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ABSTRACT
We present a model-based falsification scheme for artificial
pancreas controllers. Our approach performs a closed-loop
simulation of the control software using models of the hu-
man insulin-glucose regulatory system. Our work focuses on
testing properties of an overnight control system for hypo-
glycemia/hyperglycemia minimization in patients with type-
1 diabetes. This control system is currently the subject of
extensive phase II clinical trials.

We describe how the overall closed loop simulator is con-
structed, and formulate properties to be tested. Signifi-
cantly, the closed loop simulation incorporates the control
software, as is, without any abstractions. Next, we demon-
strate the use of a simulation-based falsification approach
to find potential property violations in the resulting control
system. We formulate a series of properties about the con-
troller behavior and examine the violations obtained. Using
these violations, we propose modifications to the controller
software to improve its performance under these adverse
(corner-case) scenarios. We also illustrate the effectiveness
of robustness as a metric for identifying interesting property
violations. Finally, we identify important open problems for
future work.

1. INTRODUCTION
This paper presents a case-study on the use of robustness-

guided falsification techniques for analyzing properties of a
closed-loop artificial pancreas system. The systematic test-
ing of closed-loop medical devices is an important step to-
wards ensuring the safety of their users. To this end, staged
clinical trials have served as the gold standard for evaluat-
ing the safety and efficacy of medical devices. However, as
closed loop devices become more complicated with increas-
ing reliance on software-based control, it is clear that clinical
trials can be inadequate for testing the safety and reliability
of the closed loop system. This is evidenced by the grow-
ing number of instances of medical device failures due to
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software errors. Continuous post-market testing and moni-
toring over hundreds of thousands of users will be necessary
to obtain information about rare, and potentially dangerous
defects [28]. Unfortunately, defects found at this late stage
are quite expensive to fix. As a result, a lot of emphasis has
been placed on in-silico simulation of closed-loop devices
with increasingly sophisticated models of human physiology
and the device’s operating environment.

The in silico study in this paper focuses on a predictive
hypo/hyperglycemia minimizer device for treating patients
with type-1 diabetes by regulating insulin delivery. The de-
vice employs a Kalman filter to predict the future values
of blood glucose from past noisy samples. A series of rules
are applied on the predicted future glucose values to decide
whether to turn off the pump, continue normal delivery, or
increase the normal basal rate. Additionally, the device in-
cludes rules to detect conditions such as sensor dropouts,
and pressure induced sensor attenuation. Phase I and II
clinical trials have been successfully carried out on an ear-
lier prototype of the system being studied [10, 39]. These
trials have demonstrated the effectiveness of the devices, and
in particular, an increased time in euglycemic range for the
participants on the closed loop system.

Our approach to verification first builds a closed loop sim-
ulator in Matlab(tm) to simulate meal and insulin bolus pat-
terns against closed loop and open loop control. The Dalla
Man et al. model is used to capture the effect of meal and
insulin inputs on the patient’s blood glucose levels [20, 41].

We formulate interesting properties about the closed loop
system behavior use simulation-based falsification approach
in the tool S-Taliro to drive the simulations [3]. S-Taliro uses
a metric called the robustness of a simulation to predict a
distance between a given simulation output and a property
of interest [26, 27]. In general, as the robustness value be-
comes smaller, the simulation output approaches a property
falsification. This principle is used inside a stochastic opti-
mization solver to select a sequence of inputs that result in
decreasing values of the robustness metric, possibly leading
to a violation of the property.

For the closed loop system under study, we formulate ten
properties of interest that concern the behavior of the closed
loop system when the patient’s blood glucose levels are low,
the behavior under high blood glucose levels and compar-
isons between closed and open loop performance. We use
S-Taliro to search for violations that can represent corner
case behaviors of interest to the designers and clinical ex-
perts. S-Taliro provides violations for 8 out of the 10 proper-



ties formulated. It also provides the output that approaches
“closest” to violation for the remaining properties.

We conclude by identifying two potentially important di-
rections for future work: (a) assign likelihood scores to vi-
olations to enable designers to decide if a design should be
modified in response to such a violation and (b) improve
physiological models by incorporating features that are com-
monly seen in actual patient data.

