
Anticipating
Oblivious Opponents in Stochastic Games

Shadi Tasdighi Kalat, Sriram Sankaranarayanan and Ashutosh Trivedi

University of Colorado Boulder, USA
Email: first.lastname @colorado.edu

Abstract. We present an approach for systematically anticipating the ac-
tions and policies employed by oblivious environments in concurrent stochastic
games, while maximizing a reward function. Our main contribution lies in
the synthesis of a finite information state machine (ISM) whose alphabet
ranges over the actions of the environment. Each state of the ISM is mapped
to a belief state about the policy used by the environment. We introduce a
notion of consistency that guarantees that the belief states tracked by the
ISM stays within a fixed distance of the precise belief state obtained by
knowledge of the full history. We provide methods for checking consistency of
an automaton and a synthesis approach which, upon successful termination,
yields an ISM. We construct a Markov Decision Process (MDP) that serves
as the starting point for computing optimal policies for maximizing a reward
function defined over plays. We present an experimental evaluation over
benchmark examples including human activity data for tasks such as cataract
surgery and furniture assembly, wherein our approach successfully anticipates
the policies and actions of the environment in order to maximize the reward.

1 Introduction

Concurrent stochastic games [17, 15, 16, 13, 26, 40] offer a natural abstraction for mod-
eling conservative decision-making in the presence of multiple agents in a shared
and uncertain environment. In this scenario, the objective of the Ego agent—player
P1—is to maximize their desired outcome irrespective of the decisions taken by other
agents, represented here as a single agent that we term player P2 [7]. In a zero-sum
game, the objective of player P1 is deemed to be in direct conflict with player P2. The
opposite scenario assumes cooperation, wherein P2’s actions are aimed to maximize
the reward for P1. In this paper, we study another “extreme”, wherein P2 is assumed
to be oblivious. Their actions are chosen from a predefined set of policies or objectives
that are not affected by the actions of P1. We will show that in such a setting, player
P1 needs to anticipate P2’s moves to maximize their own reward.

Consider a game of Rock-paper-scissors (RPS) against an oblivious adversary.
Recall that at each turn, players P1 and P2 simultaneously reveal their choice with a
show of hands, and both players receive values (Cf. Figure 1) based on straightforward
circular-dominance rules (rock defeats scissors, scissors defeats paper, paper defeats
rock). The repeated, oblivious RPS can be modeled as a single state concurrent
stochastic game, where the goal of player P1 is to maximize the sequence of rewards

2 Kalat et al.

r2 p2 s2
r1 0 −1 1

p1 1 0 −1

s1 −1 1 0

P(r2|t,π) P(p2|t,π) P(s2|t,π)
π1 0.5 0.5 0
π2 0 0.5 0.5
π3 0.5 0 0.5
π4

1
3

1
3

1
3

π1 π2

π3 π4

0.55 0.55

0.64 0.64

Fig. 1. Rock-paper-scissors (RPS) game arena. Here actions ri, pi, and si correspond to the
choices of “rock”, “paper” and “scissors” by player Pi; (left) Reward table; (mid) player P2

policies; and (right) Markov chain modeling policy change for P2. The dashed red edges
have probability 0.15 whereas the solid edges have probability 0.12.

over a given, potentially infinite, horizon. Considering the conventional interpretation
of an adversarial opponent, the expected value of the game remains at 0.

The oblivious RPS “game” is illustrated in Figure 1, where the set of policies
(π1,π2,π3, and π4) used by player P2 is presented in the table to the right. In the
proposed scenario, we assume the following: (a) player P1 observes the past actions
of player P2 but the current action of one player is not observable by the other;
(b) player P2 is restricted to playing one of the policies {π1,π2,π3,π4} but this choice
is not observable by P1; and (c) policy change: at each step, player P2 may shift
from the current policy to a new one. This shift is modeled by a Markov chain
wherein each state of the chain is labeled by a policy. From player P1’s perspective,
although the policies of player P2 are known, they are unobservable. Consequently,
the problem can be framed as a partially observable MDP (POMDP). This POMDP
is the result of merging the original arena with player P2’s policy set. Framing this
as a POMDP permits the use of standard POMDP solution approaches [9]. However,
“exact” POMDP planning is undecidable [28]. Furthermore, translating from oblivious
games to POMDPs obscures the specialized structure of the problem.

Action/Tool Anticipation in Human-Robot Cooperative Tasks: In scenarios involving
humans working with autonomous agents, the ability to “guess” the intent of the
human can be critical in ensuring the success of the overall task. Consider a scenario
where P2 is engaged in a complex task involving a sequence of steps such as assembling
a piece of furniture [5] or performing a cataract surgery [1].

The task execution is captured by a task graph whose nodes model different
states encountered during task execution and edges are labeled with the tool/action
that is needed to move from one stage to another. Fig. 2 shows such a graph: the
states S1={t0,...,t8} represent assembly stages for the corresponding component,
while A={a1,...,a5} represents the actions taken. Multiple edges from the same node
represent possible choices that can be made by P2. The policies of P2 dictate the
choices made by P2 for each non-terminal state. For some of the states with just
one outgoing edge, there is just one choice to be made. However, for states with
multiple outgoing edges, the policy dictates the probability distribution of the choice.
The policies allow us to model “correlations” in P2’s action: For instance, policy π1
models the rule: P2 chooses tool a1 at state t0 and they will choose a2 at state t1
with 90% probability. The goal of P1 is to accurately anticipate P2’s choice of the

Anticipating Oblivious Opponents in Stochastic Games 3

t0

t1 t2

t3 t4

t5 t6

t7

t8

a1 a4

a2

a4

a4

a3

a2

a4

a2

a5

a3

π1 : t0 7→a1,t1 7→{a2 :0.9,a4 :0.1}
t6 7→{a3 :0.5,a5 :0.5},···

π2 : t0 7→a4,t6 7→{a3 :0.5,a5 :0.5},···

π3 : t0 7→{a1 :0.5,a4 :0.5},t6 7→{a3 :0.5,a5 :0.5},
t1 7→a2, ...

π4 : t0 7→a1,t1 7→{a2 :0.5,a4 :0.5},
t6 7→{a3 :0.5,a5 :0.5},...

Fig. 2. States of a furniture assembly task and policies for task completion.

next tool in order to perform a cooperative action (eg., pre-fetch the tool to help P2

or automatically take steps to protect P2 against a known hazard). We model this
using the reward structure: if P1 correctly predicts the next action of P2 they obtain
a positive reward. However, failure to do so incurs a negative reward. By assuming a
set of policies for P2, our approach moves the prediction problem from one of simply
predicting action sequences to first predicting the policy (or the internal logic behind
P2’s actions) and then predicting the action given the policy. Section 7 demonstrates
how we can use actual observation data from real-life cataract surgeries and furniture
assembly tasks to not just learn the task graph model but also infer policies. In doing so,
our approach can produce policies for P1 that predict the next action with upto 40%
accuracy even when there are more than 30 tools/actions to choose from at each step.

Contributions. We introduce the framework of anticipation games (Section 2).
1. Consistent Information State Machines: We define the notion of a finite information
state machine (ISM) over an alphabet consisting of states and P2 actions (Section 3).
We introduce the concept of λ−consistency that is similar to an approximate bisimua-
tion relation and show how to check if a given state machine is λ consistent using linear
arithmetic SAT-Modulo Theory (SMT) solvers. Next, we provide a semi-algorithm
that upon success can synthesize such a machine (Section 4). We provide simple con-
ditions that guarantee the successful termination of our algorithm with a finite state
consistent ISM (Section 6). 2. Policy Synthesis for P1: Next we show that a composi-
tion of a finite state ISM with the game yields a MDP that forms the basis of finding a
policy for P1 (Section 5). We bound the distances between the transition probabilities
and reward functions of the infinite state belief MDP and the finite state approxi-
mation. By leveraging a recent result by Subramanian et al. [44], we bound the gap
between the optimal belief MDP value function and that of our finite approximation.
3. Robustness: In Section 6, we establish bounds on the performance degradation, if P2

deviates from the assumptions. 4. Empirical Evaluation: Finally, we present an empiri-
cal evaluation of our work against some challenging benchmarks (Section 7). We show
that our approach can clearly anticipate the policies and actions of the other player to
maximize the overall reward. In particular, we use two datasets – an IKEA furniture
assembly dataset consisting of sequence of actions taken by human assemblers for
different furniture models [5] and a sequence of tools used in 25 different cataract surg-
eries [1]. We use an automata learning tool flexfringe [46] to learn the task model and

4 Kalat et al.

a simple edge set based clustering to learn policies. We demonstrate how our approach
computes policies for P1 that maximize the ability to predict the next tool choice of P2.

Related Work. Partially observable stochastic games (POSGs) are a subset of
stochastic games where agents have partial information about the state of the en-
vironment. Within this paradigm, agents are allowed to have conflicting, or similar
objectives, reward structures, and strategies [9, 8, 6]. Solution techniques developed
for POSGs are build upon approaches to solve POMDPs such as value iteration
and policy iteration [4]. Solving finite-horizon POMDP is PSPACE-complete [36],
and solving infinite-horizon POMDPs have been shown to be undecidable [29]. A
variety of approximate solution techniques have been introduced for general POMDPs
including Point-Based Value iteration [37, 39, 42, 25, 38], grid-based belief MDP ap-
proximations [19], semi-MDP approximations [45, 43] and compressing belief states
using features [22]. In addition, methods such as POMCP (Partially Observable
Monte Carlo Planning [41, 27]), leverage sampling-based approaches to estimate belief
states and approximate the value function. These approaches are not easy to compare
to the approach in this paper since our approach is tailored explicitly to POMDPs
derived from anticipation games for oblivious adversaries. Our approach is closely
related to those that group belief states together using bisimulation quotients [10, 11,
20]. A key distinction is that the approach presented here is an approximate notion
of bisimulation wherein we guarantee that our information state machines track
the precise belief state within a distance of λ in a suitable norm. Thus, we exploit
the special structure of the games studied here and prove that finite approximate
bisimulations always exist for suitable choice of the parameters.

