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ABSTRACT
We study the problem of analyzing falsifying traces of cyber-physical

systems. Speci�cally, given a system model and an input which is

a counterexample to a property of interest, we wish to understand

which parts of the inputs are “responsible” for the counterexample

as a whole. Whereas this problem is well known to be hard to solve

precisely, we provide an approach based on learning from repeated

simulations of the system under test.

Our approach generalizes the classic concept of “one-at-a-time”

sensitivity analysis used in the risk and decision analysis commu-

nity to understand how inputs to a system in�uence a property

in question. Speci�cally, we pose the problem as one of �nding a

neighborhood of inputs that contains the falsifying counterexample

in question, such that each point in this neighborhood corresponds

to a falsifying input with a high probability. We use ideas from

statistical hypothesis testing to infer and validate such neighbor-

hoods from repeated simulations of the system under test. �is

approach not only helps to understand the sensitivity of these coun-

terexamples to various parts of the inputs, but also generalizes or

widens the given counterexample by returning a neighborhood of

counterexamples around it.

We demonstrate our approach on a series of increasingly complex

examples from automotive and closed loop medical device domains.

We also compare our approach against related techniques based on

regression and machine learning.

CCS CONCEPTS
•Computer systems organization →Embedded and cyber -
physical systems; •Mathematics of computing →Hypothesis
testing and con�dence interval computation;
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1 INTRODUCTION
We present a simulation-based approach to analyze a given set of

counterexamples to temporal logic properties of cyber-physical

systems (CPS) towards understanding the root causes that underlie

the given counterexamples. �e problem of �nding counterexam-

ples to system speci�cation is known as falsi�cation. �ere are

many approaches to falsi�cation, including symbolic approaches

using model checking and simulation-based approaches that treat

the system as a black-box and a�empt to �nd inputs that lead to

a counterexample. Simulation-based approaches have been well

studied in the recent past [2, 5, 15, 27]. �is research has led to tools

such as S-Taliro [6] and Breach [14], and has been demonstrated

through case studies in widely varying domains such as automotive

systems [18] and medical devices [9, 33, 34].

Arguably, a successful discovery of a counterexample to a prop-

erty is o�en a starting point rather than the end goal of the analysis

process. For instance, in many applications it may be important to

understand the root causes of a falsi�cation in terms of the inputs to

the system. �is process is o�en manually implemented using trial

and error. However, for large systems with many input parameters

and signals, a manual analysis is o�en time consuming, requiring

expertise in the problem domain as well as an understanding of the

underlying veri�cation techniques.

Similarly, in other applications a counterexample may only be

deemed a possible bug if it is preserved under suitably small per-

turbations. Otherwise, they are potentially classi�ed as “low likeli-

hood” or even artifacts of the modeling process. �us, techniques

to explore the neighborhood of the counterexample are very im-

portant. A key objective of the research presented in this paper is

to automate such processes.

Understanding the sensitivity of the output with respect to small

variations in the input is typically studied under the general term of

sensitivity analysis [32] across multiple disciplines including scien-

ti�c and mathematical modeling, operations research, and risk and

decision analysis. �ere are two variants of sensitivity analysis—

local and global sensitivity analysis. Given a complex deterministic

system y = η(x) and a baseline estimate x0, local sensitivity anal-

ysis is concerned with understanding how changes in the input x
around x0 a�ect the output of the system. Local sensitivity analysis

is based on derivatives of η(·) evaluated at x = x0 and measures

how the output changes when di�erent variables (dimensions of
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x) are individually varied across their range while keeping other

variables constant to their baseline values. �e results of local sensi-

tivity analysis are o�en presented using sensitivity graphs, tornado

diagrams, or spider diagrams [16]. �ese diagrams o�er a visual

cue to understand relative relevance of the variables (dimensions)

with respect to the output. However, the local sensitivity approach

is no longer appropriate [31] when we wish to understand the joint

in�uence of multiple inputs perturbed at the same time.

Global sensitivity analysis [31], on the other hand, involve the

use of machine learning to infer classi�ers that explains output

as function of inputs by simulating points in the neighborhood

of the given nominal value. However, these approaches either

yield opaque models that are hard to interpret for the purposes of

root-cause understanding, or provide poor accuracy in some cases,

leading to incorrect results.

�e approach presented in this paper extends sensitivity analysis

to generalize neighborhood of counterexamples by computing a box

neighborhood around the original counterexample with a guarantee

that if a point were to be chosen at random from this neighborhood

according to a �xed sampling distribution, that point would also

yield a counterexample with a high probability threshold that is a

parameter to our search procedure. We call such a box a falsifying
neighborhood of the given counterexample. �e approach relies on

simulations, and e�ectively treats the system as a black-box with

assumptions that guarantee the existence of a neighborhood in the

�rst place. We employ Bayesian statistical hypothesis testing as the

basis for checking if a given box is indeed a falsifying neighborhood.

We describe the algorithms for computing falsifying neighbor-

hoods from a given seed counterexample. We demonstrate these

algorithms on a few nontrivial case studies drawn from the liter-

ature. Wherever possible, we compare our approach with other

related approaches such as local sensitivity analysis using sensitiv-

ity graphs and tornado diagrams, and decision tree classi�cation.

2 A MOTIVATING EXAMPLE
Let us consider a Simulink

r
/State�ow™ model of an automatic

transmission controller, originally proposed by Zhao et al [41], to

motivate our approach. �e model contains nonlinearities and

hybrid switching behavior in the form of discontinuous blocks and

a state�ow diagram. Figure 1 shows the top level Simulink model.

