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ABSTRACT
We present an approach for identifying two subclasses of piecewise

affine (PWA) systems that we call flagged and guarded linear sys-

tems. Flagged linear system dynamics are given by a sum of 𝑘 linear

dynamical modes, each activated based on a latent binary variable,

called a flag. Additionally, guarded linear systems define each flag

as the sign of an affine “guard” function. We term the discovery

of the latent flag values and the corresponding linear dynamics as

the “flagged regression” and “guarded regression” problems, respec-

tively. We show that the system identification problem is NP-hard

even for these models, making the identification problem computa-

tionally challenging. For both problems, we provide approximation

algorithms that identify a model whose error is within some user-

defined constant away from the optimum. The time complexity of

these algorithms is linear in the number of data points but exponen-

tial in the state-space dimension and the number of flags. The linear

complexity in data size allows our approach to potentially scale to

large data sets. We evaluate our algorithms on benchmark problems

in order to learn models for mechanical systems with contact forces

and a nonlinear robotic arm benchmark. Our approach compares

favorably against neural network learning and the PARC algorithm

for identifying PWA models proposed by Bemporad.
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1 INTRODUCTION
Piecewise affine systems (PWA) have been widely studied as a

subclass of switched/hybrid systems models. Examples include

mixed-logical dynamical (MLD) systems defined by Bemporad et

al. [6] that are governed by a differential/difference equation whose

right-hand sides involve discrete logic in the form of flags (Boolean

variables) and constraints that relate the values of the flags to the

system variables. These systems appear naturally in a wide range of

applications including mechanical systems with impact, electrical

circuits with switching and networked systems [6]. Identifying a

systemmodel from observed data enables applications ranging from
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Figure 1: The cartpole with soft wall exhibits discontinuous
PWA dynamics: the force applied on the pole depends discon-
tinuously on its position. (Left) Cartpole schematics (from
[2]). (Right) Our approach (green curve) yields more accurate
predictions of future states when compared to a neural net-
work model (red curve) trained on the same data (dots).

control design to runtime monitoring. Furthermore, MLD systems

are equivalent to piecewise affine (PWA) systems [4, 22].

In this paper, we focus on two special classes of PWA/MLD

systems, that we call flagged linear systems (FLS) and guarded lin-

ear systems (GLS). The dynamics are assumed to be a sum of 𝑘

terms each involving linear dynamics that can be active or inac-

tive, depending on the value of 𝑘 latent flag variables: ®𝑥 (𝑡 + 1) =
𝐴0 ®𝑥 (𝑡) +

∑𝑘
𝑗=1 [flag𝑗 (𝑡)]𝐴 𝑗 ®𝑥 (𝑡). Note that [flag𝑘 (𝑡)] ∈ {−1, 1}. In

FLS identification, our goal is to find the latent flags and the ma-

trices 𝐴0, . . . , 𝐴𝑘 . In GLS identification, the flag is not exogenous

but is determined by an affine function called a guard, activating

the mode or not depending on the sign of the guard at the state. A

system with 𝑘 flags has up to 2
𝑘
modes.

Example 1.1 (Cartpole with Soft Walls). Fig. 1 shows a cartpole

system with two soft walls taken from Aydinoglu et al. [2]. Such a

system is described as a PWA systemwith three modes in continous

time that describe contacts with the two walls and the contactless

conditions. The state ®𝑥 (𝑡) = (𝑥, 𝜃, 𝑣, 𝜔) represents the position,

angle, linear and angular velocities, respectively. Using data ob-

tained from simulating this continuous-time model, our approach

identifies a discrete time GLS model with time step ℎ = 0.01.

𝑥 ′ = 𝑥 + 0.01𝑣, 𝜃 ′ = 𝜃 + 0.01𝜔
𝑣 ′ = (3.99𝑥 + 1.85𝜃 + 0.42𝑣 + 2.16𝜔 − 0.69) +
sign(𝑔1) (−4.72𝑥 − 2.13𝜃 + 0.61𝑣 − 2.22𝜔 + 0.64) +
sign(𝑔2) (0.49𝑥 − 0.3𝜃 + 0.01𝜔 + 0.05)

𝜔 ′ = (1.82𝑥 + 0.44𝜃 − 0.23𝑣 + 1.9𝜔 − 0.31) +
sign(𝑔1) (−2.12𝑥 − 0.96𝜃 + 0.27𝑣 − 𝜔 + 0.29) +
sign(𝑔2) (0.22𝑥 − 0.13𝜃 + 0.01𝜔 + 0.02)