While traditional POMDP solvers often work with the belief space, there have
been approaches that leverage historical information to make decisions, either by
directly maintaining a history or by approximating it. The complexity of solving this
problem grows exponentially with the length of history [24]. The results in [3] discuss
this issue and address the trade-offs between memory usage and solution quality.
To overcome this issue, [23], introduces the concept of finite-memory controllers. In
another work, [30] investigates an instance-based learning approach for POMDPs,
maintaining a set of histories to guide action selection. Similarly, [21, 14] use looping
suffix trees to represent the hidden state in deterministic finite POMDPs. This work is
later extended to [31], which fixes the size of the policy graph to find the best policy of
this size, and [32], that performs stochastic gradient descent on finite-state controller
parameters, which guarantees local optimality of the solution. However, note that
none of these techniques provide guarantees on the quality of the approximation or
the solution so obtained. In this paper, we obtain such guarantees but for the limited
case of POMDPs arising from the anticipation games and oblivious adversaries.

Our approach is an instance of the approximate information state introduced by
Subramanian et al [44], as a compression of history which is sufficient to evaluate ap-
proximate performance, and predict itself. Yang et al [48] specialize this framework to
discrete approximate information states but their work learns the automaton from fi-
nite samples by solving an expensive nonlinear optimization problem. In this paper, we
assume knowledge of the underlying game and opponent policies to construct a finite
state machine that is guaranteed to be an approximation information state generator.

Anticipating Oblivious Opponents in Stochastic Games 5

The problem of anticipating moves of an oblivious opponent has similarities to the
well-studied problem of intent inference or goal recognition [2, 12, 49]. Our approach
models the other player’s policies which makes the intent inference problem quite
simple. On the other hand, our approach allows intents to change in a stochastic
manner and more significantly, it folds in the intent inference with planning in a
single algorithm.

2 Problem Definition

A probability distribution d : X→[0,1] over a finite set X satisfies
∑
s∈Xd(s)=1. Let

D(X) represent the set of all probability distributions over X. The distribution d
over X={x1,x2,···,xm} is written {x1 :p1,...,xm :pm} where pi=d(xi) for i∈ [m]. For
a natural number n≥1, let [n]={1,2,...,n}. Bold case letters denote vectors b∈Rn.
The ith component of b is denoted as bi.

A Markov decision process (MDP) M is a tuple ⟨S,A,P,R⟩ where S is a finite set
of states, A is a finite set of actions, P :S×A→D(S) is the probabilistic transition
function, and R :S×A→R is a scalar valued reward function. We write P(s′|s,a) for
the probability of state s′ if action a is applied to state s. In a two player concurrent
game, the set of actions are partitioned between player P1 and P2. Transitions of the
game are determined by joint actions of both players.

Definition 1 (Concurrent Stochastic Game Arena: Syntax). A concurrent
stochastic game arena G is a tuple ⟨S,A(1),A(2),P,R⟩ wherein S is a finite set of
states, A(1) and A(2) are disjoint sets of actions for players P1 and P2, respectively,
P : S ×A(1) ×A(2) → D(S) is the joint probabilistic transition function, and R :
S×A(1)×A(2)→R is a reward function for P1.

We assume that player P2 selects their policy from one of n different stochastic
policies from the set Π={π1,...,πn}, wherein each πi :S→D(A(2)) represents a map
from states to probability distributions over actions in A(2). Let πi(s,a) denote the
probability that action a is chosen from state s for policy πi.

Example 1. Consider the RPS example discussed in the introduction (Figure 1).
The state set is a singleton: S = {t}. We have three actions each for players 1,2:
A(1)={r1,p1,s1} and A(2)={r2,p2,s2}, corresponding to choices of “rock”, “paper”
and “scissors”, respectively. The transition probabilities are simply P(t|t,a,b) = 1
for all a ∈A(1),b ∈A(2). The reward for P1 is the familiar one from the game of
rock-paper-scissors, and is shown in Figure 1 (left) P2 plays one of four possible
policies shown in the middle table of Figure 1.

Assumption 1 (Observation and Obliviousness) We assume that: (a) P1 ob-
serves the past actions of P2 but the current action is not observable. (b) P2 is re-
stricted to playing one of the policies {π1,...,πn} but this choice is not observable by P1.

Policy Change Model: We assume that P2 can change policies at each step depending
on their current policies according to a Markov chain with n states labeled by the
corresponding policies π1,...,πn. Let T represent the transition matrix of this Markov

6 Kalat et al.

chain such that the entry Tij=P(πj|πi) represents the probability ofP2 switching their
policy to πj given that their current policy is πi. Returning to Example 1, the Markov
chain for switching between the four policies π1,...,π4 is shown in Figure 1 (right).
A partially observable MDP (POMDP) is a tuple ⟨S,A,P,R,Ω,O⟩ where ⟨S,A,P,R⟩ is
an MDP, Ω is a finite set of observations, and O :S→Ω is (deterministic) observation
map. The semantics of an OGA under Assumptions 1 can be given as a POMDP.

Definition 2 (OGA: Semantics). The semantics of an OGA G=⟨S,A(1),A(2),P,R⟩
with player P2 policy set {π1,...,πn} and policy change given by a Markov chain
with transition matrix T is a partially observable MDP (POMDP) M′= ⟨S′,A′=
A(1),P ′,R′,Ω=S,O⟩ where

– S′=S×[n] wherein each state (si,j) represents a state si∈S and an index j∈ [n]
representing the current policy being employed by P2

– The probability of a transition P((s′,j′)|(s,j),a) is given as:

P((s′,j′)|(s,j),a)=Tjj′ ·
∑

a2∈A(2)

(πj(s,a2)·P(s′|s,a,a2))

– The reward function is given as: R((s,j),a)=
∑
a2∈A(2)πj(s,a2)·R(s,a,a2), and

– The observation map O :S′→Ω is defined as (si,j)∈S′ 7→si.

While translating into a POMDP allows us access to a variety of approaches to
solving POMDPs [9], they are computationally expensive and ignore the specialized
structure of the problem at hand. In this paper, we will work with the original two
player game setup to directly exploit the special problem structure at hand.

Our goal is to compute a finite memory policy π(1) :S×M 7→A(1) that maximizes
the expected discounted reward for P1 with given discount factor 0<γ < 1. The
structure and construction of the required memory M over the states and actions
of P2 is discussed in subsequent sections.

3 Information State Machine and Consistency

The main approach is to use a sequence of observations of states and P2 actions to
infer a belief state b over the player’s policies.

Definition 3 (Belief State). A belief state b : (b1,...,bn)∈Rn is a vector wherein
the ith component bi represents P1’s belief that P2 is employing policy πi∈Π. Note
that bi≥0 for all i∈ [n] and

∑n
i=1bi=1.

Let Bn= {b∈Rn | (∀i∈ [n]) bi≥ 0 ∧
∑n
i=1bi=1} denote the set of all belief

state vectors in Rn. The uniform belief state bu is given by (1n ,...,
1
n). We define two

operations over a belief state: (a) conditioning a belief state given some observation
and (b) capturing the effect of policy change on a belief state.

Let b be a belief state and (s,a2) represent an observation where s∈S and a2∈A(2)

represent states of the game and actions for P2. The belief state b′=condition(b,s,a2)
is obtained by conditioning b on the observation (s,a2):

b′i=condition(b,s,a2)=
πi(s,a2)bi∑n
j=1πj(s,a2)bj

. (1)

Anticipating Oblivious Opponents in Stochastic Games 7

0

1

2

3

4

5 6

7 State Belief
0 (0.25, 0.25, 0.25, 0.25)
1 (0.29, 0.17, 0.29, 0.25)
2 (0.29, 0.29, 0.17, 0.25)
3 (0.17, 0.29, 0.29, 0.25)
4 (0.25, 0.17, 0.32, 0.26)
5 (0.26, 0.32, 0.17, 0.25)
6 (0.31, 0.17, 0.26, 0.26)
7 (0.33, 0.25, 0.17, 0.25)

Fig. 3. Example ISM for the rock-paper-scissors game. Thick blue edges correspond to the
observation (0,p2), dashed edges (0,s2) and solid red edges (0,r2).

This expression is obtained as a direct application of Bayes’ rule.

Remark 1. The denominator in Eq. (1) needs to be non-zero for condition(b,s,a2) to
be defined. The denominator being zero means that the current belief states rule out
the observation a2 as having zero probability.

At each step, P2 switches to a different policy from the one they are currently
utilizing according to the Markov chain with transition probabilities given by T . This
modifies a belief state b to a new one b′=T tb, wherein T t denotes the transpose of the
matrix T . I.e, b′i=

∑n
j=1bjTji.Overall, given a sequence (t1,a1)(t2,a2)···(tk,ak) of obser-

vations and starting from some initial belief state b0, we define the sequence of belief
states: b0

(t1,a1)−−−−→b1
(t2,a2)−−−−→b2···

(tk,ak)−−−−→bk, such that bi+1=T
tcondition(bi,ti+1,ai+1),

for i∈ [k−1]. Recall the total variation (tv) distance between two belief states b and
b′, denoted ||b−b′||tv=

∑n
i=1|bi−b′i|.

We now discuss our model of history in terms of a finite state machine over the
states and alphabets of P2 called the information state machine.

Definition 4 (Information State Machine). An information state machine (ISM)
is a deterministic finite state machine that consists of a finite set of states M, alphabet
Σ=S×A(2), initial state m0, transition function δ :M×Σ→M and a map that
associates state m∈M with a belief state b(m) with b(m0)=bu.

Recall that Σ∗ denotes a finite sequence of elements from Σ. The transition function
can be extended to δ :M×Σ∗→M as1

δ(m,⟨empty⟩)=m, and δ(m,σ◦(t,a))=δ(δ(m,σ),(t,a)) for σ∈Σ∗ and (t,a)∈Σ.

The definition requires the state-machine to be deterministic. However, we can
relax this requirement to make δ a partial function. We require that for any sequence
of observations σ :(t0,a0)···(tl,al), if σ can occur with non-zero probability (i.e, there
exist actions a′0,...,a′l−1∈A(1), such that P(tj+1|tj,a′j,aj)>0 for all j∈ [l−1]), then
(a unique state) δ(m0,σ) must exist.