�e model has one continuous input signal u (t ) that lies inside the

range [0, 100] for all time t , representing the user’s thro�le input

through the accelerator pedal and two outputs that represent the

vehicle speed v (t ) and the engine RPM r (t ). �e total simulation

time is T = 30 seconds. We parameterize the input signal u (t ) as a

piecewise constant signal represented by a vector of control points

(u1,u2, . . . ,u7), wherein

u (t ) =




u1 0 ≤ t < 5

...

u6 25 ≤ t < 30

u7 t ≥ 30

�is parameterization is perhaps too simplistic to capture re-

alistic user behavior. However, a simpler input parameterization

makes it easier to visualize our approach.

Figure 1: �e automatic transmission system
Simulinkr/State�ow™ model.

Figure 2: Counter-example for ϕ1 found by S-Taliro with the
responsible portions of the output traces highlighted.

We are interested in �nding if the system always satis�es the

temporal property ϕ1: the speed should always remain below 120
kmph or the engine speed should remain below 4500 RPM. To violate

this property, we search for a piecewise constant input signal u (t )
that causes both the speed and the engine RPM to exceed their

prescribed limits. �e S-Taliro tool produces the counterexample

described by the control points:

(u1,u2, . . . ,u7) = (56.7, 96.6, 91.9, 99.9, 98.6, 95.7, 69.6) .

Figure 2 shows the input thro�le and the output speed and RPM,

highlighting the property violation.

As such, it is not clear how the values of the various control

points a�ect the overall counterexample. To do so, we perform local

sensitivity analysis by considering each input in isolation while

�xing the remaining inputs and present the results as a tornado

diagram that shows how far each input can be varied while still

obtaining counterexamples. Figure 3(a) shows the resulting ranges

for each of the 7 control points. At the same time, these ranges

assume that only one input can vary at a time. However, in this

example, they suggest that input u5 needs to be varied inside the

interval [20, 100] whereas other inputs can be set arbitrarily in their

range. �is is misleading since only one input is allowed to vary.

Figure 3(b) shows the actual box neighborhood wherein we claim

that sampling any point uniformly at random in the neighborhood

has at least a 99% chance of yielding a violation through our hy-

pothesis testing procedure. Such a neighborhood captures what
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(A) (B)

Figure 3: (A) �e tornado diagram showing the range for
each input control point in isolation, and (B) �e falsi�ca-
tion neighborhood. �e x-axis represents the range of con-
trol points [0, 100] and the y-axis represents indices 1 to 7.

;

Figure 4: Simulations of the sample points drawn from the
falsifying neighborhood

happens when all the inputs are potentially varied simultaneously.

It shows that inputs u2, u3, u5 and u6 have to be restricted to a

narrow range around the actual counterexample, while the other

inputs can be allowed to vary inside larger ranges. In particular,

the values of u4 and u7 do not ma�er as long as the other inputs are

within their required ranges. Also, since u7 a�ects the value of the

signal past the simulation horizon, it is not surprising that u7 has

li�le e�ect on the falsi�cation. However, it is clear that the values

of u1,u2,u3 are responsible initially for exceeding the RPM limit,

with a larger range of possible values of u1 but with u2,u3 �xed

around a very narrow range. Later in the simulations, the values of

u5 and u6 ensure that the speed limit is exceeded.

Finally, we sample the neighborhood computed using our method

to simulate each sample. Figure 4 shows the resulting violations,

that are qualitatively similar to the original violation from Fig. 2.

3 PRELIMINARIES
In this section, we present preliminary concepts required in the

remainder of the paper. We begin by stating our basic assumptions

on systems, the properties of interest, and the process of discovering

counterexample using robustness-guided falsi�cation approach [2].

3.1 System Model and Property Speci�cation
We assume that the systems are treated as black-boxes, i.e, they are

equipped with simulation functions that allow us to simulate them

for a given set of initial conditions and signals. Wherever needed,

we will assume that the system satis�es some conditions that allow

us to reason about the properties of its counterexamples.

De�nition 3.1 (System Model). A system Π is given by a tuple

〈X , sim,X0,D,T 〉 that consists of:

(1) a state-space X ⊆ Rn , where n is the dimensionality of the

state-space over which the system evolves;

(2) a forward simulator sim : X0 ×U × [0,T ] 7→ X s.t. x(t ) :

sim(x0, u, t ) represents the state reached at time t given

initial conditions x0, input u and time t ≥ 0.

(3) a set X0 ⊆ X representing the initial conditions (including

the �xed model parameters) of the system;

(4) an interval D for the input signals to the system character-

izing the set U of input signals de�ned by considering all

functions u : [0,T ]→ D;

(5) a �nite time horizon T > 0; and

Given initial condition x0, and input signals u(t ), the trace of

a system Π is given by the function x : [0,T ] → X , wherein

x(t ) : sim(x0, u, t ).

Assumption 1. For the sake of simplicity we make the following
assumptions.

(1) We do not separately de�ne the states and the outputs of
the systems, assuming that all internal states are observable.
Although this is seldom the case in a physical manifestation
of the system, the assumption can be justi�ed for simulation-
based veri�cation of hybrid systems.

(2) We also assume a �nite time horizonT for our investigations,
since we will be restricted to simulations that can only be
computed for �nite times, in general.