1.1 Related Work
A growing body of work focuses on modeling and analysis

of closed loop medical devices, including pacemaker and im-
plantable cardiac defibrillators (ICDs). This has included a
range of ideas from using specification formalisms for physi-
ological models [49], formal verification techniques to verify
closed loop models and the use of physiological models to
test control software [47, 35, 34]. Our work here focuses on
the analysis of an artificial pancreas control system using
models of human insulin-glucose regulatory systems.

The development of detailed mathematical models for the
human insulin-glucose regulation system has led to a number
of widely used models. These include the Bergman minimal
model [8, 7], Dalla Man et al [41, 20, 42] and Hovorka et
al models [33, 54]. The success of these modeling efforts
has led to the concept of in silico clinical trials that use
these models to test control algorithms [40, 48]. These ap-
proaches use a virtual clinical protocol to specify the external
inputs (meal timing, amount and bolus) to the simulation.
The simulation is performed for varying patient parameter
sets and predictions on the performance measures of interest
(eg., time in euglycemic range) are obtained. Our approach
deploys more exhaustive search techniques that search over
a large space of possible inputs to the simulation. Also, we
search for worst case scenarios with respect to given property
of interest, formulated by the user and expressed in a specifi-
cation language such as Metric Temporal Logic (MTL) [38].

This paper also builds on our previous work [11] that per-
forms an exhaustive analysis of a PID control algorithm [52].
However, the study described in this paper involves the use
of the software implementation in the loop rather than a
model constructed from descriptions in the published lit-
erature. Working with the software implementation raises
some challenges for closed loop simulation that includes the
need to construct interfaces between the plant model and
the control software. Furthermore, we focus on a wider set
of properties that are more specific to the control system
under analysis.

Our work is also related to that of Chen et al, wherein
symbolic decision procedures are applied to find patient pa-
rameter ranges for which a PID controller can be shown to
be safe [16]. Beyond the choice of a different verification
approach, Chen et al focus on capturing a range of varia-
tions of patient parameters whereas our approach captures
variations in the inputs (meals, bolus, CGM noise). Fur-
thermore, our approach works with the actual software-in-
the-loop setup rather than using a model of the controller.

2. BACKGROUND & MOTIVATION
We provide a brief background on artificial pancreas con-

trollers that motivates the need for verification [28]. We
refer the reader to monographs on this topic for further de-
tails [19, 30, 53]. Our previous work on this topic also pro-
vides background on artificial pancreas control systems [11].

Table 1: Pathway to the artificial pancreas project
with representative papers showing technological
feasibility. Source: Juvenile Diabetes Research
Foundation (JDRF). See [37] for a recently proposed
revised pathway.

ID Description Refs.
1 Low Glucose Pump Shutoff [44]

Pump shutoff during hypo.
2 Hypoglycemia Minimizer [13]

Pump shutoff for predicted hypo.
3 Hypo./Hyper. Minimizer [4, 46, 29]

#2 + additional insulin when
glucose above threshold

4 Hybrid Closed Loop [33, 32, 31]
Closed loop insulin delivery
with manual bolus

5 Fully Automated Closed Loop [9, 10, 12, 18, 40, 36, 21]
#4 with no manual boluses

6 Multi-hormone Closed Loop [24, 23]
Use glucagon and insulin

2.1 Background: Artificial Pancreas
Patients with type-1 diabetes (T1D) rely on external ad-

ministration of insulin to manage their blood glucose levels.
The ideal range of blood glucose levels (euglycemic range) is
taken to be [70, 180]mg/dl. Hypoglycemia, caused by glucose
values that fall below 70mg/dl, can lead to coma or even
death. Similarly, glucose values that persist above 180mg/dl
is considered hyperglycemia. The short term risks of hyper-
glycemia above 300mg/dl include diabetic ketacidosis. The
longer term risks of hyperglycemia above 180mg/dl include
damage to eye, kidneys, heart and blood vessels. The over-
all goal of treating T1D is to maintain the blood glucose
levels in the euglycemic range, avoiding hypoglycemia and
minimizing the time under hyperglycemia.