1 We write ⟨empty⟩ for an empty sequence and use ◦ for sequence concatenation.

8 Kalat et al.

Example 2. Figure 3 shows an example of an ISM for the rock-paper-scissors problem.
Since S has just one state, we do not include the label of this state in our alphabet,
but simply label the edges with the actions of P2. The initial state is 0 and the
automaton is deterministic.

We now define the notion of consistency of an ISM. For any sequence of obser-
vations σ : (t0,a0)···(tk,ak) that can occur with positive probability, and a belief
state b∈Bn, let τ(b,σ) denote the result of transforming b successively based on
the observations in σ.

τ(b,⟨empty⟩)=b, and τ(b,σ◦(ti,ai))=T tcondition(τ(b,σ),(ti,ai)).

Definition 5 (Consistent Information State Machine). An ISM M is λ-
consistent for λ>0 iff for every finite, positive probability sequence of P2 state/action
observations σ : (t0,a0) ···(tk,ak) such that mk+1 = δ(m0,σ), then the belief state
b(mk+1) remains sufficiently close to τ(bu,σ), the belief state obtained from the full
history: ||b(mk+1)−τ(bu,σ)||tv≤λ.

The concept of λ-consistency implies that for any history of observations of P2’s ac-
tions, the belief state associated with the information state m reached, remains within
total-variation distance λ of the belief state obtained by remembering the entire history.

3.1 Consistency Checking

In this subsection, we describe how to check whether a given ISM M is consistent
for some limit λ using the sufficient condition of edge consistency.

Definition 6 (Edge Consistency). An edge e :m o−→m′ of the automaton M (i.e,
m,m′∈M and δ(m,o)=m′) is consistent for limit λ iff

∀ b∈Bn :

 n∑
j=1

bjπj(o)>0 ∧ ||b−b(m)||tv≤λ

 ⇒ ||τ(b,o)−b(m′)||tv≤λ. (2)

I.e, any belief state b that is within a total variation distance λ of b(m) must, upon
updating with observation o, yield a belief state τ(b,o) that is within λ distance of
b(m′).

Notice that we require
∑n
j=1bjπj(o)=P(o|b) to be positive. Failing this condition, the

observation o would be zero probability under the belief state b and thus ruled out.

Theorem 1. If every edge in an ISM M is edge consistent for limit λ then the state
machine is λ-consistent.

Proof. Following Def. 5, we need to show that for any finite sequence of observations
σ, if δ(m0,σ)=m then ||b(m)−τ(bu,σ)||tv≤λ.

Proof proceeds by induction on the length of the sequence σ, denoted |σ|. When
|σ|=0, we have m=m0 and τ(bu,σ)=bu. Therefore, ||b(m)−τ(bu,σ)||tv=0≤λ
holds.

Anticipating Oblivious Opponents in Stochastic Games 9

Assume that the result holds for any non-zero probability sequence σ of length m.
Let σ′=σ◦(t,a) for t∈S and a∈A(2) also of non-zero probability. Let m=δ(m0,σ)
andm′=δ(m,(t,a)). Since the observations, σ and σ′ are assumed non-zero probability
observations, we note the states m,m′ exist and are unique. We know by induction
hypothesis that ||b(m)−τ(bu,σ)||tv≤λ. Note that by edge consistency of the edge

m
(t,a)−−−→m′, we have that for all belief states b∈Bn, we have

||b−b(m)||tv≤λ ⇒ ||τ(b,(t,a))−b(m′)||tv≤λ.

Applying this to b = τ(bu,σ), we note that the antecedent holds by induction
hypothesis and thus, we conclude that

||τ(τ(bu,σ),(t,a))−b(m′)||tv︸ ︷︷ ︸
=τ(bu,σ′)

≤λ.

We now provide an approach to check if a given edge in an automaton e : m o−→m′

is consistent for a limit λ by checking a formula in linear arithmetic. We will attempt
to find a belief state b that refutes (2). I.e, b ∈ Bn that satisfies conditions: (a)
||b−b(m)||tv ≤ λ; (b)

∑n
j=1π(o)bj > 0 and (c) ||τ(b,o)−b(m′)||tv >λ. Note that

b(m) and b(m′) are known belief-vectors while b is the unknown vector we seek. We
will construct a formula Ψe in linear arithmetic such that edge e is consistent iff Ψe is
unsatisfiable. The formula Ψe is encoded using variables b :(b1,...,bn) representing the
unknown belief state and extra variables x :(x1,...,xn) and y :(y1,...,yn). Let αi=πi(o)
represents the probability of observation o under policy πi.
(1) Observation o occurs with non-zero probability:

Ψ0(e):

n∑
j=1

αjbj>0 ∧
n∑
i=1

bi=1.

(2) ||b−b(m)||tv≤λ must hold.

Ψ1(e):

n∧
i=1

xi≥0 ∧
n∧
i=1

−xi≤(bi−b(m)i)≤xi︸ ︷︷ ︸
≡|bi−b(m)i|≤xi

∧
n∑
i=1

xi≤λ.

(3) ||τ(b,o)−b(m′)||tv>λ. Recall τ(b,o)=T t×(condition(b,o))=T t×
(

b1α1∑n
j=1bjαj

,···, b1α1∑n
j=1bjαj

)
.

||τ(b,o)−b(m′)||tv=
n∑
j=1

∣∣∣∣∑n
i=1Tijαibi∑n
i=1αibi

−b(m′)j

∣∣∣∣.
Let ej denote the expression

∑n
i=1Tijαibi−(b(m′)j

∑n
i=1αibi). Since

∑n
j=1αjbj>0,

the condition ||τ(b,o)−b(m′)||tv>λ is equivalent to

Ψ2(e):

n∧
j=1

yj≥0 ∧ (yj=ej∨yj=−ej)︸ ︷︷ ︸
≡ yj=|ej|

∧

 n∑
j=1

yj>λ

n∑
j=1

αjbj

.

10 Kalat et al.

Algorithm 1: ConstructConsistentInformationStateMachine()
Data: G,Π,T,λ
Result: A finite state machineM.

1 m0 ← newState(bu) // create initial state

2 Σ′={(s,a2)∈S×A(2) | (∃π∈Π) π(s,a2)>0} // non-zero prob. observ.
3 (M,W)← (∅,[m0]) // initialize set of states and worklist
4 while W ≠∅ do
5 m ← pop(W) // pop a state from the worklist
6 Add state m toM
7 for o∈Σ′ // iterate through observations
8 do
9 b′←τ(b(m),o) // compute next belief state

10 if not isConsistent(b(m),o,b′) then FAIL // check consistency
11
12 m̂ ← findClosestState(b′,λ) // search for nearby state
13 if m̂≠Nil ∧ isConsistent(b(m),o,b(m̂)) // existing state found
14 then
15 Add edge m

o−→m̂ toM
16 else
17 m′=newState(b′) // Create new state

18 Add edge m
o−→m′ toM

19 push(m′,W) // push new state to worklist

20 returnM

Theorem 2. An edge e is consistent iff Ψ(e): Ψ0(e) ∧ Ψ1(e) ∧ Ψ2(e) is infeasible.

Satisfiability Modulo Theory (SMT) solvers such as Z3 can be used to check
satisfiability [35]. Alternatively, linear complementarity problem (LCP) solvers [34]
be used: the disjunction yi=ei∨yi=−ei is equivalent to a complementarity constraint
(yi−ei)⊥(yi+ei).

Example 3. We check the consistency of the automaton from Example 2 for λ=0.25.
For the edge e : 4 r2−→6 in the automaton. The formula Ψ(e) is satisfiable with b=
(0.125,0.17,0.445,0.26): ||b−b(4)||tv=0.25, whereas ||τ(b,o)−b(6)||tv≈0.337>0.25.
The automaton in Figure 3 fails to be consistent.

4 Information State Machine Synthesis Algorithm

Algorithm 1 attempts to synthesize a consistent finite state machine for P2, given
a concurrent game G : ⟨S,A(1),A(2),P,R⟩, policies Π : {π1,...,πn}, transition matrix
T and λ>0 by exploring belief states starting from the initial belief state m0. Line 2
restricts the alphabet to the set Σ′ that has non-zero probability under at least one
policy. The algorithm maintains a worklist W that is initialized to contain the initial
state m0 at start. At each iteration, it pops a state from the worklist and adds it to
the automaton. Next, the algorithm iterates through all the observations o∈Σ′ (line

Anticipating Oblivious Opponents in Stochastic Games 11

0

2911

3
5

4

7 10

6

8

State Belief
0 (0.25, 0.25, 0.25, 0.25)
2 (0.13, 0.28, 0.33, 0.26)
3 (0.23, 0.33, 0.14, 0.30)
4 (0.13, 0.33, 0.24, 0.29)
5 (0.21, 0.13, 0.39, 0.27)
6 (0.13, 0.20, 0.42, 0.26)
7 (0.30, 0.13, 0.26, 0.31)
8 (0.13, 0.21, 0.35, 0.31)
9 (0.30, 0.24, 0.14, 0.32)
10 (0.22, 0.13, 0.35, 0.30)
11 (0.28, 0.13, 0.33, 0.26)

Fig. 4. (Left) Consistent ISM for λ=0.25 the RPS example from Figure 1 obtained by
running Algorithm 1. Thick blue edges correspond to the observation (0,p2), dashed edges
(0,s2) and solid red edges (0,r2); (Right) Beliefs associated with states.

number 7). After computing the next belief state b′ (line 9), it finds the closest state
to b′ in the total variation norm and checks that it is closer than the limit λ (line 12).
If such a state m̂ is found and the edge from m to m̂ is consistent (line 13), then the
edge is added. Consistency is checked using a SMT or MILP solver as described in
Section 3. Otherwise, the algorithm has already checked consistency of the new state
and edge that it is about to create (line 10). This is an important operation since
a failure of consistency here can result in an overall failure to find a state machine.

Theorem 3. Any automaton M returned by Algorithm 1 is λ-consistent.

Proof. Every edge added to the automaton is consistent, by construction.

Figure 4 shows a consistent ISM with 11 states for the RPS example from Figure 1.
Note that Algorithm 1 is not guaranteed to terminate and return a finite ISM. In
section 6, we establish a simple condition on the transition matrix T for which the
algorithm terminates and yields a finite ISM.