We assume that the set of properties of the system are speci-

�ed in formal temporal speci�cation logic such as metric temporal
logic (MTL) or signal temporal logic (STL) [15, 23]. �ese temporal

logics allow one to express rich temporal properties of the system

including real-time properties. For instance, the property ϕ from

our motivating example in Section 2 can be wri�en as :

�(rpm(t ) ≤ 4500) ∧ �(v (t ) ≤ 120).

Given a formula ϕ, we de�ne the robustness of a trace x with

respect to φ as a real-valued quantity denoted r : R (x,ϕ). �e

robustness provides a measure of satisfaction of the trace with

respect to the property and is such that:

(1) positive values of robustness indicate that the trace satis�es

the property (if r > 0 then x |= ϕ);

(2) negative values of robustness indicate that the trace satis-

�es the negation of the property (if r < 0 then x |= ¬ϕ);

(3) and the robustness provides a notion of distance between

the trace and the property: every trace y s.t. | |y(t )−x(t ) | |2≤r
also has the same outcome for the property as x.

We refer the reader to work by Fainekos & Pappas [17] and Donze

& Maler [15] for a formal de�nition of robustness for MTL and STL

properties, respectively. It is important to note that there are tools,

such as TaLiRo and Breach, to e�ciently compute robustness of a

trace wrt MTL formula.

Finally, the techniques in this paper depend on taking in�nite

dimensional continuous time signals u(t ) and parameterizing them
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to a �nite dimensional vector of control points. For this purpose

we introduce a �nitary parameterization of the input signals.

De�nition 3.2 (Parameterization of the Signals). A parameteriza-

tion (W ,π ) ∈ Rm × [W → U ] of signals in U represents a signal

u(t ) ∈ U by a vector v ∈W of control points such that u = π (v).

Common parameterizations are obtained by choosing time points

t0 : 0 ≤ t1 < t2 < · · · < tN ≤ tN+1 : T . We describe parameteri-

zations for a single scalar-valued signal u (t ) below. Vector-valued

extensions are also de�ned similarly.

Piecewise Constant: For piecewise-constant parameterizations

the signal corresponding to control point v : (v1, . . . ,vN+1) is

given byu (t ) = vi whenever ti−1 ≤ t < ti for 1 ≤ i ≤ N +1. �is is

the parameterization used in the motivating example in section 2.

Piecewise Linear: For piecewise-linear parameterizations the sig-

nal corresponding to control point v : (v1, . . . ,vN+1) is given by

u (t ) = vi−1+(vi−vi−1) ((t−ti−1)/(ti−ti−1)) whenever ti−1 ≤ t < ti
for 1 ≤ i ≤ N + 1.

Piecewise Polynomial: �ese are piecewise polynomial curves

that are constructed using a �nite set of control points. For a precise

de�nition and background on Bezier splines we refer to [30].

We de�ne the overall input parameterization of a system as V :

X0 ×W and extend the function π to V 7→ RN as π (v) : (u (t ), x0).
Finally, we recall the robustness-guided approach to �nding

counterexamples of properties, originally proposed by Nghiem et

al [2, 27]. �e approach inputs a model Π and a property ϕ. It

then �xes a �nite parameterization π of the inputs to the model.

�e search is cast as the following problem of solving constraints

over the decision variables v for the control points such that the

resulting trace x has a negative value of robustness:

�nd v ∈ V such that R (x,ϕ) < 0,

x0, u(t ) = π (v), t ∈ [0,T ]

x0 ∈ X0, and

x(t ) = sim(x0, u, t ), t ∈ [0,T ].

In turn, the robustness is treated as an objective function and mini-

mized using stochastic optimization techniques. Even though ap-

proach lacks the formal guarantees obtained using other symbolic

model checking techniques, it is applicable at once to a wide variety

of large non-linear models wherein simulations are much cheaper.

4 FALSIFYING NEIGHBORHOODS
In this section, we de�ne the notion of a falsifying neighborhood for

a given counterexample. In the subsequent section we describe our

approach to infer such neighborhoods. Let Π : 〈X , sim,X0,D,T 〉 be

a system model under investigation, (V ,π ) be an N -dimensional

joint parameterization of the input signals U and initial conditions

X0, and let ϕ be an MTL property of interest.

Given v ∈ V , we de�ne its associated robustness ρ (v,ϕ) wrt

propertyϕ to be equal to the robustness of the trace x(t ) obtained by

simulating the system using the control signal and initial conditions

derived from v i.e. ρ (v,ϕ) = R (x(t ),ϕ), where x(t ) = sim(π (v), t ).
Let v0 : (v1, . . . ,vN ) ∈ V be a counterexample to ϕ obtained

through a falsi�cation tool. �us, ρ (v0,ϕ) < 0. We will call v0 the

seed counterexample. Ideally, our goal is to construct an interval

I (v0) containing v0 s.t. all control point in I yield falsi�cations.

Assumption 2. �e robustness function ρ (v,ϕ) is locally continu-
ous in some nonempty neighborhood N of v0.

Lemma 4.1. If the robustness ρ (v,ϕ) is locally continuous around
v0, then there exists a nonempty falsifying neighborhood F such that
for all v ∈ F , ρ (v,ϕ) < 0.

�e assumption of local continuity can be proven in many situa-

tions including for nonlinear di�erential equations and switched

systems under time-triggered switching [1, 3].