Artificial Pancreas (AP) refers to a series of increasingly
sophisticated devices used to treat patients with type-1 di-
abetes through the external administration of insulin (and
other hormones). An AP system’s core function is to contin-
uously adjust the insulin infusion into the patient through
an insulin infusion pump. Typical AP systems use contin-
uous glucose monitors (CGMs) to measure the blood glu-
cose levels in the patients. Additionally, some AP systems
may use inputs from the patients such as impending meals
and physical activity. AP systems may also output warn-
ings/alarms to patients to announce hypoglycemia and sug-
gest using glucagon or rescue carbohydrates. Table 1 sum-
marizes the existing approaches to realizing the AP concept.
The low glucose pump shutoff product has been incorpo-
rated in some commercially available pumps [44]. Other
stages are undergoing various phases of clinical trials. It
must be noted that all stages have been shown to be tech-
nologically feasible. Note that the more recent road map
by Kowalski [37] emphasizes “automated insulin delivery”
and“multihormonal”approaches as parallel pathways rather
than successive stages.

Figure 1 presents the structure of a closed loop artificial
pancreas at a high level. As mentioned earlier, the closed
loop involves the action of a software-based controller that
decides on the insulin delivery rate. The high level goal of
the system is to maximize the time for which the patient’s
blood glucose level G(t) remains in the euglycemic range
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Figure 1: Closed loop schematic diagram of the over-
all artificial pancreas system.

of [70, 180]mg/dl. Furthermore, the system seeks to avoid
hypoglycemia G(t) < 70mg/dl and minimize time under hy-
perglycemia G(t) > 180mg/dl.

As shown in Fig. 1, the patient’s glucose regulatory sys-
tem is subject to external disturbances such as meals and
exercise. The value of the blood glucose level is estimated by
the continuous glucose monitor (CGM) to yield a sensed glu-
cose level Gs(t). Note that the CGM is subject to external
disturbances n(t). The controller is run in a time-triggered
fashion with time period ∆. Typically ∆ is in the order of
minutes (1 − 5 minutes). The controller periodically senses
the value of Gs(t) from the CGM at t = j∆ and computes
an insulin level uc(t), which is held constant in the time in-
terval t ∈ [j∆, (j + 1)∆). Furthermore, in many systems,
the user can provide an external bolus b(t). Typically this
bolus is provided before meals. The overall insulin infusion
u(t) = uc(t)+b(t) is the sum of the controller and externally
administered insulin.

The key challenges that make artificial pancreas control
hard include:

(a) Excessive insulin can cause dangerously low blood glu-
cose levels leading to coma or even death. On the other
hand, too little insulin can cause prolonged high glucose
levels leading to short term consequences such as ketaci-
dosis and longer term damage to eye, kidneys, heart and
blood vessels.

(b) Insulin is (typically) the only available control. How-
ever, many AP systems cannot directly counteract in-
sulin under normal circumstances. As a result, the in-
sulin already administered persists in the system with an
onset of action 20 minutes after administration, a peak
effect around 90 minutes after administration and per-
sists until 4-6 hours after administration. Furthermore,
the insulin action profile can differ by person.

(c) The system must counteract significant disturbances in
the form of meals and physical activities, without ad-
vance knowledge of these disturbances. Other distur-
bances include short term changes in patient’s physi-
ology due to illnesses, prescription drugs, and alcohol
consumption.

(d) CGMs provide an estimate of the blood glucose levels.
However, they are subject to noise, calibration errors,
dropouts and pressure induced sensor attenuation [25,
14]. As a result, the available sensor measurements
can be incomplete or erroneous leading the controller
to make a wrong decision.
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Figure 2: Schematic diagram of the hypo/hyper
minimizing controller.

(e) The system is subject to various delays including sensor
delays and actuation delays caused by the delayed action
profile of insulin.