5 Policy Synthesis

Given an ISMM, we will now describe the policy synthesis forP1 and prove bounds on
the optimality of the policy thus obtained w.r.t discounted rewards. We first compose a
two player game graph G :⟨S,A(1),A(2),P,R⟩ with the ISM M :⟨M,Σ′,δ⟩ wherein Σ′⊆
S×A(2). This MDP serves as a starting point for optimal policy synthesis. Next, for a
λ−consistent information state machine, we show that this MDP is “close” to an infinite
state MDP obtained from unbounded histories. We invoke a result on approximate
information states (AIS) by Subramanian et al [44] to bound the difference between the
optimal value function obtained from finite state histories and that from full histories.

12 Kalat et al.

The MDP is given by ⟨S×M,A(1),P̂ ,R̂⟩ with states (s,m) for s∈S and m∈M.
Let b(m)=(b1,...,bn). For a1∈A(1), the probability of transitioning to (s′,m′) from
(s,m) is given by

P̂((s′,m′)|(s,m),a1)=
∑

a2∈A(2)

1{δ(m,(s,a2))=m′}︸ ︷︷ ︸
indicator function

(
n∑
i=1

biπi(s,a2)

)
︸ ︷︷ ︸

=P(a2|b(m))

P(s′|s,a,a2). (3)

Note that 1{ψ}=1 if ψ holds and 0 otherwise. The reward function is

R̂((s,m),a1)=
∑

a2∈A(2)

P(a2|b(m))︸ ︷︷ ︸
see eq. (3)

R(s,a1,a2)︸ ︷︷ ︸
from G

. (4)

The composition of a finite ISM with the game yields a finite-state MDP for
P1 that can be solved to yield a policy for P1. However, since the ISM tracks the
belief state approximately, we cannot expect the resulting policy to be optimal when
compared to a situation wherein we track the precise belief state. We will bound the
loss in value resulting from the belief state approximation in an ISM.

We construct a belief state MDP using the “exact” history of observations up to
some time t. The “exact” MDP has as its states S×Bn wherein each state is a pair
(s,b(t)) for s∈S and b(t)= τ(bu,σt) for observation sequence σt : (s1,a1),...,(st,at).
The expected reward obtained for action a∈A(1) in current state st+1=s is given by

R∗((s,b(t)),a)=
∑

a2∈A(2)

P(a2|b(t)) R(s,a,a2). (5)

We define the transition probability P∗ as

P∗((s′,b(t+1))|(s,b(t)),a,at+1)=1{b(t+1)=τ(b(t),(s,at+1))}P(at+1|b(t))P(s′|s,a,at+1).

Let mt = δ(m0, σt) be the unique information state from M. Since M is λ-
consistent, we know that ||b(mt)−b(t)||tv≤λ. We establish bounds on the discrep-
ancies between the rewards obtained and the next state probabilities. Let us define
Rmax(s)=maxa1∈A(1),a2∈A(2)|R(s,a1,a2)| and αmax(s)=

∑
a2∈A(2) maxnj=1πj(s,a2).

Lemma 1. For any history σt, |R∗((s,b(t)),a)−R̂((s,mt),a)|≤Rmax(s)αmax(s)λ.

Anticipating Oblivious Opponents in Stochastic Games 13

Proof. We expand the LHS using Eq. (4) and Eq. (5).

|R∗((s,b(t)),a)−R̂((s,mt),a)|≤
∑

a2∈A(2)

|P(a2|b(t))R(s,a1,a2)−P(a2|b(mt))R(s,a1,a2)|

≤
∑

a2∈A(2)

|R(s,a1,a2)||
n∑
i=1

b
(t)
i πi(s,a2)−b(mt)iπi(s,a2)|

≤|Rmax(s)|
∑

a2∈A(2)

(
n

max
j=1

πj(s,a2))

n∑
i=1

|b(t)
i −b(mt)i|

≤|Rmax(s)|
∑

a2∈A(2)

(
n

max
j=1

πj(s,a2))||b(t)−b(m)||tv

≤|Rmax(s)| αmax(s) λ

Next, we prove that the next-state distributions P̂ and P∗ are “close” in the total-
variation distance dtv(σt,s,a) given by the formula:∑

at+1∈A(2)

∑
s′∈S

∣∣∣P∗((s′,b(t+1))|(s,b(t)),a,at+1)−P̂((s′,mt+1)|(s,mt),a,at+1)
∣∣∣.

Lemma 2. For any history σt and action a∈A(1), dtv(σt,s,a)≤αmax(s)λ.

Proof. We wish to bound the summation.∑
at+1∈A(2)

∑
s′∈S

|P∗((s′,b(t+1))|(s,b(t)),a,at+1)−P̂((s′,mt+1)|(s,mt),a,at+1)|︸ ︷︷ ︸
D

.

Let D denote the term inside the summation.

D≤|P(at+1|b(t))P(s′|s,a,at+1)−P(at+1|b(mt))P(s
′|s,a,at+1)|

≤P(s′|s,a,at+1)
n

max
i=1

(πi(s,at+1))||b(t)−b(mt)||tv

≤P(s′|s,a,at+1)
n

max
i=1

(πi(s,at+1))λ

Using this, we can bound dtv(σt,s,a) as

dtv(σt,s,a)≤
∑

at+1∈A(2)

∑
s′∈S

P(s′|s,a,at+1)
n

max
i=1

(πi(s,at+1))λ

≤λ
∑

at+1∈A(2)

n
max
i=1

(πi(s,at+1))
∑
s′∈S

P(s′|s,at+1,a)︸ ︷︷ ︸
=1

≤λαmax(s)

14 Kalat et al.

For some discount factor ν, let V ∗ be the optimal value for the (infinite state) “exact”
MDP with state-space S×Bn, actions A(1), transition relation P∗ and expected
reward R∗. Let V̂ be the optimal value function for the MDP with state space S×M ,
transition map P̂ and reward R̂.

Theorem 4. There exists K such that for each history σt leading to belief b(t), ISM
state mt and for every game state s, we have |V ∗(s,b(t))−V̂ (s,mt)|≤Kλ.

This follows from Theorem 27 of Subramanian et al [44] where the constant K equals
|Rmax(s)|αmax(s)+γρ

1−γ
, where ρ is the “Lipschitz constant” for the function V . We

conclude that a λ−consistent information state machine can be used in lieu of an
exact belief state with a loss in value proportional to λ.

6 Completeness and Robustness

In this section, we first provide a sufficient condition on the transition matrix T
that governs how P2 switches between policies so that Algorithm 1 is guaranteed to
terminate successfully and yield a finite ISM. Let t∗ be such that for all i,j∈ [n], Tij≥t∗.
I.e, t∗ is the smallest entry in the matrix T . We assume that t∗>0: i.e, the transition
matrix T is strictly positive. Note that the entries for each row of T sum up to 1.
Therefore, t∗≤ 1

n . Let b=τ(b0,σ) be the exact belief state obtained starting from the
uniform initial belief state b0 and a sequence of non-zero probability observations σ.

Lemma 3. Each entry of b satisfies bj≥t∗.

Proof. Proof is by induction on the length of the sequence σ. The base case holds
for b=b0 since b0,j= 1

n ≥ t
∗. Let b= τ(b0,σ) for |σ|=n. Let o be an observation

such that b′ = τ(b,o). By induction hypothesis, bj ≥ t∗. We have b′ = T tb̂ where
b̂=condition(b,o) is a belief vector. b′j=

∑n
i=1Tij b̂i≥t∗

∑n
i=1b̂i≥t∗.

For observation o, let αj=πj(o), αmax(o)=maxnj=1αj and αsum(o)=
∑n
j=1αj.

We define κ(o)= αmax(o)
αsum(o)+nαmax(o)

. Let κmax=maxo∈Σ×A(2)κ(o).

Theorem 5. If t∗>κmax, then for any parameter λ> 0, Algorithm 1 terminates
successfully to yield a finite state consistent ISM.

We first provide a sketch of the proof. (a) We first establish that the function
b 7→τ(b,o) is contractive in the total variation norm whenever t∗>κ(o). Therefore,
the consistency check in line 10 will always succeed, or equivalently, Algorithm 1 will
not return FAIL. It remains to show that the Algorithm will terminate. (b) Next,
we show that whenever the call to findClosestState(b′,λ) in line 12 yields a state m̂
such that b(m̂) is within distance (1−κmax)λ of b′, then the edge m o−→m̂ will be
consistent. Therefore, we show that for any new state created by Algorithm 1 line 17,
the total variation distance from any previously created state is at least (1−κmax)λ.
(c) The number of states in the ISM is therefore bounded by the packing number of
the compact set Bn with L1 norm balls of radius (1−κmax)λ [33].

Anticipating Oblivious Opponents in Stochastic Games 15

Proof. Let us assume that Ti,j ≥ t∗ for all i,j ∈ [n]. We will first derive conditions
for the map b → τ(b,o) for a given observation o ∈ Σ ×A(2) to be contractive:
||τ(b1,o)−τ(b2,o)||tv≤γ||b1−b2||tv for constant γ<1.

Definition 7 (Induced Matrix Norm). Given a n×n matrix Q, its induced
p-norm for p≥1 is defined as:

||Q||p=supx∈Rn,x̸=0

||Qx||p
||x||p

.

Also note that for a matrix Q, the induced L1-norm ||Q||1 is defined as

||Q||1=
n

max
j=1

n∑
i=1

|Ai,j|,

the maximum over all the sum of absolute values of entries along each column of the
matrix (Cf. [47] for further details).

Lemma 4. For any belief vectors b1,b2∈Bn, we have

||T tb1−T tb2||tv≤(1−nt∗)||b1−b2||tv.

Proof. Let 1n×n be the n×n matrix with all 1 entries and 1n be the n×1 vector
of all 1s. Let Q=T t−t∗1n×n. Note that ||Q||1 is the maximum among the column
sums of Q. Each column of Q corresponds to a row of T with t∗ subtracted from
each entry. Therefore, each column of Q sums to 1−nt∗.