4.1 Tornado Diagrams
A simple �rst approach employs sensitivity analysis to investigate

how much each entry vi of v0 can be varied while still obtaining a

falsi�cation. Let [li ,ui ] represent the absolute limits of the control

point vi in the set V . We characterize this using tornado diagrams.

De�nition 4.2 (Tornado Diagram). A tornado diagram around v0

is the largest interval T (v0) : ([x1,y1], . . . , [xN ,yN ]) such that for

each i ∈ [1,N ], we have that

(a) li ≤ xi ≤ vi ≤ yi ≤ ui , and

(b) ρ ((v1, . . . ,vi−1, v̂i ,vi+1, . . . ,vN ),ϕ)<0 for any v̂i∈[xi ,yi ],

In other words, changing a single entry vi in v0 to a new value in

the interval [xi ,yi ] also yields a falsi�cation.

Tornado diagrams can be computed approximately through sim-

ulations by increasing the value of vi along each dimension while

keeping the others constant until a violation is no longer obtained.

However, as mentioned before, the results can be misleading, since

only a single dimension is considered at a time.

4.2 Falsi�cation Intervals
We now de�ne the notion of a falsi�cation neighborhood given a

seed counterexample v0.

De�nition 4.3 (Falsi�cation Interval). An interval I : [a1,b1] ×

· · · × [aN ,bN ] ⊆ V is said to be a falsi�cation interval around a

seed counterexample v0 wrt a property ϕ if v0 ∈ I and furthermore,

every control point v ∈ I is also a counterexample to ϕ.

Whereas the de�nition is straightforward, it is noteworthy that

it is hard (if not impossible) to formally verify whether a claimed

interval I is indeed falsifying unless we resort to symbolic reasoning

over the system trajectories. For this reason we rely on statistical

evidence through simulations.

In order to provide such statistical evidence, we associate a prob-

ability D with the set of control points V . Such probabilities arise

naturally in physical systems wherein the distribution that gov-

erns the inputs to the systems can be naturally associated with

the control points. Failing this assumption, we may still associate

distributions to represent a notion of relative weights of di�erent

control points in V . Since V is compact and the distribution D is

chosen to be the uniform distribution in such a situation.

De�nition 4.4 (Likely Falsi�cation Interval). Given a distribution

D over V , we say that an interval I is a probabilistic falsi�cation

interval with threshold c if and only if Pr(ρ (v,ϕ) < 0 | v ∈ I ) ≥ c .

We assume that v is sampled according to the distribution D.

Also, c can be set to some high probability threshold such as 0.99.
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Finally, we use statistical hypothesis testing to test if a given

interval I is indeed a falsifying interval or not, using data gathered

from simulating K samples chosen at random from I according to

the distribution D (formally, we condition the probability on I and

sample accordingly). �e statistical criterion we employ in this

paper is simple:

(1) Draw a �xed number K (to be decided later) samples

from I .
(2) If allK samples are counterexamples, then we accept

I as a likely falsi�cation interval.

(3) Otherwise, we reject I as a likely falsi�cation inter-

val.

Our approach will be based on the standard Bayesian hypothesis

testing framework, using the Je�ries Bayes factor test [20, 22, 42].

Let I be a given interval and p (I ) be an unknown probability that

a randomly drawn sample from I is a counterexample. We consider

two competing hypotheses:

H0 : p (I ) < c versusH1 : p (I ) ≥ c .

Our goal is to use data from repeated samples to decide between

H1 vs. H0. We assume an uniform prior probability distribution

over p (I ) re�ecting our lack of information about what p (I ) should

be. As a result, we associate a prior probability of c forH0 and a

prior probability of 1 − c forH1. Since c ∼ 0.99, we note that our

prior beliefs overwhelmingly favorH0 overH1.

Let v1, . . . , vK be some K samples drawn from I such that all of

them are counterexamples. �e probability that this happens under

the hypothesisH0 is given by

Pr(v1, . . . , vK counterex.| H0) =

∫ c

0

pKdp .

Likewise, the probability that this happens underH1 is

Pr(v1, . . . , vK counterex.| H1) =

∫
1

c
pKdp .

�e ratio of these probabilities is called the Bayes factor.

Pr(v0, . . . , vK counterex.|H1)

Pr(v0, . . . , vK counterex.| H0)
=

1 − cK+1

cK+1

Bayes factor measures how the data transforms the prior odds

ofH1 againstH0 to yield a posterior odds. It is therefore used as a

measure of the strength of the evidence in favor ofH1 and against

H0. Typically, a bayes factor greater than some �xed number B
will be used to acceptH1 overH0.

We can now calculate the value of K , the number of simula-

tions needed for a given c and Bayes factor threshold of B, so that

1−cK+1

cK+1
> B. Simplifying yields, K > −

log(B+1)
log(c ) . For example, if

we set c = 0.99 and B = 100, we require K > 460 simulations. A

higher con�dence level of B > 1000 and c = 0.99 requires K > 700.

Typically, B > 100 is considered “decisive” in the literature [22].

Formally the likelihood that we falsely accept H1 when H0 is

really the truth is given by the formula
1

γ B+1
, where γ = 1−c

c . For

B = 100, and c = 0.99, this is nearly
1

2
. �us, we shoot for a much

higher value of B ∼ 10
5

for c = 0.99 in our experiments.

Algorithm 1: Algorithm to check if a given interval is likely

falsifying using the Bayes factor test: returns Accept if the test

passes, or Reject with a control point v ∈ V .