𝑔1 ( ®𝑥) = −𝑥 + 𝜃 + 0.11𝑣 − 0.48𝜔 + 1
𝑔2 ( ®𝑥) = 0.51𝑥 − 𝜃 + 0.02𝑣 + 0.12𝜔 + 0.11
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Here ®𝑥 (𝑡 + ℎ) = (𝑥 ′, 𝜃 ′, 𝑣 ′, 𝜔′). The identified model accurately

predicts the test data 100 steps into the future; see Fig. 1.

Identifying hybrid linear models (including switched and piece-

wise linear models) is NP-hard [26]. In particular, it does not scale

well with the number of data points. A straightforward encoding

into MILP or SMT problem has a complexity 2
𝑁

in terms of the

number of data points 𝑁 . Lauer et al. have shown how to reduce

this to 𝑁𝑂 (𝑛𝑚) wherein 𝑛 is the dimension of the state space and

𝑚 is the number of modes with a careful analysis of the number of

data points needed to fix a model [25].

The main contribution of this paper is to provide an algorithm

for FLS and GLS identification that scales linearly with the number

of data points, but exponentially in the dimension and number of

flags. This enables interesting applications to data sets of very large

size but relatively low dimensions ∼6 and number of flags ∼3.
Our algorithm falls into the category of approximation algo-

rithms because it does not solve the FLS/GLS identification problem

exactly, but rather a relaxed version of it. More precisely, if the best

fitting error achievable with a FLS or GLS model with 𝑘 modes is

𝜖∗, then the algorithm computes a model with error 𝜖∗ + 𝜖gap in

time linear in the number of data points and polynomial in 1/𝜖gap.
Our algorithm is counterexample-guided and uses the principle

of cutting-planes in convex optimization [11]. Namely, it uses sub-

sets of the data to identify potential models and then uses the points

that are not fitted by the potential models, called counterexamples,

to create new subsets and identify new models, until a suitable

one is found. The counterexamples have the effect of adding new

constraints to the space of potential models, thereby enabling the

cutting-plane principle. This bounds the size of the subsets to con-

sider, from which we derive an upper bound on the number of

these subsets, that is independent of the number of data points. The

contributions of this work are as follows:

• Define the FLS and GLS models, compare against other PWA

models, and the computational complexity of their identifi-

cation problem and its MILP formulation (Sec. 2).

• Define a approximation version of these problems, and pro-

vide an algorithm with complexity linear in the number of

data points and polynomial in the accuracy gap (Sec. 3).

• Demonstrate the applicability and performance of our algo-

rithm over a set of synthetic and application benchmarks,

and compare it with the MILP formulation and other ap-

proaches. The MILP formulation fails to handle more than a

few hundred data points, while our algorithm scales up to

ten thousand data points, for similar fitting and prediction

accuracy. Other more scalable approaches, such as neural

networks, fail to learn a precise model (Sec. 4).

One limitation of our algorithm is the exponential dependence

of the complexity on the number of flags 𝑘 and dimension 𝑛 of the

state space. From the NP-hardness of the FLS/GLS identification

problems (proved in Sec. 2.4.3), this dependence is to be expected,

unless P = NP. Showing that this dependence is unavoidable also

for the relaxed version is a direction for future work.

1.1 Related Work
There are several techniques available in the literature for identi-

fying switched linear and piecewise linear models. We refer the

reader to [26, 31] for surveys. In particular, Vidal et al. [38] propose

an algebraic approach that utilizes polynomial factorization to iden-

tify a model in the absence of noise. However, it is important to

work with approximate fits in the presence of noise. Mixed-integer

linear programming (MILP) is a popular approach for solving the

identification problem. Roll et al. [34] and Sadraddini and Belta [35]

propose MILP formulations for identifying piecewise linear models.

The Hinging Hyperplane models introduced in [13] and studied

in [34] are a special case of GLS models, but they are less expres-

sive, since the guard is related to the dynamics of each mode. The

models studied in [35] have pieces defined by 𝑘 hyperplanes. Our

GLS model is similar to that one, except that the linear dynamics on

the 2
𝑘
pieces are not independent since they are the weighted su-

perposition of 𝑘 linear dynamics. An important limitation of MILP

formulations is the exponential dependence on the number of data

points. As mentioned earlier, Lauer et al. propose an approach that

is polynomial time in the number of points [25]. However, the de-

gree of the polynomial depends on the dimension of the state space.