We can write T tb=(T t−t∗1n×n)b+t∗1nb=Qb+t∗1n. Thus,

||T tb1−T tb2||tv ≤||Qb1−Qb2+���t∗1n−���t∗1n||tv
≤||Q||1||b1−b2||tv
≤(1−nt∗)||b1−b2||tv

Let αj(o) denote πj(o), αmax(o) =maxnj=1αj(o) and αsum(o) =
∑n
j=1αj(o). If

the observation o is clear from the context, we will simply write αmax and αsum to
denote αmax(o) and αsum(o), respectively.

Let Dn = {b∈Bn | bj ≥ t∗,∀ j ∈ [n]}. Following lemma 3, we can restrict our
attention to just those belief vectors in Dn since every belief state obtained through
a non-zero probability sequence of observations will belong to Dn.

Lemma 5. For a non-zero probability observation o ∈ Σ×A(2) and belief states
b1,b2∈Dn, we have

||τ(b1,o)−τ(b2,o)||tv≤
(1−nt∗)αmax(o)

t∗αsum(o)
||b1−b2||tv.

Proof. We have

||τ(b1,o)−τ(b2,o)||tv = ||T tcondition(b1,o)−T tcondition(b2,o)||tv
≤(1−nt∗)||condition(b1,o)−condition(b2,o)||tv applying Lemma 4
≤(1−nt∗)

∑n
j=1

∣∣∣ b1,jαj∑n
i=1b1,iαi

− b2,jαj∑n
i=1b2,iαi

∣∣∣

16 Kalat et al.

Note that
∑n
i=1b1,iαi≥t∗

∑n
i=1αi=t

∗αsum since each entry of b1 is at least t∗.
Similarly, we note that

∑n
i=1b2,iαi≥t∗αsum. Therefore,

||τ(b1,o)−τ(b2,o)||tv ≤ (1−nt∗)
t∗αsum

∑n
j=1|αjb1,j−αjb2,j|

≤ 1−nt∗
t∗αsum

αmax

∑n
j=1|b1,j−b2,j|

≤ (1−nt∗)αmax(o)
t∗αsum(o) ||b1−b2||tv

Let us define κ(o)= αmax

αsum+nαmax
.

Lemma 6. The map b 7→τ(b,o) is contractive if t∗>κ(o).

Proof. Using Lemma 5, we note that b 7→τ(b,o) is contractive if (1−nt∗)αmax(o)
t∗αsum(o) <1.

(1−nt∗)αmax(o)
t∗αsum(o) <1

⇔ (1−nt∗)αmax<t
∗αsum ∵ t∗αsum>0

⇔ t∗(αsum+nαmax)>αmax rearranging terms
⇔ t∗> αmax

αsum+nαmax
.

Having established these results, we proceed with the proof of Theorem 5. Let
us assume that t∗>κmax≥κ(o) for all non-zero probability observations o.

First, we conclude that Algorithm 1 will never return FAIL (line 10). This is
because, any edge m o−→m′ wherein b(m′)=τ(b(m),o) will be consistent due to the
contractivity of τ . In other words, for any b∈Dn such that ||b−b(m)||tv≤λ, we have

||τ(b,o)−b(m′)||tv ≤ (1−nt∗)αmax(o)
t∗αsum(o) ||b−b(m)||tv

≤γ(o)λ

wherein γ(o)= (1−nt∗)αmax(o)
t∗αsum(o) <1. Let L∗=maxo∈Oγ(o). Clearly, L∗<1, as well.

For a given δ>0, let Bδ(b)={b̂∈Dn | ||b−b̂||tv≤δ} be a ball of size δ in the
total-variation norm over belief states. Next consider a “packing” of the belief space Dn.

Definition 8 (Minimal Packing with balls of size δ). A minimal packing of Dn
using balls of size δ is a family of N sets F={B(bi,δ)} for i∈ [N] that (a) covers the
entire belief space

⋃
S∈FS⊇Dn and (b) minimizes the size of the family N over all

such covers.

Let F be a minimal packing of the belief space Dn with balls of size (1−L∗)λ.
By the compactness of Dn, we note that F is finite. We now prove that for the
automaton constructed by Algorithm 1, we cannot have two states m,m′ such that
b(m),b(m′) belong to the same ball in F.

Lemma 7. Let F represent a family of sets that form a minimal δ = (1−L∗)λ
packing of the belief space Dn. Algorithm 1 during its run cannot produce two states
m,m′∈M such that b(m)∈S and b(m′)∈S for S∈F.

Anticipating Oblivious Opponents in Stochastic Games 17

Proof. We will prove this by contradiction. Let m,m′ be two states created such that
||b(m)−b(m′)||tv≤(1−L∗)λ. In fact, let us assume that (m,m′) are the very first
pair of states constructed during the execution of Algorithm 1 with this property.

Let us assume that m is the first state constructed, followed by m′. Let b′=b(m′).
We create the state m′ because of we have b′=τ(b(m1),o) for some previously added
state m1 and observation o∈Σ′ (line 9 of Algorithm 1).

The call to findClosestState (line 12) must return the state m since if it returned
some other state m2 then ||b(m2)−b(m′)||tv≤||b(m)−b(m′)||tv≤(1−L∗)λ. This
means that (m,m2) are a pair of already created states that contradicts the statement
of this theorem. However, this goes against our assumption that (m,m′) is the very
first pair created. Therefore, m2=m.

By assumption,
||b(m)−b(m′)||tv≤(1−L∗)λ.

Also, since b(m′)=τ(b(m1),o) and τ is contractive, we know that any belief state
b∈Dn such that ||b−b(m1)||tv≤λ,

||τ(b,o)−b(m′)||tv≤L∗||b−b(m1)||tv≤L∗λ.

Therefore,

||τ(b,o)−b(m)||tv≤||τ(b,o)−b(m′)||tv+||b(m′)−b(m)||tv
≤L∗λ+(1−L∗)λ

≤λ

We thus know that the edge from m1 to m will be consistent. Therefore, the state
m′ is never created by our algorithm because the then-branch of the condition in
line 13 in Algorithm 1 is executed, yielding a contradiction.

As a result, we have proven a finite upper bound on the number of possible states
Algorithm 1 can produce which happens to be the packing number of the minimum
cardinality family of balls of radius (1−L∗)λ in the total variation norm that covers
the belief space Dn.

This concludes the proof of Theorem 5.

Example 4. For all observations o in the RPS example from Figure 1, αmax(o)=0.5,
αsum(o)=

4
3 . We have κmax=κ(o)=

0.5
4/3+4(0.5)=

3
20=0.15. Using Theorem 5, for any

matrix T all of whose entries exceed 0.15, we are guaranteed a finite state ISM for
any λ>0. Interestingly, the matrix in Figure 1 does not satisfy this condition and
nevertheless yields finite ISM for λ=0.25 (Figure 4).

Robustness: Suppose we designed an ISM M that is consistent for λ>0 assuming
matrix T=TD, whereas in reality P2 switches policies according to T=TA, wherein
TA≠TD. We will prove that the ISM M which is consistent for T=TD and λ>0 will
remain consistent for T=TA for a different value λ=λ. Let t∗d=mini,j∈[n]TD,i,j and

18 Kalat et al.

t∗a=mini,j∈[n]TA,i,j be the minimum entries in the matrices TD and TA respectively.
Let us define the function

L(TA,TD,G,Π)=max
o∈O

(1−n max(t∗a,t
∗
d))αmax(o)

min(t∗a,t
∗
d)αsum(o)

Theorem 6. If t∗a>0, t∗d>0 and L(TA,TD,G,Π)<1 then the ISM M is consistent
under the matrix TD with the consistency parameter λ= λ+||(TA−TD)t||1

1−L(TA,TD,G,Π) .

||T ||1 refers to the induced 1−norm of matrix T [47].

Proof. Let us assume that TA is the actual matrix used byP2 whereas TD is the matrix
assumed during the design of the consistent ISM M. Let each entry of TA be at least
t∗a whereas t∗d is the minimal entry in the matrix TD. We assume that t∗a>0 and t∗d>0.

For a belief state b∈Bn, let τD(b,o) denote the updated belief state using the
design assumption TD:

τD(b,o)=T
t
D×condition(b,o).

Likewise, let τA be the updated belief state using the actual play matrix TA:

τA(b,o)=T
t
A×condition(b,o).

Let tmax = max(t∗a, t
∗
d) and tmin = min(t∗a, t

∗
b). Recall the definitions: αj = π(o),

αmax(o)=maxnj=1αj and αsum(o)=
∑n
j=1αj.

Lemma 8. Let b1,b2 be two belief states such that for all j ∈ [n], b1,j ≥ t∗a and
b2,j≥t∗d; and o be a non-zero probability observation.

||τA(b1,o)−τD(b2,o)||tv≤||(TA−TD)t||1+
(1−ntmax)αmax(o)

tminαsum(o)
||b1−b2||tv.

Proof.

||τA(b1,o)−τD(b2,o)||tv
= ||T tAcondition(b1,o)−T tDcondition(b2,o)||tv (* let b′ :=condition(b,o)*)
= ||T tA(b′

1−b′
2)||tv+||(TA−TD)tb′

2||tv
≤(1−nt∗a)||b′

1−b′
2||tv+||(TA−TD)t||1×||b′

2||1︸ ︷︷ ︸
=1

(*Cf. Lemma 4*)

Consider another derivation that proceeds as follows:

||τA(b1,o)−τD(b2,o)||tv
= ||T tAcondition(b1,o)−T tDcondition(b2,o)||tv (* let b′ :=condition(b,o)*)
= ||T tD(b′

1−b′
2)||tv+||(TA−TD)tb′

1||tv
≤(1−nt∗d)||b′

1−b′
2||tv+||(TA−TD)t||1×||b′

1||1︸ ︷︷ ︸
=1

(*Cf. Lemma 4*)

Combining, we obtain:

||τA(b1,o)−τD(b2,o)||tv≤min(1−nt∗a,1−nt∗d)︸ ︷︷ ︸
=1−ntmax

||b′
1−b′

2||tv+||(TA−TD)t||1.