Input: Interval I , System simulator sim, control input space V
and distribution D, probability c and Bayes factor B.

Result: Accept or (Reject, v)
1 K := −

log(B+1)
log(c ) ;

2 for i ∈ [1,K] do
3 vi := Sample(V , D) ;

4 x(t ) := sim(π (vi ),T ) ;

5 if x 6 |= ϕ then
6 return (Reject, vi );

7 return Accept;

�us far, we have de�ned likely falsi�cation intervals and pro-

vided a statistical procedure to test whether a given interval is in-

deed a likely falsi�cation interval, with a given probability threshold

c . �is procedure is described in Algorithm 1.

A type-1 error occurs when Algorithm returns Accept on an

interval I that is in fact not a likely falsifying interval with threshold

c (informally, the evidence fools us into accepting a false statement).

Theorem 4.5. �e likelihood of a type-1 error in Algorithm 1 is at
most c

c+(1−c )B .

�e bounds above use the well-known rates of type-1 error for

Bayes factor-based hypothesis testing. For our experiments, we set

K = 1300 (a large number) for c = 0.99. �is gives us a Bayes factor

B = 4.15 × 10
5

and a probability of drawing a wrong conclusion of

roughly 2.5 × 10
−4

. We will thus use Algorithm 1 with K = 1300.

5 FINDING NEIGHBORHOODS
�us far, we have de�ned the notion of a likely falsi�cation inter-

val and provided a simple procedure for checking a given likely

falsi�cation interval. In this section, we will focus on the inference

of such intervals through simulations. Our procedure guarantees

that if it �nds an interval, the interval is guaranteed to be a likely

falsi�cation interval. �e overall procedure involves three broad

steps: 1) �nding candidate intervals for the search, 2) testing the

candidate interval and 3) shrinking a candidate interval if required.

5.1 Finding Candidate Intervals
We are given, as input a seed counterexample v0, a domain D :

[l1,u1] × · · · × [lN ,uN ] and a distribution D over D. Our goal is to

�nd likely intervals I1, . . . , Im that could be a candidate. To do so,

we generate samples S : {v1, . . . , vk } over the domain D according

to the distribution D, and partition the samples into two sets. �e

set S+ contains all samples that satisfy the property ϕ

S+ : {vi ∈ S | ρ (vi ,ϕ) > 0} .

�e remaining samples belong to the set S−.

We enforce three requirements on the unknown candidate in-

terval I : [x1,y1] × · · · [xN ,yN ]: (a) it must contain v0, the seed

counterexample, (b) it must exclude all points in S+ and (c) it must
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Figure 5: �is �gure illustrates the construction of candidate
intervals from simulation data. Here, the blue �lled points
represent control points satisfying ϕ whereas the black cir-
cles represent counterexamples. �e seed counterexample
is shown as the black circle at the center.

satisfy a minimum width criterion (ϵ1, . . . , ϵN ), speci�ed by the

user (yi − xi ) ≥ ϵi .
However, there can be multiple falsifying intervals. Figure 5

shows how such intervals can arise naturally. In fact the number of

possible intervals can be exponential in N , the dimensionality of the

spaceV of control points. �e problem of learning “good” intervals

is closely related to the maximum empty rectangle problem that

was recently shown to be NP-complete [7]. Given this intractability

result, we propose an approach to pick �nitely many such intervals

using SMT (SATis�ability modulo theory) solvers with an objective

function that optimizes the width of the box along a particular

dimension. �e extension of SMT solvers with optimization has

received increasing a�ention recently [35] with widely used solvers

such as Z3 supporting the maximization and minimization of objec-

tive functions [8]. We note that mixed integer linear programming

solvers can also be used in this se�ing. A comparison between

MILP and SMT solvers is beyond the scope of this paper.

SMT Encoding. We use variables xi ,yi to denote the upper and

lower bounds of the candidate interval along the dimension i =
1, . . . ,N . We �rst enforce that the bounds must be in the domainD :

[l1,u1] × · · · × [lN ,uN ] and must contain the seed counterexample

v0 : (v1, . . . ,vN ).

ψ1 :

N∧
i=1

[
(xi ≤ vi ) ∧ (vi ≤ yi ) ∧
(`i ≤ xi ) ∧ (yi ≤ ui )

]
.

Next, we enforce a minimum width ϵi along each dimension. �is

is a parameter input by the user:

ψ2 :

N∧
i=1

(yi − xi ) ≥ ϵi .

Each point w : (w1, . . . ,wN ) ∈ S+, must be excluded. We �rst

compare wi with the seed counterexample vi . If wi ≥ vi then the

value of yi needs to be adjusted or else the value of xi needs to be

adjusted. We also use a parameter λ to place a “gap” between the

interval boundaries [xi ,yi ] and the excluded counterexample:

ψ3 (w) :

N∧
i=1

(
wi ≥ vi ⇒ yi ≤ λwi + (1 − λ)vi ∧
wi ≤ vi ⇒ xi ≥ λwi + (1 − λ)vi

)
.

�e overall SMT encoding combines the formulas as follows:

Ψ : ψ1 ∧ ψ2 ∧
∧
w∈S+

ψ3 (w) .

�e following theorem follows from the SMT formulation in a

straightforward manner.

Theorem 5.1. Any falsifying interval J that satis�es the minimum
width constraints also satis�es the formula Ψ.