Our approach, by contrast, has a linear time complexity in the size

of the data. Algorithms for time series segmentation [23, 30] also

have polynomial time-dependence on the number of data points

but they are restricted to one-dimensional inputs.

Our work is closely related to the recent work of Berger et al. [8]

and can be regarded as an extension of that work to the problems of

flagged and guarded regression. Therein, a counterexample-guided

algorithm was proposed to identify switched linear models, with

complexity linear in the number of data points. The present work

differs in many ways: (a) Berger et al. focus on identifying the la-

tent modes and dynamics of a switched linear system, we solve for

a switched system whose structure is specified through flags; (b)

Berger et al. obtain an exponential complexity in the number of

modes, we obtain a complexity bound that is exponentially faster

in terms of the number of modes
1
; (c) we identify GLS models, an

extension that is not possible using Berger et al.’s algorithm. Our

approach is loosely related to numerous counterexample-guided ap-

proaches that have been considered in formal methods and control

theory to prove properties of programs, synthesize programs, com-

pute Lyapunov functions and invariant sets [9, 10, 14–16, 33, 36].

Inexact algorithms for switched and piecewise linear regression

include clustering [24, 29], continuous optimization [21, 27, 28], and

others [3, 5, 18]. However, these algorithms offer no guarantees on

the quality of the solution, for instance, they can be stuck in a local

minimum with fitting error arbitrarily larger than the optimal one.

By contrast, our approach provides guarantees on the gap between

the optimal accuracy and that of the returned solution. We compare

our approach with some of these methods on a set of interesting

application examples in Sec. 4.

Approximation algorithms have a long history in theoretical

computer science and applied mathematics. We refer the reader

to [37] for a survey. These algorithms aim at solving computation-

ally challenging problems in a reasonable time while providing a

guarantee on the performance of the solution compared to the op-

timum. This paper investigates a unique approximation algorithm

for FLS and GLS identification.

1𝑚3
vs.𝑚𝑂 (𝑚)

where𝑚 is the total number of modes.
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2 PROBLEM STATEMENT
Notation. For 𝑛 ∈ N, let [𝑛] B {1, . . . , 𝑛}. For ®𝑥 = (𝑥1, . . . , 𝑥𝑛),

let ∥ ®𝑥 ∥ B max𝑖∈[𝑛] |𝑥𝑖 | be its L∞ norm. For 𝐴 = [𝑎𝑖 𝑗 ]𝑚,𝑛𝑖=1, 𝑗=1
, let

∥𝐴∥ B max𝑖∈[𝑚]
∑𝑛
𝑗=1 |𝑎𝑖 𝑗 | be its induced L∞ norm.

Given a data set D consisting of 𝑁 data points ( ®𝑥 (𝑡), ®𝑦 (𝑡))
wherein ®𝑥 (𝑡) ∈ R𝑛 and ®𝑦 (𝑡) ∈ R𝑚 for 𝑡 ∈ [𝑁 ], we seek a model

®𝑦 (𝑡) ≈ 𝐹 ( ®𝑥 (𝑡), ®𝑧 (𝑡)) for latent variables ®𝑧 (𝑡) ∈ 𝑍 that fits the data

set with error tolerances (𝜖, 𝜏) defined as follows.

Definition 2.1 (Data Fit). Amodel 𝐹 ( ®𝑥, ®𝑧) is said to fit the data set
D with relative error tolerance 𝜖 ≥ 0 and absolute error tolerance

𝜏 ≥ 0 if there exist values of ®𝑧 (𝑡) ∈ 𝑍 for 𝑡 ∈ [𝑁 ] such that

∥ ®𝑦 (𝑡) − 𝐹 ( ®𝑥 (𝑡), ®𝑧 (𝑡))∥ ≤ 𝜖 ∥ ®𝑥 (𝑡)∥ + 𝜏, ∀ 𝑡 ∈ [𝑁 ] . (1)

Since ∥·∥ is theL∞ norm, (1) is equivalent to𝑚𝑁 scalar inequalities:

|𝑦𝑖 (𝑡) − 𝐹𝑖 ( ®𝑥 (𝑡), ®𝑧 (𝑡)) | ≤ 𝜖 ∥ ®𝑥 (𝑡)∥ + 𝜏, ∀ 𝑖 ∈ [𝑚], ∀ 𝑡 ∈ [𝑁 ] .