Need for Verification: As mentioned earlier, exter-
nal control of blood glucose levels is a challenging problem.
Controller malfunctions that lead to excessive insulin infu-
sion can risk severe consequences to the patient. Typically,
software systems often carry the risk of malfunctions due
to typical programming errors such as buffer overflow, nu-
meric overflow, and divide by zero. Software verification
techniques and better programming language design have
focused on eliminating these errors. However, a larger set of
functional correctness properties of the overall closed loop
remain quite important. The easiest functional correctness
property is that the blood glucose levels remain in the eu-
glycemic range [70, 180]mg/dl. However, due to the signifi-
cant disturbances present, it is always possible for the unan-
ticipated user actions to cause the blood glucose levels to go
out of range.

Nevertheless, verification approaches are needed to answer
many functional correctness questions: (a) Will the insulin
infusion always be turned off when the sensor glucose value
is below 70mg/dl, the limit for hypoglycemia? (b) Can the
controller infuse extra insulin when the patient’s blood glu-
cose level is low? If yes, what is the lowest blood glucose
level for which the controller may decide to infuse extra in-
sulin? (c) Can the patient remain in hypoglycemia longer
than 3 hours? (d) Can the patient remain in hyperglycemia
longer than 5 hours? A larger list of such properties will be
examined in Section 6.

In this paper, we present a combination of mathemati-
cal modeling of the various components of the closed loop,
including disturbances. We perform in-silico simulations of
these models driven by simulation-based property falsifica-
tion tools to find potential violations that can inform the
designers of these systems about possible worst case behav-
iors that can result.

3. CONTROLLER
Figure 2 shows the overall schematic for the control al-

gorithm, which is an advanced version of a predictive pump
shutoff algorithm, originally described by Cameron et al. [13].
The original system uses Kalman filter-based prediction al-
gorithm to shutoff the pump when a hypoglycemia is pre-
dicted. The extended system studied here also commands
extra insulin by temporarily increasing the basal insulin de-
livery rate to mitigate hyperglycemia, as well. Clinical trials
of the predictive pump shutoff system include the inpatient
clinical trials described by Cameron et al [13], and a more



Table 2: Rules for pump shutoff, additional insulin
and resumption of basal insulin delivery. Note that
G(t) refers to current CGM value, Gp(t) refers to the
Kalman filter prediction at time t, Tshutoff (t) is the
total amount of time the pump has been turned off
until time t.

Condition Mode
Gp(t+ 30) ≤ 80mg/dl and Shutoff

Tshutoff (t) < 180 and Tshut(t− 150) < 120

not Shutoff and Gp(t+ 30) ≥ 150 Add Insulin
and Tshut(t) < 180

Shutoff and Normal(
Gp(t+ 30) ≥ 70 or

Tshut ≥ 180 or Tshut(t− 150) ≥ 120

)

recent trial that studied 45 patients over a total of 42 nights,
described by Maahs et al [39]. These trials reported promis-
ing results, including a longer time in the euglycemic range
for the participants.

As mentioned earlier, the system is based on a Kalman fil-
ter that analyzes the CGM glucose readings and estimates
the first and second derivatives of the blood glucose level
G(t). Based on the estimated derivatives, it predicts the
value Gp(t+ 30) of the blood glucose levels 30 minutes into
the future. This prediction is used by a rule-based decision
support system to command possible pump actions that in-
clude (a) shutoff: shut the pump down for a given time
interval, (b) Add Insulin: infuse extra insulin, (c) Nor-
mal: continue the current basal rate, and (d) PISA: Alert
the user of faulty CGM values caused by pressure induced
sensor attenuation.

Table 2 briefly describes the major rules that are used by
the system to control insulin delivery. However, many of
the finer details such as the handling of CGM dropouts and
sensor attenuation have been omitted from this discussion.
These details will be provided upon request. A shutoff is
commanded when the predicted glucose level at t + 30mins
is below 80mg/dl, the total shutoff time is less than 180mins,
and total shutoff time in the previous 150mins is less than
120mins. Likewise, additional insulin maybe commanded if
the pump is not currently shutoff, and the predicted glucose
value is above 150mg/dl. Furthermore, additional insulin
may only be commanded if there is time remaining for pump
shutoff.

The full set of rules that govern the control algorithm
considers numerous other factors such as pressure induced
sensor attenuation, the possibility of loss in sensor signal
(dropout), large changes in the sensor value and the time
to next sensor calibration. These rules constitute about 900
lines of code written in MATLAB(tm).