However, as mentioned earlier, the formula Ψ can have too many

solutions. It is not feasible to explore them all. As a result, we use

objective functions to help us select some solutions from this space.

Maximum Number of Samples: A natural objective is to max-

imize the number of samples in S− set that the interval contains.

�is is enforced in SMT solvers by adding “so� constraints” with

weights, which are then maximized by the solver while searching

for a solution.

Exploring a Pareto Frontier: Another approach is to explore the

e�cient frontier by se�ing up objectives of the form

fj :

n∑
i=1

w j,i (yi − xi ).

5.2 Testing and Re�ning Candidates
Once we have a candidate interval I , we can apply the statistical

testing described in Algorithm 1. If the candidate passes the statis-

tical testing procedure we can output the interval. However, if the

candidate fails the statistical test procedure, we have to arrive at a

new candidate. We now discuss the re�nement process.

�e re�nement process for an interval I is triggered by a new

sample w ∈ I such that ρ (w,ϕ) ≥ 0. We wish to re�ne our interval

I to exclude w. �is can be achieved in one of the following manner.

(1) Back to “Drawing Board”: �is approach simply aug-

ments the input data to the SMT formula from the previous

section and recomputes candidates from scratch, now con-

sidering one or more new counterexamples that cause our

tests to fail. We then repeat the tests on the new candidates

that arise from this process.

(2) Greedy Re�nement: A simpler, heuristic approach is to

re�ne the candidate interval I to exclude the counterexam-

ple w : (w1, . . . ,wN ) returned by Algo. 1. �is is done by

(a) choosing a dimension i and (b) reducing the width of

the interval along dimension I to exclude w. �e result-

ing interval Î is now tested from scratch using Algo. 1. In

particular, the re-testing cannot use any previously seen

samples to avoid biasing our test procedure. �e choice

of which dimension to shrink can a�ect the interval we

obtain. One strategy is to use the dimension that shrinks

the least to exclude w. Another strategy is to �x a priority
order amongst the dimensions up front and choose the �rst
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dimension whose current width is larger than the mini-

mum permi�ed width. A detailed comparison between

these strategies will be provided in our extended version.

One important question is whether our approach can always

eventually �nd a falsifying neighborhood if one is known to exist.

A “deterministic” guarantee is ruled out since the hypothesis testing

can fail even though the neighborhood being tested is falsifying.

However, since a subset of a falsifying neighborhood is also falsi-

fying, it is possible to bound the probability of failure and prove

probabilistic guarantees for our approach. We provide an analysis

in our extended version.

Another important question is whether the sample points used in

a previous iteration can be reused for statistical hypothesis testing

in the next. We note that doing so can bias our samples since the

data used to infer a hypothesis cannot be again used to test it. �is

leads to a situation akin to the well known “Texas Sharpshooter
Fallacy”.

6 EVALUATION
In this section, we describe the experimental evaluation of our

approach over a series of benchmark systems drawn from our

previous work. Each evaluation run uses the following scheme.

(1) We run the S-Taliro tool to collect a set of up to 5 seed
counterexamples.

(2) We sample control points around this seed and record the

resulting robustness.

(3) �e samples are then used to collect upto N interval can-

didates using the optimization modulo theory solver im-

plemented inside the Z3 SMT solver.

(4) �e interval candidates are tested using Algo. 1 and re�ned

heuristically until we accept the interval.

�e testing procedure is run with K = 1300 and c = 0.99, guaran-

teeing an appropriately small type-1 error likelihood ∼ 2.5×10
−4

.

6.1 �adrotor System
We �rst examine a planning problem for the quadrotor model of the

robotics toolbox [12], and also available as a demo example for the

S-Taliro tool [6]. �e model allows the speci�cation of two types of

regions: a “good” region that is to be visited by a quadrotor aircra�

and a “bad region” to be avoided.

�e system consists of a detailed model of a nonlinear quadrotor

aircra� which has two inputs representing the commanded x ,y
position of the quadrotor. Internally, it uses nested PI controllers

to stabilize the pitch and yaw to reach the desired commanded

position. We use S-Taliro tool to command a sequence of x and y
positions so that the trajectories exhibit the following properties.

Property-1: �e quadrotor should visit the good region, while

avoiding the bad region.

Property-2: �e quadrotor should eventually enter and stay

forever inside the good region while avoiding the bad re-

gion during the time interval [4, 5].

Note, that in this instance, the tool S-Taliro is not used to falsify

a requirement but rather to generate a control input to navigate

the robot towards a speci�ed goal. �e input signals are piecewise

constant over the time horizon with 5 pieces, giving us a total of

Figure 6: �adrotor sample trajectories from the likely fal-
sifying neighborhoods for Property-1 (le�) and Property-2
(right). In each �gure the x andy axis represents the position
of the quadrotor in the con�guration space.

+ Patient

Glucose

Sensor

Controller +

Meals

Bolus
i(t)

G (t )u (k ) Noise

Figure 7: Closed loop diagram for the arti�cial pancreas con-
trol scheme taken from Cameron et al [10].

10 control points. We generated 3 seed control points for each

property. Our approach computes intervals around the seed control

points that also constitute valid control inputs to achieve Property-1

and Property-2. Figure 6 shows the sampled trajectories from the

intervals discovered by our algorithms.