We study two types of regression problems: (a) flagged regression

for a linear model involving discrete latent flags and (b) guarded

regression for mixed-logical dynamic systems in discrete time.

2.1 Flagged Regression Problem
For this problem, the latent variable ®𝑧 is a vector of “flags” with
values in {−1, 1}, i.e., ®𝑧 (𝑡) = (𝑞1 (𝑡), . . . , 𝑞𝑘 (𝑡)) for 𝑞𝑖 (𝑡) ∈ {−1, 1}.

Definition 2.2 (Flagged Regression Problem). Given a data set

D, norm-bound 𝛾 > 0 and error tolerances 𝜖 and 𝜏 , the flagged

regression problem with 𝑘 flags seeks a set of matrices 𝐴0, . . . , 𝐴𝑘
and a series of flags’ values ®𝑧 (𝑡) = (𝑞1 (𝑡), . . . , 𝑞𝑘 (𝑡)) ∈ {−1, 1}𝑘 for

𝑡 ∈ [𝑁 ] such that the data points are fitted by the linear model:

∥ ®𝑦 (𝑡) −𝐴(®𝑧 (𝑡)) ®𝑥 (𝑡)∥ ≤ 𝜖 ∥ ®𝑥 (𝑡)∥ + 𝜏, ∀ 𝑡 ∈ [𝑁 ],

wherein 𝐴(®𝑧) = 𝐴0 +
∑𝑘
𝑖=1 𝑞𝑖𝐴𝑖 for ®𝑧 = (𝑞1, . . . , 𝑞𝑘 ) and ∥𝐴𝑖 ∥ ≤ 𝛾 .

Remark 1. In general, the flags can take values in any set {𝛼, 𝛽}
for 𝛼 ≠ 𝛽 . A set of matrices 𝐴0, . . . , 𝐴𝑘 that fits the data for flags

𝑞1 (𝑡), . . . , 𝑞𝑘 (𝑡) ∈ {−1, 1}𝑘 can be transformed into another set of

matrices 𝐵0, . . . , 𝐵𝑘 that fits the data with flags 𝑟1 (𝑡), . . . , 𝑟𝑘 (𝑡) ∈
{𝛼, 𝛽}𝑘 for 𝛼 ≠ 𝛽 : 𝑟𝑖 (𝑡) = 𝛽−𝛼

2
𝑞𝑖 (𝑡) + 𝛽+𝛼

2
, 𝐵0 = 𝐴0 − 𝛽+𝛼

𝛽−𝛼
∑𝑘
𝑖=1𝐴𝑖 ,

and 𝐵𝑖 =
2

𝛽−𝛼𝐴𝑖 for 𝑖 = 1, . . . , 𝑘 .

Remark 2. The bound on the norms of the matrices (𝛾 ) is needed

to guarantee termination of our approach. However, setting 𝛾 in

practice is problem dependent, based partly on the possible range

of the outputs and those of each inputs to the model. To alleviate

this, we may apply a “scaling” transformation to the “raw” data

( ˆ®𝑥 (𝑡), ˆ®𝑦 (𝑡)) wherein we scale each 𝑥𝑖 (𝑡) = 𝜆𝑖𝑥𝑖 (𝑡), 𝑦 𝑗 (𝑡) = 𝜋 𝑗𝑦 𝑗 (𝑡)
for some scaling factors 𝜆𝑖 , 𝜋 𝑗 > 0 to ensure that | | ®𝑥 (𝑡) | |, | | ®𝑦 (𝑡) | | ≤ 1.

Such a scaling is a common practice in machine learning. In general,

a FLS model for the raw data can be transformed into one for

the scaled data and vice-versa. We can set 𝛾 to a fixed but large

value 𝛾max ∼ 1000. Our approach will have running time that is

polynomial in 𝛾 in the worst case.

Remark 3. For technical reasons, we assume that no data points

in D have ®𝑥 (𝑡) = 0 and ∥ ®𝑦 (𝑡)∥ > 𝜏 . Therefore, for a fixed 𝜏 , there
exists a minimal 𝜖∗ ≥ 0 such that the flagged regression problem

with 𝑘 flags and error tolerances 𝜖∗ and 𝜏 has a solution.