Anticipating Oblivious Opponents in Stochastic Games 19

We will now calculate bounds on ||b′
1−b′

2||tv.

||b′
1−b′

2||tv =
∑n
j=1

∣∣∣ αjb1,j∑n
i=1αib1,i

− αjb2,j∑n
i=1αib2,i

∣∣∣
Note that

∑
iαib1,i ≥ t∗aαsum ≥ tminαsum since b1,i ≥ t∗a. Likewise,

∑
iαib2,i ≥

tminαsum. Therefore,

||b′
1−b′

2||tv =
∑n
j=1

∣∣∣ αjb1,j∑n
i=1αib1,i

− αjb2,j∑n
i=1αib2,i

∣∣∣
≤ 1
tminαsum

∑n
j=1|αjb1,j−αjb2,j|≤

αmax

tminαsum
||b1−b2||tv

Combining, we obtain,

||τA(b1,o)−τD(b2,o)||tv
≤(1−ntmax)||b′

1−b′
2||tv+||(TA−TD)t||1

≤ (1−ntmax)αmax

tminαsum
||b1−b2||tv+||(TA−TD)t||1.

This completes the proof of this lemma.

Let σt be a sequence of observations with non-zero probability and b=τD(b0,σt)

and b̂=τA(b0,σt) for the uniform initial belief state b0. Let m be the state in the
ISM m=δ(m0,σt) with associated belief state b(m).

We will now proceed to the proof of the original theorem. Let us consider an edge
m

o−→m′ in the automaton. We will show that the edge is λ consistent under τA. Let
b̂ be any belief state such that b̂j≥t∗a and

||b̂−b(m)||tv≤λ,

wherein
λ=

λ+||(TA−TD)t||1
1−L(TA,TD,G,Π)

,

and L(TA,TD,G,Π)=maxo∈O
(1−ntmax)αmax

tminαsum
wherein L(TA,TD,G,Π)<1 by assump-

tion.
We wish to prove that

||τA(b̂,o)−b(m′)||tv≤λ.

First, we note that for any belief state b such that bj≥t∗d

||τD(b,o)−τA(b̂,o)||tv≤
(1−ntmax)αmax

tminαsum
||b−b̂||tv+||(TA−TD)t||1.

Therefore,

||τA(b̂,o)−b(m′)||≤||τA(b̂,o)−τD(b(m),o)||+||τD(b(m),o)−b(m′)||
≤ (1−ntmax)αmax(o)

tminαsum(o) ||b̂−b(m)||tv+||(TA−TD)t||1+λ
≤L(TD,TA,Π)λ+ ||(TA−TD)t||1+λ︸ ︷︷ ︸

=(1−L(TD,TA,G,Π))λ

≤λ

This completes the proof.

20 Kalat et al.

7 Experimental Evaluation

We present an experimental evaluation based on an implementation of the ideas men-
tioned thus far. Our implementation uses the Python programming language and in-
puts a user-defined game structure, n policies for player P2, values for parameters λ>0.
For each case, the policy design Markov chain whose transition system is given by T(ϵ),
such that T(ϵ)i,i=ϵ and T(ϵ)i,j= 1−ϵ

n−1 when i≠j. In other words, player P2 plays the
same policy as previous step with probability ϵ and switches to a different policy uni-
formly with probability (1−ϵ)/(n−1). Our implementation uses the Gurobi optimiza-
tion solver [18] to implement the consistency checks described in Section 3 and uses it to
implement the consistent information state machine synthesis as described in Section 4.

Performance Evaluation on Benchmark Problems. We consider benchmarks for eval-
uating our approaches in terms of the ability to construct finite information state
machines, the sizes of these machines and the performance of the resulting policies
synthesized by our approach.
1. rps: The rock-paper-scissors game and P2 policies as described in Example 1.
2. rps-mem: The rock-paper-scissors game but with “memory” of the previous move

by each player. This game has 9 states that remember the previous move of each
player, and the policies for P2 model behaviors such as “play action now that
would have beaten P1 in the previous turn” or “repeat the previous action of P1”.

3. Anticipate-n-Avoid(N) consists of a circular corridor with N rooms numbered
1,...,N with four designated rooms marked as meeting zones. P2 chooses one of
four policies that navigate them to one of the meeting rooms whereas the rewards
for P1 are negative if they happen to be in the same cell as P2 or in an adjacent
cell while the rewards are positive if they happen to be farther away. The game
has N2 states for N rooms.

The game structures and the policies for P2 are given in the appendix.
Table 1 shows the performance over these benchmarks. We have four benchmarks

as described briefly above and in detail in the Appendices A, and B. For these
benchmarks the number of states ranges from 1 for the rock-paper-scissors game to
2080 states for the Anticipate-Action game. Similarly, the number of actions of
each player and the number of policies employed by P2 are reported. For each game,
we choose various values of (λ,T(ϵ)) and report the overall performance in terms of
number of states of the information state machine, the time taken to construct it, the
size of the MDP and the time taken to compute an optimal policy using policy iteration.
Since the transition matrix T=T(ϵ), we note that min(Ti,j)=

ϵ
n−1 provided ϵ≤ n−1

n .
We ran two series of experiments for each benchmark by fixing λ and decreasing ϵ for
the matrix T(ϵ) until Algorithm 1 reports a failure or times out after one hour. The first
observation is that our approach works for values of t∗= ϵ

n−1 that are smaller than the
limit suggested by Theorem 5. At the same time, we note that as ϵ decreases, the size
of the automaton M and the corresponding size of the MDP obtained by composing
the automaton with the game all increase, as does the time taken to construct. Also,
if Algorithm 1 fails, it happens very quickly, allowing us to increase ϵ until we succeed.

Anticipating Oblivious Opponents in Stochastic Games 21

Benchmark Size λ=0.1 λ=0.05
ϵ |M| Talg1 |MDP| TPI ϵ |M| Talg1 |MDP| TPI

rps (1, 3, 3, 4) 0.5 6 0.34 6 <0.01 0.5 10 0.4 10 <0.01
0.4 20 0.92 20 <0.01 0.4 29 1.1 29 <0.01
0.3 80 4.6 80 0.01 0.3 115 4.9 115 0.02
0.2 × 0.02 - Alg. 1 Fail - 0.2 × 0.4 - Alg. 1 Fail -

rps-mem (9, 3, 3, 9) 0.6 77 28.7 244 0.1 0.6 176 55 526 0.1
0.55 228 117 688 1.3 0.55 448 215 1342 0.34
0.5 834 743 2500 4.6 0.5 1516 1101 4546 1.8
0.45 × 14.2 - Alg. 1 Fail - 0.45 - Timeout >1hr-

ant.-avd. (625, 3, 3, 4) 0.55 7 1.5 1701 1.8 0.55 17 2.6 3526 4.2
0.5 4.3 12 2726 3.2 0.5 28 6.9 5226 12.9
0.45 8.8 26 4926 11.5 0.45 61 14.5 8326 19.5
0.4 19.7 66 10042 26.5 0.4 137 34.6 16882 50.5
0.35 68.5 194 24592 84 0.35 366 77.6 37770 112.1
0.3 × 4 - Alg. 1 Fail - 0.3 1289 305.4 126395 431.1

Table 1. Performance results of our approach on various benchmarks and different values
of the parameters λ,ϵ. “Size” is a four-tuple consisting of (|S|,|A(1)|,|A(2)|,|Π|), Talg1 is time
taken (seconds) to run Algorithm 1 and TPI is time taken (seconds) for policy iteration to
converge (discount factor γ=0.95). Experiments were run on Linux server with four 2.4
GHz Intel Xeon CPUs and 64GB RAM.

Next Tool Usage Prediction. We study the performance of our approach on two
datasets involving human task performance: (a) the IKEA ASM dataset that consists
of 371 individual furniture assemblies of four distinct furniture models, wherein the
actions performed by the human assembler are labeled using a neural network (CNN)
to yield sequences of actions performed by the human [5]; and (b) the CATARACTS
dataset consisting of 25 cataract surgery videos, wherein a CNN is used to identify
the sequence of tools employed by the surgeon [1].

We first used automata learning tool flexfringe to construct a DFA model from
a training set consisting of 75% of the sequences in each dataset [46]. Flexfringe
successfully constructed a DFA that includes the sequences of actions/tools used (Cf.
Appendix C). The game graph G consists of the automata states and edges. The
transitions between states are governed by the actions of P2. The actions of P1 are
the same as that of P2: A(1)=A(2). The goal of P1 is to predict the next action/tool
usage by P2 based on knowledge of the current state. The reward R(s,a1,a2)=1 if
a1 = a2 (i.e, P1’s action matches that of P2) and R(s,a1,a2)=−1 otherwise. The
policies of P2 are also constructed from the training data as well. For each sequence σ
in the training data we collect the set of edges (states and actions) in the automaton
that are traversed by σ. Each such edge set describes a policy π wherein the player
upon reaching a state chooses the action on one of the outgoing edges from the set
uniformly at random, or alternatively, if no outgoing edge from the set is present,
the player chooses any action uniformly at random. Note that multiple sequences
from the training data map can onto the same policy.

22 Kalat et al.

Ikea-Shelf-Drawer (|G|=18,|Π|=7) Ikea-TV-Bench (|G|=18,|Π|=13)
(λ,ϵ) |M| TM ravg apavg (λ,ϵ) |M| TM ravg apavg

(0.01, 0.5) 344 97.7 0.137 0.407 (0.01, 0.5) 846 245.5 0.203 0.389
(0.01, 0.6) 917 291 0.137 0.418 (0.01, 0.6) 2852 1006 0.21 0.404
(0.01, 0.7) 3547 1324.5 0.137 0.43 (0.01, 0.7) - timeout >3600s
(0.02, 0.5) 189 65.4 0.137 0.407 (0.02, 0.5) 425 142.8 0.198 0.389
(0.02, 0.6) 472 168.5 0.137 0.418 (0.02, 0.6) 1263 486.32 0.21 0.404
(0.02, 0.7) 1566 615.2 0.137 0.43 (0.02, 0.7) - Algo. 1 fail -
Ikea-Coffee-Table (|G|=15,|Π|=12) Cataract-Surgery (|G|=36,|Π|=14)

(λ,ϵ) |M| TM ravg apavg (λ,ϵ) |M| TM ravg apavg
(0.01, 0.5) 521 150 0.181 0.408 (0.01, 0.4) 399 236.8 0.287 0.512
(0.01, 0.6) 1441 494 0.181 0.420 (0.01, 0.5) 1360 846.7 0.287 0.518
(0.01, 0.7) - timeout >3600s (0.01, 0.6) - timeout >3600s
(0.02, 0.5) 279 115 0.18 0.409 (0.02, 0.4) 207 138 0.287 0.512
(0.02, 0.6) 705 292 0.178 0.420 (0.02, 0.5) 626 371 0.287 0.518
(0.02, 0.7) - Algo. 1 fail - (0.02, 0.6) 2404 1642 0.287 0.525

Table 2. Performance data on tool prediction problem for various task sequences. |G|
denotes size of automaton , |Π|: number of policies for P2, |M|: ISM size, TM : time taken
by Algo. 1, ravg : average reward per move, apavg : average probability of P2’s action at
each step using ISM belief state.