4. MODELING HUMAN PHYSIOLOGY
In this section, we briefly describe the process of modeling

the insulin glucose regulatory system in patients with type-1
diabetes.
Physiological Models: The area of physiological model-
ing of insulin-glucose regulation has received considerable
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Figure 3: Structure of a physiological insulin-glucose
regulatory model.

attention, following seminal work by Bergman, Cobelli and
Others [7, 15]. Recently, physiological models have been
proposed, mainly by Dalla Man et al. [20, 41, 43], and Hov-
orka et al. [54, 33]. Figure 3 shows the schematic of these
physiological models. The main idea is to (a) write bal-
ance equations that account for the entry, storage, uptake
and excretion of glucose and insulin and (b) the effect that
plasma insulin levels have on the uptake of glucose and en-
dogenous production by liver. The resulting model is an or-
dinary differential equation (ODE). This ODE is often non-
linear due to the nonlinear action profile of plasma insulin
levels on endogenous glucose production, and insulin depen-
dent glucose uptake. Also, the gut absorption model used is
nonlinear [20]. Finally, the model can exhibit hybrid mode
switches due to the action of renal clearance that is typically
turned on only when G(t) ≥ Gr, a renal clearance threshold
parameter (typically 180mg/dl).

For our study, we use the Dalla-Man et al. model, ibid.
This model is a nonlinear ordinary differential equation (ODE)
with 10 state variables. The model and corresponding pa-
rameters are available as part of the FDA approved T1DM
simulator that can now be used as an alternative to animal
testing [42]. The model has been increasingly popular inside
a simulation environment for “in-silico” or “virtual” clinical
trials [48, 40].
Closed Loop Simulation: Closed loop simulation is per-
formed by simulating the patient physiological model in com-
position with the controller. The overall closed loop model
follows the schematic in Figure 1. The inputs to the closed
loop simulation include: (a) the initial state of the patient
physiological model, (b) the timing of meals and their car-
bohydrate content, (c) the noise in CGM readings and (d) a
set of parameters for the physiological model that are repre-
sentative of a particular patient’s insulin-glucose regulation.
Factors such as exercise are not supported by the Dalla Man
et al. model used in our simulation. However, a more re-
cently proposed model incorporates exercise and the action
of glucagon (counter-regulation) [42].
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guided falsification setup.

5. ROBUSTNESS-GUIDED TESTING
In this section, we briefly describe robustness guided falsi-

fication approach to testing properties of closed-loop control
systems. Numerous details that are skipped here are avail-
able elsewhere [1, 11]. The presentation of robustness-guided
falsification below has been excerpted from our previous sur-
vey on this topic [11].

Given a mathematical model M and a property P over
its outputs, are there inputs to the model whose outputs
can violate P? To answer this problem, model checking ap-
proaches search over the space of all possible inputs, stop-
ping when a violation is found [5, 17]. However, in many
cases, the models are infinite state making the process of
exhaustively simulating all inputs quite expensive, if not im-
possible. As a result, many approaches have been proposed
to examine inputs that are“promising”while avoiding inputs
that are “unlikely” to yield violations.

Robustness-guided falsification approaches are based on
two main ideas: (a) A distance metric from an output trace
to a property violation [26, 50, 22]. Such a metric is re-
ferred to as the “trace robustness”. Intuitively, a trace with
a smaller robustness is therefore “closer” to a violation when
compared to a trace that has a larger robustness. (b) The
robustness metric is used as an objective function to guide
the system towards property violations in a systematic man-
ner by seeking trajectories of ever decreasing robustness [45,
1, 3]. This is typically solved using heuristic global opti-
mization algorithms such as simulated annealing [45, 1], ant-
colony optimization [2], genetic algorithms and the cross-
entropy method [51]. If these techniques discover a nega-
tive robustness trace, then a property violation is concluded.
Otherwise, the least robust trace often provides valuable in-
formation to the designer, as to how close we get towards
violating the property.