2.2 Guarded Regression Problem
The guarded regression problem seeks a model of the form ®𝑦 (𝑡) ≈
𝐴( ®𝑥 (𝑡)) ®𝑥 (𝑡), wherein 𝐴( ®𝑥) = 𝐴0 +

∑𝑘
𝑖=1 sign(®𝑐⊤𝑖 ®𝑥)𝐴𝑖 . In contrast

to flagged regression, the flags are the indicator variable of a linear

inequality of the form ®𝑐⊤
𝑖
®𝑥 ≥ 0, with value in {−1, 1}.

Definition 2.3 (Guarded Regression). Given a data set D, norm-

bound 𝛾 and error tolerances 𝜖 and 𝜏 , the guarded regression prob-

lem with 𝑘 guards seeks a set of matrices𝐴0, . . . , 𝐴𝑘 with ∥𝐴 𝑗 ∥ ≤ 𝛾
and nonzero coefficients ®𝑐1, . . . , ®𝑐𝑘 ∈ R𝑛 such that:

∥ ®𝑦 (𝑡) −𝐴( ®𝑥 (𝑡)) ®𝑥 (𝑡)∥ ≤ 𝜖 ∥ ®𝑥 (𝑡)∥ + 𝜏, ∀ 𝑡 ∈ [𝑁 ],

wherein 𝐴( ®𝑥) = 𝐴0 +
∑𝑘
𝑖=1 sign(®𝑐⊤𝑖 ®𝑥)𝐴𝑖 .

2

2.3 Expressivity of Flagged and Guarded Linear
System Models

FLS are as expressive as linear switched systems. Any FLS with

𝑘 flags can be converted into a linear switched system with 2
𝑘

modes. At the same time, given a linear switched system with

modes defined by matrices 𝐵1, . . . , 𝐵𝑘 , we define matrices 𝐴0 =
1

2

∑𝑘
𝑖=1 𝐵𝑖 and 𝐴𝑖 =

1

2
𝐵𝑖 for 𝑖 ∈ [𝑘]. It holds that 𝐵𝑖 = 𝐴(®𝑧) where

®𝑧 is the vector of flags (𝑞1, . . . , 𝑞𝑘 ) with 𝑞 𝑗 = 1 if 𝑗 = 𝑖 and −1
otherwise. Note that to model the switched system, we need to add

the extraneous constraint

∑𝑘
𝑗=1 𝑞 𝑗 = 2 − 𝑘 over the flags.

We will now turn to the issue of expressivity of Guarded Lin-

ear Systems (GLS). Hinging-Hyperplane systems [13], are models

where the next state for each component 𝑥 𝑗 can be written as

𝑥 𝑗 (𝑡 + ℎ) = 𝑓𝑗,0 ( ®𝑥) +
𝑘∑︁
𝑖=1

𝜎 𝑗,𝑖 max(𝑓𝑗,𝑖 ( ®𝑥), 𝑔 𝑗,𝑖 ( ®𝑥)) ,

wherein 𝑓𝑗,𝑖 and 𝑔 𝑗,𝑖 are affine functions from R𝑛 to R, and 𝜎 𝑗,𝑖 ∈
{−1, 1}. They are known to be useful for approximating a wide

variety of nonlinear functions.

Lemma 2.4. Any Hinging-Hyperplane system can be written as a

GLS. However, there are GLS that cannot be expressed as Hinging-

Hyperplane systems.

Proof. Proof is by observing that we can write each hinge func-

tion as max(𝑓 , 𝑔) = 1

2
(𝑓 +𝑔) + 1

2
sign(𝑓 −𝑔) (𝑓 −𝑔). The second part

simply notes that all Hinging-Hyperplane systems are continuous

PWA functions whereas GLS can be discontinuous. □

Similarly, it is easy to show that any one-dimensional PWA sys-

tem can be expressed as a GLS. However, GLS are not as expressive

as mixed-logical dynamical systems or general PWA systems.

Lemma 2.5. The function 𝑓 (𝑥,𝑦) = 𝑥 + 𝑦 if 𝑥 ≥ 0, 𝑦 ≥ 0 and 0

everywhere else, cannot be written as a GLS 𝑓0 +
∑𝑘
𝑖=1 sign(𝑔𝑖 ) 𝑓𝑖 for

any linear functions 𝑓0, . . . , 𝑓𝑘 and 𝑔1, . . . , 𝑔𝑘 .

