8 ∗ x2

^2 − 0 . 2 1 9 8 0 5 6 2 8 9 3 4 4 5 5 7 7 ∗ x1 ∗ x2 +

0 . 1 2 3 1 8 2 9 7 0 7 7 8 0 6 3 5 9 ∗ x1 ^2 ,

−0 . 9715222141302825 + 0 . 1 4 9 5 8 9 7 1 1 6 7 2 3 9 2 5 ∗ x2

^2 − 0 . 1 3 5 7 5 9 9 3 7 6 7 2 8 1 7 6 ∗ x1 ∗ x2 +

0 . 1 2 3 8 4 1 6 1 2 2 9 6 6 6 0 7 7 ∗ x1 ^2 ,

−0 . 9653797047811981 + 0 . 1 3 8 9 5 8 1 8 2 0 4 9 6 8 9 1 ∗ x2

^2 − 0 . 1 8 3 3 3 0 1 5 0 7 5 8 9 8 2 9 8 ∗ x1 ∗ x2 +

0 . 1 2 2 9 7 4 4 0 8 1 5 3 4 8 8 8 1 ∗ x1 ^2 ,

−0 . 9571361696395247 + 0 . 1 2 8 6 2 9 0 3 1 1 5 6 1 2 1 9 8 ∗ x2

^2 − 0 . 2 2 9 1 3 5 5 3 2 2 8 2 9 5 1 4 4 ∗ x1 ∗ x2 +

0 . 1 2 1 8 2 7 0 6 1 6 7 7 7 1 1 5 4 ∗ x1 ^2 ,

−0 . 9401064342228134 + 0 . 1 4 2 6 1 9 6 0 3 7 5 0 8 3 5 0 2 ∗ x2

^2 − 0 . 2 8 5 6 4 3 6 7 6 4 8 8 1 8 5 8 4 ∗ x1 ∗ x2 +

0 . 1 1 9 4 4 5 5 1 4 9 4 7 7 5 4 2 1 ∗ x1 ^ 2 .

Computed invariant for mode 3:

−0 . 9902072318403451 + 0 . 1 3 5 6 3 4 1 9 5 1 0 4 0 8 1 6 5 ∗ x2

^2 + 0 . 0 1 8 8 1 2 7 8 7 7 2 6 1 3 3 1 0 3 ∗ x1 ∗ x2 +

0 . 0 2 7 1 8 6 0 6 5 3 1 8 8 4 1 9 6 ∗ x1 ^ 2 .

	Abstract
	1 Introduction
	1.1 Related Work

	2 Problem Statement
	2.1 Polynomial Systems
	2.2 Constrained and Switched Polynomial Systems
	2.3 Forward Invariant Sets and Safety
	2.4 Polynomial Inequalities

	3 Forward Invariance for polynomial systems
	4 Forward Invariance for Constrained and Switched Polynomial Systems
	4.1 Forward Invariance for Switched Polynomial Systems

	5 Refinement Operators and Fixed Point Formulation
	5.1 Bounded-Size Iterates
	5.2 Initial Iterate from Simulations
	5.3 Finite Termination

	6 Numerical Experiments
	6.1 Vanderpol Oscillator
	6.2 Stable 2D Nonlinear System
	6.3 System from [Example 6]ahmed2020automated
	6.4 Unstable 2D Nonlinear System
	6.5 3D Nonlinear System
	6.6 4D Nonlinear System
	6.7 Switched System with Limit Cycle
	6.8 Switched Bistable System

	7 Conclusions
	Acknowledgments
	References
	A Computed Invariants for the Numerical Experiments
	A.1 Invariants in Sec. 6.1
	A.2 Invariants in Sec. 6.2
	A.3 Invariants in Sec. 6.3
	A.4 Invariants in Sec. 6.4
	A.5 Invariants in Sec. 6.5
	A.6 Invariant in Sec. 6.6
	A.7 Invariants in Sec. 6.7
	A.8 Invariants in Sec. 6.8