Once the game and the policy are constructed from the training data, we use
Algorithm 1 to construct an ISM given T=T(ϵ) and λ. This is used to construct an
MDP, and thus, a policy π1 for P1. The policy is tested by using the held out test
sequences consisting of the 25% of the sequences not used in learning the task model
or the policies. Using each sequence as the set of actions chosen by the oblivious P2,
we measure the average reward for each episode and the average action prediction
score for P1 for various values of ϵ,λ.

Table 2 shows the size of the ISM, running time of Algo. 1 and the performance of
the policy for P1 on the held out test sequences. First, we note that the performance
in terms of running time and size of the ISM shows trends that are similar to the
previous benchmarks reported in Table 1. In terms of the held out sequences, we
note that our approach is successful in terms of predicting the actions of P2. Given
that the cataract data has 41 actions and Ikea dataset has 32 actions, our approach
performs much better than a random guess. At the same time, the action probability
score (the average probability ascribed by the ISM belief’s state to P2 action in the
current move) is also high given the large space of possible actions. Interestingly,
however, we note that changing λ,ϵ has an enormous impact on the running time and
size of the ISM but very little impact on the performance on the unseen test sequence.
The average probability score shows a small variations across different values of λ,ϵ.
We believe that this is a function of the rather small values of λ used since it assures
us that the ISM tracks the belief state very precisely.

Anticipating Oblivious Opponents in Stochastic Games 23

8 Conclusion

We study concurrent stochastic games against oblivious opponents where the op-
ponent (environment) is not necessarily defined as adversarial or cooperative, but
rather oblivious that is bounded to choose from a finite set of policies. We introduce
the notion of information state machine (ISM) whose states are mapped to a belief
state on the environment policy, and provide the guarantee that the belief states
tracked by this automaton stay within a fixed distance of the precise belief state
obtained by tracking the entire history for the environment. In the future, we would
like to better characterize the relationship between the various parameters involved in
Algorithm 1 to provide a tighter condition for its termination. We are also interested
in understanding the applicability of these ideas to the more general case of partially
observable Markov decision processes.

Acknowledgments. This work was supported in part by the US NSF under award numbers
CPS-1836900, CPS-1932189, CCF-2146563, and the NSF IUCRC Center for Autonomous
Air Mobility and Sensing (CAAMS).

Disclosure of Interests. The authors have no conflicts of interest to disclose.

References

1. Al Hajj, H., Lamard, M., Conze, P.H., Roychowdhury, S., Hu, X., Maršalkaitė, G.,
Zisimopoulos, O., Dedmari, M.A., Zhao, F., Prellberg, J., Sahu, M., Galdran, A., Araújo,
T., Vo, D.M., Panda, C., Dahiya, N., Kondo, S., Bian, Z., Vahdat, A., Bialopetravičius,
J., Flouty, E., Qiu, C., Dill, S., Mukhopadhyay, A., Costa, P., Aresta, G., Ramamurthy,
S., Lee, S.W., Campilho, A., Zachow, S., Xia, S., Conjeti, S., Stoyanov, D., Armaitis,
J., Heng, P.A., Macready, W.G., Cochener, B., Quellec, G.: Cataracts: Challenge on
automatic tool annotation for cataract surgery. Medical Image Analysis 52, 24–41 (2019)

2. Avrahami-Zilberbrand, D., Kaminka, G.A.: Two logical theories of plan recognition.
Journal of Logic and Computation 12(3), 371–412 (2002)

3. Beauquier, D., Burago, D., Slissenko, A.: On the complexity of finite memory policies
for Markov decision processes. In: Mathematical Foundations of Computer Science
1995: 20th International Symposium, MFCS’95 Prague, Czech Republic, August
28–September 1, 1995 Proceedings 20. pp. 191–200. Springer (1995)

4. Bellman, R.: A Markovian decision process. Journal of mathematics and mechanics
pp. 679–684 (1957)

5. Ben-Shabat, Y., Yu, X., Saleh, F., Campbell, D., Rodriguez-Opazo, C., Li, H., Gould,
S.: The ikea asm dataset: Understanding people assembling furniture through actions,
objects and pose. In: Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV). pp. 847–859 (January 2021)

6. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of
decentralized control of Markov decision processes. Mathematics of operations research
27(4), 819–840 (2002)

7. Bewley, T., Kohlberg, E.: On stochastic games with stationary optimal strategies.
Mathematics of Operations Research 3(2), 104–125 (1978)

8. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research 11, 1–94 (1999)

24 Kalat et al.

9. Cassandra, A.R.: A survey of POMDP applications. In: AAAI 1998 fall symposium
on planning with partially observable Markov decision processes. vol. 1724 (1998)

10. Castro, P.S., Panangaden, P., Precup, D.: Equivalence relations in fully and partially
observable Markov decision processes. In: IJCAI. vol. 9, pp. 1653–1658 (2009)

11. Castro, P.S., Panangaden, P., Precup, D.: Notions of state equivalence under partial
observability. In: Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI-09). pp. 1653–1658 (2009)

12. Charniak, E., Goldman, R.P.: A bayesian model of plan recognition. Artificial
Intelligence 64(1), 53–79 (1993)

13. Chatterjee, K., Henzinger, T.A.: A survey of stochastic ω-regular games. Journal of
Computer and System Sciences 78(2), 394–413 (2012)

14. Daswani, M., Sunehag, P., Hutter, M.: Feature reinforcement learning using looping suffix
trees. In: European Workshop on Reinforcement Learning. pp. 11–24. PMLR (2013)

15. De Alfaro, L., Henzinger, T.A., Mang, F.Y.: The control of synchronous systems. In:
International Conference on Concurrency Theory. pp. 458–473. Springer (2000)

16. De Alfaro, L., Henzinger, T.A., Mang, F.Y.: The control of synchronous systems, part
II. In: International Conference on Concurrency Theory. pp. 566–581. Springer (2001)

17. Filar, J., Vrieze, K.: Competitive Markov decision processes. Springer Science &
Business Media (2012)

18. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023),
https://www.gurobi.com

19. Hauskrecht, M.: Value-function approximations for partially observable Markov decision
processes. Journal of artificial intelligence research 13, 33–94 (2000)

20. Hermanns, H., Krčál, J., Křetínskỳ, J.: Probabilistic bisimulation: Naturally on distribu-
tions. In: International Conference on Concurrency Theory. pp. 249–265. Springer (2014)

21. Holmes, M.P., Isbell Jr, C.L.: Looping suffix tree-based inference of partially observable
hidden state. In: Proceedings of the 23rd international conference on Machine learning.
pp. 409–416 (2006)

22. Horák, K., Bošanskỳ, B., Kiekintveld, C., Kamhoua, C.: Compact representation of value
function in partially observable stochastic games. arXiv preprint arXiv:1903.05511 (2019)

23. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial intelligence 101(1-2), 99–134 (1998)

24. Kearns, M., Mansour, Y., Ng, A.: Approximate planning in large POMDPs via reusable
trajectories. Advances in Neural Information Processing Systems 12 (1999)

25. Kim, D., Lee, J., Kim, K.E., Poupart, P.: Point-based value iteration for constrained
POMDPs. In: IJCAI. vol. 11, pp. 1968–1974 (2011)

26. Kochenderfer, M.J.: Decision making under uncertainty: theory and application. MIT
press (2015)

27. Lim, M.H., Tomlin, C.J., Sunberg, Z.N.: Sparse tree search optimality guarantees in
POMDPs with continuous observation spaces. arXiv preprint arXiv:1910.04332 (2019)

28. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and infinite-horizon partially observable Markov decision problems. In: AAAI/IAAI.
pp. 541–548 (1999)

29. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning and
related stochastic optimization problems. Artificial Intelligence 147(1-2), 5–34 (2003)

30. McCallum, R.A.: Instance-based utile distinctions for reinforcement learning with
hidden state. In: Machine Learning Proceedings 1995, pp. 387–395. Elsevier (1995)

31. Meuleau, N., Kim, K.E., Kaelbling, L.P., Cassandra, A.R.: Solving POMDPs by
searching the space of finite policies. arXiv preprint arXiv:1301.6720 (2013)

32. Meuleau, N., Peshkin, L., Kim, K.E., Kaelbling, L.P.: Learning finite-state controllers
for partially observable environments. arXiv preprint arXiv:1301.6721 (2013)

Anticipating Oblivious Opponents in Stochastic Games 25

33. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. The
MIT Press (2012)

34. Murty, K.G., Yu, F.T.: Linear complementarity, linear and nonlinear programming,
vol. 3. Citeseer (1988)

35. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From
an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL (t). Journal of
the ACM (JACM) 53(6), 937–977 (2006)

36. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes.
Mathematics of operations research 12(3), 441–450 (1987)

37. Pineau, J., Gordon, G., Thrun, S., et al.: Point-based value iteration: An anytime
algorithm for POMDPs. In: Ijcai. vol. 3, pp. 1025–1032 (2003)

38. Roy, N., Gordon, G.J.: Exponential family PCA for belief compression in POMDPs.
Advances in Neural Information Processing Systems 15 (2002)

39. Shani, G., Brafman, R.I., Shimony, S.E.: Forward search value iteration for POMDPs.
In: IJCAI. pp. 2619–2624. Citeseer (2007)

40. Shapley, L.S.: Stochastic games. Proceedings of the national academy of sciences 39(10),
1095–1100 (1953)

41. Silver, D., Veness, J.: Monte-carlo planning in large POMDPs. Advances in neural
information processing systems 23 (2010)