6.2 Arti�cial Pancreas System
�is evaluation extends our previous work on falsifying MTL prop-

erties for an arti�cial pancreas controller that controls the external

insulin infusion in a patient with type-1 diabetes [10]. �e con-

troller used in this example is directly inspired by the PID control

scheme proposed by Steil et al. [37–39]. A detailed analysis of this

control scheme was presented by Palerm [29]. In conjunction with

this controller, we use the Dalla-Man et al model to capture the

insulin-glucose regulation in the human patient [13, 26].

We focus on the analysis of counterexamples obtained in our

original work. Table 1 taken from Cameron et al. [10] describes

the purpose of each dimension of the control points. �ere are 111

in all, with 8 values for parameters that describe the meals and

insulin boluses of the patient and 103 points that represent the

sensor noise values. �e property numbers used here are the same

as in Cameron et al [10].

Property #2: �is property expresses that the patient must not

su�er a severe hyperglycemia de�ned as blood glucose levels above

350 mg/dl, two hours a�er the controller is switched on. Our

approach generalizes the the seed counterexample discovered by

S-Taliro. �e SMT solver multiple candidates but only one was

examined since all the candidate intervals were found to be quite

close to each other. A�er re�nement, our procedure discovered a

likely falsifying interval de�ned by a narrow range around the seed

counterexample for 4 out of the 111 parameters: these included
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Table 1: Inputs that are set by S-Taliro to falsify properties for the AP control system.

T1 [0, 60] mins. Dinner time.

X1 [50, 150] gms Amount of CHO in dinner.

T2 [180, 300] mins. Snack time.

X2 [0, 40] gms Amount of CHO in snack.

IC1, IC2 [0, 0.01] U/gm Insulin-to-CHO ratio for meal boluses.

δ1,δ2 [−15, 15] min timing of insulin relative to meal j
d (100),d (105), . . . ,d (720) [−20, 20] mg/dl sensor error at each sample time.

Figure 8: Simulations of samples from the likely falsifying
interval for property # 2.

T1 ∈ [17.51, 17.55] (time of the �rst meal), X1 ∈ [230, 231] (amount

of carbohydrates in the �rst meal), T2 ∈ [180, 275] (second meal

time), and IC1 ∈ [0.007, 0.008] (insulin to carbohydrates ratio). �e

remaining 107 parameters can potentially take on any values within

their permi�ed ranges. In particular, we infer that the property

violation depends on the �rst meal time and amount, the timing

(but not the amount) of the second meal and the insulin-to-carbs

ratio of the patient. Figure 8 shows the blood glucose levels for 50

sample traces from the �nal likely interval.

Property #3: �is property states that the controller must not

infuse insulin when the patient’s blood glucose levels are below

90 mg/dl. Once again, we started from a seed violation found by

S-Taliro. However, in this case, the resulting box represented a

very narrow range around the counterexample. Figure 9 shows

the resulting simulations including the blood glucose and insulin

levels. Here, we note that the violations happen at the very end

of the simulation near time t = 720. Small changes to the seed

counterexample resulted in a behavior that did not violate the

property of interest.

Property #6: �is property states that the patient must not un-

dergo a prolonged episode of hyperglycemia lasting more than 180

minutes, wherein the blood glucose levels are above 240mg/dl. For

this property, we �nd a falsifying interval that simply restricts two

out of the 120 dimensions, speci�cally the timing of meal # 1 is

restricted to a narrow interval [10, 12] minutes and the amount

of carbohydrates is restricted to [230, 250]. All other dimensions

can vary arbitrarily across the full range. �e falsifying interval

once again highlights that the control algorithm is perhaps not

“aggressive” enough to treat high blood glucose levels due to the

Figure 9: Simulations of samples from the likely falsifying
interval for property #3, showing glucose (top) and insulin.

Figure 10: Simulations of samples from the likely falsifying
interval for property #6, showing glucose (top) and insulin.

safety limitations that saturate the insulin infusion to a maximum

value.

Table 2 summarizes the cumulative running times and the num-

ber of simulations for the various phases of our overall evaluation

procedure. �e running times were collected using a serial imple-

mentation of our algorithm implemented on a laptop with 2.8 GHz

intel core i7 processor with 8 GB RAM. We note that each row of

the quadrotor benchmark represents the cumulative running time

for multiple seed counterexamples. Overall, the initial simulations

dominate the running time, since we required a large number of

simulations for our benchmarks. �e time to infer boxes using Z3

was much smaller in comparison. Finally, the number of simula-

tions needed by the test and re�ne procedure is also reported. In

each case, the time to simulate the model dominates the overall
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Table 2: Running times and number of simulations for various phases of our evaluation. �e machine learning instances all
ran within 1 minute, their running times are not reported.

Prop. Init. Simulations SMT Test/Re�ne Machine Learning

ID # Cex T # Sims Time Time # Cand. Time # Sims Lin. Sep. DTrees

Arti�cial Pancreas

2 1 300 10,000 1h26 98s 1 25m 2892 98% 69 %

3 1 720 10,000 8h30m 364s 1 4h23m 2491 99% 82 %

4 1 380 10,000 1h50m 308s 1 14m30s 1316 89% 66%

�adrotor

1 3 5 7,500 54m 3.3s 7 2h5m 11272 89% 83%

2 3 5 7,500 54m 3.9s 6 5h30m 12247 97% 86 %

computation time. In particular, the time to sample boxes and re�ne

them was negligible in comparison. We will update our implemen-

tation to run multiple simulations in parallel, potentially yielding

linear speedups.