5.1 S-Taliro Tool
Figure 4 shows a schematic diagram for S-Taliro 1, a ro-

bustness guided falsification tool that supports MTL prop-
erties [3]. S-Taliro has been implemented inside the Matlab
(tm) environment, and can support models described inside
Simulink/Stateflow (tm). The tool uses the inbuilt simula-
tor and computes the robustness for a trace. The result-
ing robustness is used as an objective function by a global
optimization engine that seeks to minimize this value. The
global optimizer, in turn, decides on future test inputs to the
simulator based on the past inputs and the robustness values

1S-Taliro stands for System TemporAl LogIc RObustness
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Figure 5: Timeline of simulated events for the closed
loop simulation.

of the resulting traces. Currently, the tool supports many
optimization engines including uniform random exploration,
simulated annealing search, ant-colony optimization, cross-
entropy method and genetic algorithms. Since no single op-
timization engine can guarantee finding a global minimum,
the typical practice of using the tool consists of using mul-
tiple optimization engines, repeatedly and in parallel. If the
tool fails to discover a violation, one of the key advantages of
robustness metrics is that the least robust trace can provide
a relaxed property that can be violated by S-Taliro. S-Taliro
is available as an open source tool 2, and is built to be ex-
tensible through the addition of new solvers and alternative
robustness computation techniques. The latest version uses
multiple cores to perform numerous simulations in parallel.
It also supports features such as property-directed parame-
ter tuning for models and requirements. These features will
be enhanced in future releases of the tool.

6. PROPERTIES
We now describe the overall setup for our closed-loop in

silico study. We describe the use of S-Taliro to search for
violations of key properties. We report the results of S-Taliro
alongside each property.
Study Setup: The overall timeline of events for the simu-
lation is shown in Figure 5. The simulation setup models a
common usage scenario, wherein the user is assumed to eat
a meal (dinner) and a snack. The meal timings and amount
of carbohydrates (CHO) vary over a range, as specified in
Table 3. The simulation also models the user’s open loop
bolusing behavior by selecting a bolus time which can be
anywhere between 20 min before the meal or up to 20 min
after the meal. The insulin to CHO ratio used to calculate
the insulin bolus amount is also varied in a range. Finally,
we assume a fixed controller starting time when the closed
loop is switched on and include a range of values for the
sensor noise, also shown in Table 3. In particular, we also
perform an open loop simulation wherein the controller is
never turned on, in contrast with a closed loop simulation,
wherein the controller is turned on at t = 50min.

S-Taliro Setup: S-Taliro takes the overall closed loop
model and searches over the space of inputs from Table 3
for property violations. The tool formulates a total of 127
inputs that includes 120 sensor noise values. Rather than
find a single violation, we repeatedly ran the tool up to 7
times for each property, stopping each run when a violation
is discovered. This allows us to discover multiple violations.
We simply used the uniform random search heuristic that
blindly samples from the set of violations. We observed that
simulated annealing was less effective for this benchmark.

2Cf. https://sites.google.com/a/asu.edu/s-taliro/
s-taliro

https://sites.google.com/a/asu.edu/s-taliro/s-taliro
https://sites.google.com/a/asu.edu/s-taliro/s-taliro


Table 3: Inputs to the closed-loop simulator.
Inputs Range
Meal #1 Time [20, 40]min
Meal # CHO [60, 150]gms
Meal #2 Time [180, 300]min
Meal #2 CHO [0, 60]gms
Insulin Bolus Delta [−20, 20]min
Insulin-CHO Ratio [0.05, 0.2]U/gm
Open Loop Basal [0.01, 0.1]U/hr
Controller Start Time {50min}
Sensor noise (∼ 120 inputs) [−20, 20]mg/dl

Figure 6: Least robust trace showing violation of
property P1.1. The basal insulin is resumed when
G(t) ≤ 70mg/dl. The solid (blue) curve on bottom
plot the insulin delivered to the patient as sum of the
original basal insulin plus the controller commands
that can infuse the basal insulin, add extra insulin
over the basal rate, or shutoff delivery. The red
dotted line shows the extra insulin commanded by
the controller. Pump shutoff occurs whenever the
total insulin infusion is zero.

The relative large search space is one possible reason for
this.