42. Spaan, M.T., Vlassis, N.: Perseus: Randomized point-based value iteration for POMDPs.
Journal of artificial intelligence research 24, 195–220 (2005)

43. Strauch, R.E.: Negative dynamic programming. The Annals of Mathematical Statistics
37(4), 871–890 (1966)

44. Subramanian, J., Sinha, A., Seraj, R., Mahajan, A.: Approximate information state
for approximate planning and reinforcement learning in partially observed systems.
The Journal of Machine Learning Research 23(1), 483–565 (2022)

45. Theocharous, G., Kaelbling, L.: Approximate planning in POMDPs with macro-actions.
Advances in neural information processing systems 16 (2003)

46. Verwer, S., Hammerschmidt, C.A.: flexfringe: A passive automaton learning package. In:
2017 IEEE International Conference on Software Maintenance and Evolution (ICSME).
pp. 638–642 (2017). https://doi.org/10.1109/ICSME.2017.58

47. Weisstein, E.W.: Matrix Norm (2002), cf. https://mathworld.wolfram.com/MatrixNorm.html
48. Yang, L., Zhang, K., Amice, A., Li, Y., Tedrake, R.: Discrete approximate information

states in partially observable environments. In: 2022 American Control Conference
(ACC). pp. 1406–1413. IEEE (2022)

49. Yoon, H., Sankaranarayanan, S.: Predictive runtime monitoring for mobile robots using
logic-based bayesian intent inference. In: International Conference on Robotics and
Automation (ICRA). pp. 8565–8571. IEEE (2021)

26 Kalat et al.

A Rock Paper Scissors with Memory

We describe the rps-mem benchmark used in our approach. The state of the game G
is given as S=A1×A2 wherein A1={r1,p1,s1} and A2={r2,p2,s2} while A(1)=A1

and A(2)=A2. The transition map is given as follows:

P((s1,s2) | s,a1,a2)=

{
1 if s1=a1, s2=a2
0 otherwise

In other words, the state s “remembers” the previous action of both players. The
reward map for each state is identical to that of the rps game from Example 1.

We define 9 policies for P2.
Policy π1 chooses rock/paper with 0.45 probability and scissors with 0.1 probability

regardless of the state.

π1(a,b)={r2 :0.45,p2 :0.45,s2 :0.1}.

Likewise, we define policies π2,π3.

π2(a,b)={r2 :0.45,p2 :0.1,s2 :0.45}

π3(a,b)={r2 :0.1,p2 :0.45,s2 :0.45}

Policy π4: mostly repeat what player P1 played in the previous round.

π4(a,b)=

{r2 :0.8,p2 :0.1,s2 :0.1} if a=r1
{r2 :0.1,p2 :0.8,s2 :0.1} if a=p1
{r2 :0.1,p2 :0.1,s2 :0.8} if a=s1

Policy π5: mostly play what would have beaten player 1 in the previous round.

π5(a,b)=

{r2 :0.8,p2 :0.1,s2 :0.1} if a=s1
{r2 :0.1,p2 :0.8,s2 :0.1} if a=r1
{r2 :0.1,p2 :0.1,s2 :0.8} if a=p1

Policy π6: Mostly play what player 1 did not play in the previous round.

π6(a,b)=

{r2 :0.1,p2 :0.45,s2 :0.45} if a=r1
{r2 :0.45,p2 :0.1,s2 :0.45} if a=p1
{r2 :0.45,p2 :0.45,s2 :0.1} if a=s1

Policy π7: mostly repeat what player P2 played in the previous round.

π4(a,b)=

{r2 :0.8,p2 :0.1,s2 :0.1} if b=r2
{r2 :0.1,p2 :0.8,s2 :0.1} if b=p2
{r2 :0.1,p2 :0.1,s2 :0.8} if b=s2

Anticipating Oblivious Opponents in Stochastic Games 27

Policy π8: mostly play what would have beaten P2 in the previous round.

π5(a,b)=

{r2 :0.8,p2 :0.1,s2 :0.1} if b=s2
{r2 :0.1,p2 :0.8,s2 :0.1} if b=r2
{r2 :0.1,p2 :0.1,s2 :0.8} if b=p2

Policy π9: mostly play what P2 did not play in the previous round.

π7(a,b)=

{r2 :0.1,p2 :0.45,s2 :0.45} if b=r2
{r2 :0.45,p2 :0.1,s2 :0.45} if b=p2
{r2 :0.45,p2 :0.45,s2 :0.1} if b=s2

B Anticipate and Avoid

Anticipate and Avoid game involves a circular arena with N cells labeled 1,...,N . The
state space S encodes joint positions of two players in this arena.

S={(i,j) | 1≤i≤N,1≤j≤N}.

Let us define i⊕1 as the same as i+1 if 1leqi≤N−1 and to be 1 if i=1. Likewise,
we define i⊖1 as i−1 for 2≤i≤N and N if i=1.

The actions are A(1)=A(2)={L,R} standing for left and right, respectively. Let
us define p(j|i,a) for a single player as follows:

p(j|i,a)=

0.2 j=i

0.8 j=i⊕1,a=R

0.8 j=i⊖1,a=L

0 otherwise

In other words, upon moving left, the player may stay in the same cell with 0.2 prob-
ability or move to "previous" cell with 0.8 probability and similarly for moving right.

The reward map is defined by first defining a state distance function:

ρ(i,j)=

{
min(j−i,i−j+N) if i≤j
min(i−j,j−i+N) if i>j

We define the reward for state/actions as

R((i,j),a1,a2)=

−10 i=j

−5 i≠j ∧ ρ(i,j)≤N/10
0 i≠j ∧ ρ(i,j)∈(N/10,3N/10]

1 otherwise

In other words, the reward structure incentivizes i,j positions to be farther apart
than 3N/10.

28 Kalat et al.

Player 2 can play one of four policies of the form targett for t=1,⌈N/4⌉,⌈2N/4⌉,⌈3N/4⌉,
where the policy target(j) is defined as

targett(i,j)=

{L :0.8,R :0.2} j>t ∧ (t−j+N≥j−t)
{L :0.8,R :0.2} j<t ∧ (j−t+N≤t−j)
{L :0.2,R :0.8} j>t ∧ (t−j+N≤t−j)
{L :0.2,R :0.8} j<t ∧ (j−t+N≥t−j)
{L :0.5,R :0.5} otherwise

C Appendix: Ikea Furniture Assembly and Cataract Surgery
Graphs

The ikea furniture assembly dataset was taken from the previous work of Ben-Shabat
et al [5]. It involves sequences of tasks for four different furniture types with roughly
90 sequences for each furniture type. We employed a 75%-25% training/testing data
split. The tool flexfringe was used to learn an automaton model using sequences in
the training data.

0 flip table top 1 pick up leg 2 align leg screw with table thread
3 spin leg 4 other 5 tighten leg
6 rotate table 7 flip table 8 pick up shelf
9 attach shelf to table 10 pick up table top 11 lay down table top
12 push table 13 flip shelf 14 lay down leg
15 lay down shelf 16 push table top 17 pick up side panel
18 align side panel holes with front panel dowels 19 attach drawer side panel 20 pick up bottom panel
21 slide bottom of drawer 22 pick up back panel 23 attach drawer back panel
24 pick up pin 25 insert drawer pin 26 position the drawer right side up
27 pick up front panel 28 lay down bottom panel 29 lay down front panel
30 lay down back panel 31 lay down side panel
Table 3. Action IDs and their description for the IKEA furniture assembly benchmark.

Anticipating Oblivious Opponents in Stochastic Games 29

0 +Bonn forceps 1 +secondary incision knife 2 -Bonn forceps
3 -secondary incision knife 4 +primary incision knife 5 -primary incision knife
6 +viscoelastic cannula 7 -viscoelastic cannula 8 +capsulorhexis cystotome
9 -capsulorhexis cystotome 10 +capsulorhexis forceps 11 -capsulorhexis forceps
12 +hydrodissection canula 13 -hydrodissection canula 14 +phacoemulsifier handpiece
15 +micromanipulator 16 -phacoemulsifier handpiece 17 -micromanipulator
18 +irrigation/aspiration handpiece 19 -irrigation/aspiration handpiece 20 +implant injector
21 -implant injector 22 +Rycroft canula 23 -Rycroft canula
24 +Troutman forceps 25 -Troutman forceps 26 +cotton
27 -cotton 28 +Charleux canula 29 -Charleux canula
30 +suture needle 31 -suture needle 32 +Vannas scissors
33 -Vannas scissors 34 +needle holder 35 -needle holder
36 +vitrectomy handpiece 37 -vitrectomy handpiece 38 +biomarker
39 -biomarker 40 +Mendez ring 41 -Mendez ring
Table 4. Action IDs and their description for the cataract surgery benchmark. A “+” sign
before a tool indicates its introduction during a particular step, whereas a “-” sign indicates
its removal.

30 Kalat et al.

0

1

2

3

4

5

6

15

7

8

10

911

12

13

14
16

17

17

27
18

19

18

29

19

24

17

17

17

25

19

18

20 19

21

22

27

23
2424

26

Fig. 5. IKEA Shelf Drawer Assembly Task Machine.

Anticipating Oblivious Opponents in Stochastic Games 31

0

1

2

3

11

4

5

6

7

14

15

8

9

10

12

13

16

17

0

1

1

2

3

3

1
5

1

5

2

3

1

7

3

7
8

1

5

2

3

2

3

9

Fig. 6. IKEA TV Bench Assembly Task Machine

32 Kalat et al.

0

1

2

3

4

5

6

11

7

8

9

10

12

13
14

1

0

2

3

1

3

1

7

1

5

3

8

2

1

3

1
7

5 6

9

Fig. 7. IKEA Coffee Table Assembly Task Machine

Anticipating Oblivious Opponents in Stochastic Games 33

0

1

2

3

5

4

6

7

8

9

11

10

12
27

13

14

15

16

17

18

19

20

21

22

25

23

24

26 28

29

30

31

32

33

34

35

0

1

1

3

2

1

3

3

0

4

2

4

5

5 15

2

6 17

7

8

9

10

12

11

13

12

14

0

15

16

16

17

14
18

17

16
18

15

19

6

18 22

19

7

23

20

22

21

15

Fig. 8. Cataract Surgery Task Machine