Machine Learning: We also used the data collected to learn clas-

si�ers to separate the counterexamples from those satisfying the

property. We used two di�erent approaches: a simple hyperplane

separator (Lin. Sep. in Tab. 2) and a decision tree classi�er (DTree)

implemented using Python’s scikit.learn package. Each classi�er

was trained on part of the simulation data (80% of the data for

decision trees and 50% of the data for hyperplane classi�ers), while

using the remaining data to test. �e accuracies over the test data

averaged over multiple runs of the learning process are also re-

ported.

We note that in a few cases, the hyperplane separators seem to
be as precise as the falsifying intervals. However, the accuracies

reported are not subject to rigorous statistical tests. �e accura-

cies for the hyperplane classi�ers are calculated by dividing the

number of accurately classi�ed samples by the total. Whereas, the

falsifying interval is certi�ed by much more stringent statistical

test. Secondly, the accuracies are quite variable across di�erent

benchmark instances. �us, the falsifying interval approach is

much more expensive but yields consistent accuracies set by the

threshold c = 0.99 with high con�dence.

Finally, we also note that the decision trees are quite large and

complex. �e decision tree obtained for the arti�cial pancreas

benchmark property 6 is shown in the appendix.

7 RELATEDWORK
�e theme of sensitivity analysis is perhaps closest to the approach

presented in this paper. Both local and global sensitivity analysis

aim to understand the input-output relationships for complex sys-

tems. For local sensitivity analysis, the input variables are perturbed

one-at-a-time around a given baseline value, and �ndings are plot-

ted as sensitivity diagram (one plot for each variable depicting how

output changes with respect to change in that variable), tornado di-

agram (a vertical bar-chart representation with variables ordered in

terms of the sensitivity of the output), and spider diagram (plo�ing

change in output value against percentage change from the nomi-

nal value) [16]. In order to understand the e�ects of interactions

between various variables, sensitivity analysis techniques have

been proposed where two or more variables are simultaneously

perturbed. When the values of variables are chosen according to

a given probability distribution, sensitivity analysis is known as

probabilistic sensitivity analysis. A related idea is of uncertainty

analysis [31] where the goal is to learn a probability distribution

on the output given probability distributions over various input

variables. To the best of our knowledge, ours is the �rst a�empt to

apply sensitivity analysis to analyze counterexamples of temporal

logic properties of CPS.

Recently Ferrere et al. investigate the problem of slicing traces

to remove portions of a trace irrelevant to the truth of a temporal

property ϕ [19]. �eir approach seeks to help the same process of

understanding violations that motivates our work as well. How-

ever, our work also e�ectively accounts for the system model by

searching over neighborhoods in the input space.

Statistical model checking [24, 40] is an e�cient veri�cation

technique based on selective sampling of system traces in order to

statistically verify the temporal logic properties of black-box sys-

tems. In this approach the traces of the systems are sampled accord-

ing to a given distribution and checked against the system property

until enough statistical evidence has been generated to verify the

system. Statistical model checking has been e�ectively applied to

verify temporal logic properties of cyber-physical systems [11, 42].

While the focus of statistical model checking approach is to statisti-

cally verify the system, our focus is on explaining and widening the

counterexamples to assist the system designer in further debugging.

Although the emphasis is much di�erent, our approach can be

considered as learning speci�cation with the speci�cation being

the neighborhood around the counterexample that stays a coun-

terexample. Speci�cation mining is a well-studied topic in program

veri�cation [4, 25] and has been recently applied [21] to mine re-

quirements for CPS. Another closely related research direction to

speci�cation mining is precondition [28] or invariant [36] inference

by computing good and bad traces of a program.

Research on robust satisfaction of MTL formulas [17] and quan-

titative semantics for PSTL [15] extend the traditional qualitative

notion of binary satis�ability of logical formulas to quantitative

notion of distance of system behavior from satisfying a speci�-

cation. Such quantitative semantics provide rich insights with a

counterexample related to “trend” of the satisfaction, that allows

machine learning and mining approaches to uncover interesting

properties of the system under veri�cation [6, 17, 21, 27, 33]. Our

work on analyzing neighborhood of counterexample is an example

of such approach.
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8 CONCLUSION
�us, we have shown that our approach can be used to infer falsi-

fying neighborhoods that allow us to conclude facts about which

parts of the counterexample actually ma�er for the falsi�cation.

�is can also potentially scale to large systems, as demonstrated

by the arti�cial pancreas benchmark, which has nearly 111 control

parameters as inputs.

However, the approach relies on a large number of simulations

to generate candidates and test them. Parallelizing our approach

can mitigate the overall running time of this process. At the same

time, the comparison with a few classi�cation tools demonstrates

the ability of our approach to infer falsifying neighborhoods with

very high accuracies and statistical con�dence. However, the main

drawbacks lie in the use of heuristics in the re�nement procedure.

As part of our future work, we will investigate the inference of

intervals as a theory integrated inside an SMT solver so that the

failure of the test procedure can directly result in the addition of

new clauses to the SMT formula, thus re�ning the candidates in a

systematic manner.
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Figure 11: Decision tree inferred for the arti�cial pancreas example, property 6. �e di�erent dimensions are represented as
In1, … , In111. At each node value = [a,b] indicates a counterexamples and b satisfying samples. gini refers to the GINI index
used by the learner to decide on the decision variable at each node.
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