6.1 Properties and S-Taliro Results
We will now describe the classes of properties that we wish

to test for the overall closed loop. Note that the properties
are meant to expose and understand corner case behaviors
of the closed loop. In other words, we currently lack infor-
mation as to the likelihood of the violations in realistic usage
scenarios. However, once understood, it will be essential to
find fixes/mitigations for the likely violations described in
this section.

Control during Low Glucose Levels: An important
objective of the control algorithm is to reliably turn off in-
sulin delivery in advance of an impending hypoglycemia. As
a result, important questions include whether the controller
will resume basal insulin delivery or even infuse additional
insulin when the patient is already under hypoglycemia?

P1.1: Is it possible for basal insulin to be resumed when
G(t) ≤ 70mg/dl while the total shutoff time and the

Figure 7: Least robust trace showing a “near viola-
tion” of property P1.2. Extra insulin is commanded,
for 5 minutes at G(t) ∼ 90mg/dl.

shutoff time within the current time window are still
below their upper limits?

It is important to specify that the shutoff times so far
are under the maximum permitted limit since the pump will
resume automatically when these limits have been exceeded.

S-Taliro ran for nearly 2 hours and 5 minutes and found
5 violations. Figure 6 shows the glucose and insulin for the
violation. The circled region shows the violation wherein
insulin delivery is resumed even under hypoglycemia. The
noise pattern in the CGM affects the future glucose predic-
tion (shown in magenta in Fig. 6) and causes the delivery
to resume. Such a scenario can be potentially addressed by
either (a) adjusting the gains for the Kalman filter to be
more robust to noise and/or (b) requiring glucose levels to
cross a minimal threshold before resuming insulin delivery.

P1.2: Is it possible for additional insulin to be com-
manded when G(t) ≤ 80mg/dl.

S-Taliro ran for nearly 7.5 hours, performing 750 simu-
lations. It could not violate this property. Nevertheless,
we find an interesting near violation, shown in Fig. 7. It
demonstrates the infusion of extra above basal insulin com-
manded by the controller. However, this happens around
G(t) ∼ 90mg/dl. Also, the command is for a very short
time period. Also, note that the brief rise in CGM values
due to the added disturbances coincides with the additional
insulin commanded.

P1.3: Is it possible for additional insulin input to be
commanded and subsequently the pump shutoff within
30 minutes?

Whereas, a violation of this property is not a safety viola-
tion, it provides us insights into how the process of deciding
on extra insulin can interact with the pump shutoff. S-Taliro
ran for nearly 2.2 hours, finding nearly 4 violations of this
property. Figure 8 shows the least robust violation. In-
terestingly, we notice that a temporary glitch caused by the



Figure 8: Least robust trace showing a “violation”
of property P1.3. Extra insulin is commanded at
the point of impending hypoglycemia and the pump
shutdown almost immediately.

Figure 9: Least robust trace showing a violation
of property P1.4. The user enters hypoglycemia
around T = 400 minutes. The pump is shutoff for
less than 50% of this time.

CGM noise causes the controller to briefly command a small
amount of extra insulin above basal and shut off the pump
immediately. The scenario can be potentially addressed by
(a) adding an additional rule that would require a minimal
threshold for CGM value before additional insulin is com-
manded and/or (b) adjusting the Kalman filter gain values.

P1.4: Let γ be the ratio of total pump shutoff time
divided by the total time under hypoglycemia. Can γ ≤
0.7? In other words, will the pump be shutoff for less
than 70% of the time under hypoglycemia?

S-Taliro ran for nearly 3 hours and 20 minutes, finding 5
violations. The least robust violation is shown in Fig 9.

Control during High Glucose Levels: We now exam-
ine a list of questions about the controller behavior under
blood glucose levels under hyperglycemia (G ≥ 180mg/dl)
and extreme hyperglycemia (G ≥ 300mg/dl).

Figure 10: A single trace that violates properties
P2.1, P2.2 and P2.3. The pump shuts down for a
short interval of 5 minutes when G ∼ 400mg/dl, the
blood glucose levels are in hyperglycemia for almost
95% of the total simulation time and the time above
300mg/dl exceeds 3 hours.

P2.1: Can the pump be shutoff when G ≥ 300mg/dl?

P2.2: Can the total time under hyperglycemia G ≥
180mg/dl exceed 70% of the total simulation time?

P2.3: Can the total time under hyperglycemia G ≥
300mg/dl exceed 3hrs?

S-Taliro ran for nearly 1 hour and 6 minutes to discover
5 violations for property P2.1 The least robust violation
is shown in Fig 10. Note that the pump is shutoff for a
small duration of 5 minutes while the blood glucose G(t) ∼
400mg/dl. Interestingly, we found that all three properties
are violated by this single trace! The pump shutdown results
due to sensor noise that causes it to shutdown. However, the
extended time under hyperglycemia is a result of inadequate
meal bolus. The controller does not infuse enough extra in-
sulin to rectify this situation for this simulation.

Comparing Closed and Open Loop Performance: A
key class of properties involve questions about open vs. closed
loop performance for identical meals, insulin bolus, basal in-
sulin levels and starting patient physiological state. Such a
comparison is hard, if not impossible, in a clinical setting,
but possible in silico, due to mathematical models.

P3.1: Is it possible for the closed loop hypoglycemia
whereas the open loop blood glucose value remains
above 80mg/dl?

S-Taliro ran on this property for nearly 4.5 hours, yield-
ing 2 violations. The least robust violation is shown in Fig-
ure 11.

P3.2: Is it possible for the closed loop hyperglycemia
above 300mg/dl whereas the open loop blood glucose



Figure 11: Violation of property P3.1 showing the
closed loop simulation under hypoglycemia whereas
the open loop stays well above the hypoglycemic
limit.

Figure 12: Violation of property P3.3 showing the
open loop simulation having a longer time in range.
Note that starting from t ∼ 450 mins, the closed loop
simulation enters a prolonged hypoglycemia with
G(t) ∼ 70mg/dl.

level remains below 180mg/dl? In practice, it is neces-
sary to check for ketones when G ≥ 300mg/dl, making
it an important limit.

S-Taliro could not obtain a violation for this property even
after running S-Taliro for 10 hours during which about 700
simulations were performed.

P3.3: Let ρ represent the ratio of time in range for the
closed loop vs. time in range for the open loop. Is it
possible for ρ < 0.7?

After running for 8 hours, S-Taliro discovers 8 violations,
the least robust of which is shown in Figure 12.

6.2 Discussion
At a high level, we find violations to 8 of the 10 properties

and a near violation for one more. It must be noted that the
CGM noise pattern seems to be the single most important
cause of these violations. However, our simulation currently
uses a coarse range of [−20, 20]mg/dl as bounds on the error
for each CGM readings, allowing S-Taliro to choose any error
value in this range. Our future work will use existing clinical

data that contrasts CGM data with gold standard blood
glucose data from instruments such as YSI glucose meters.
Incorporating more realistic constraints on the CGM noise
patterns introduced by S-Taliro is one way to ensure that
the results are valid.

Next, we note that the lack of modeling for counter-regulatory
processes makes the physiological model potentially less ac-
curate for hypoglycemia. Incorporating more recently pro-
posed models that incorporate counter-regulation is an im-
portant next step.

Finally, we note that simulations carried out by S-Taliro
are quite expensive. We are investigating the process of
parallelizing the simulations to gain efficiency and perform
much larger number of simulations.

7. CONCLUSIONS
In conclusion, we have shown a case-study of a hypo/hyper

mitigating controller using S-Taliro to identify corner case
property violations. In doing so, we formulated 10 proper-
ties, discovering 8 violations and one scenario that comes
close to a violation. We also identify possible solutions to
mitigating some of these violations by modifying the algo-
rithm. However, before we do so, it is essential to assign
likelihood scores to these violations. Such scores will allow
us to better triage these violations and prioritize the fixes.
Building such scores will require us to design approaches to
precisely identify the “root causes” and use data to estimate
their likelihood. Another important advance involves the au-
tomatic tuning of system parameters to fix these violations.
Promising approaches that use sensitivity analysis [22] and
robustness of temporal properties have been proposed for
this problem [6].
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