Proof is provided in Appendix A.

Remark 4. Our approach extends to affinemodels (and affine guards)

by augmenting the state vector ®𝑥 with a 1 [8, Remark 1]. Nonlinear

models that are linear combinations of a fixed set of known basis

functions can also be learned using our approach.

2
For definiteness, we let sign(0) = 1.
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2.4 Computational Complexity and MILP
Formulations

The flagged regression and the guarded regression problems can

be formulated and solved as optimization problems. In this section,

we first explain how to formulate these problems as mixed-integer

linear programs (MILP), and discuss the computational complexity

of solving them in this way. Then, we present theoretical bounds

on the computational complexity of the problems.

2.4.1 MILP Formulation of Flagged Regression. Given an instance

of the flagged regression problem (plus a bound 𝛾 on the matrices

norm), the decision variables of the associatedMILP are (1)𝑚𝑛(𝑘+1)
continuous variables representing the entries of the𝑚 × 𝑛 matrices

𝐴0, . . . , 𝐴𝑘 ; (2) 𝑘𝑁 binary variables encoding the decision between

selecting −1 or 1 for each flag of each data point. Let 𝑏𝑖 (𝑡) ∈ {0, 1}
denote the binary variable corresponding to the flag 𝑞𝑖 (𝑡) being 1 if
𝑏𝑖 (𝑡) = 0 and −1 if 𝑏𝑖 (𝑡) = 1; (3) 𝑘𝑁𝑚 continuous variables, labeled

®𝑦1 (𝑡), . . . , ®𝑦𝑘 (𝑡) ∈ R𝑚 for 𝑡 ∈ [𝑁 ], serving as auxiliary variables.

The constraints are as follows: (1) For each 𝑖 ∈ [𝑘], the norm
of 𝐴𝑖 is bounded by 𝛾 : ∥𝐴𝑖 ∥ ≤ 𝛾 . (2) For each 𝑡 ∈ [𝑁 ] and 𝑖 ∈ [𝑘],
the value of 𝑏𝑖 (𝑡) imposes constraints on the value of 𝑞𝑖 (𝑡), and
consequently on the value of the auxiliary variable ®𝑦𝑖 (𝑡):

∥ ®𝑦𝑖 (𝑡)−𝐴𝑖 ®𝑥 (𝑡)∥ ≤ 𝑏𝑖 (𝑡)𝑀 ∥ ®𝑥 ∥, ∥ ®𝑦𝑖 (𝑡)+𝐴𝑖 ®𝑥 (𝑡)∥ ≤ (1−𝑏𝑖 (𝑡))𝑀 ∥ ®𝑥 ∥ .

Here,𝑀 ≫ 𝛾 is a sufficiently large constant, chosen so that ∥ ®𝑦𝑖 (𝑡) ±
𝐴𝑖 ®𝑥 (𝑡)∥ ≤ 𝑀 ∥ ®𝑥 (𝑡)∥ holds trivially for all possible 𝐴𝑖 , ®𝑥 (𝑡), ®𝑦𝑖 (𝑡)3.
Thus, if 𝑏𝑖 (𝑡) = 0, ®𝑦𝑖 (𝑡) = 𝐴𝑖 ®𝑥 (𝑡) and if 𝑏𝑖 (𝑡) = 1, ®𝑦𝑖 (𝑡) = −𝐴𝑖 ®𝑥 (𝑡).
(3) For each 𝑡 ∈ [𝑁 ], the fitting error is bounded:

∥ ®𝑦 (𝑡) −𝐴0 ®𝑥 (𝑡) −
𝑘∑︁
𝑖=1

®𝑦𝑖 (𝑡)∥ ≤ 𝜖 ∥ ®𝑥 (𝑡)∥ + 𝜏 .

The objective of the MILP can be set as a linear or convex piecewise

linear function: e.g., minimize the overall residual norm

∑𝑁
𝑡=1∥ ®𝑦 (𝑡)−

𝐴0 ®𝑥 (𝑡) −
∑𝑘
𝑖=1 ®𝑦𝑖 (𝑡)∥. The complexity of MILP solvers (e.g., using

branch-and-bound) is typically exponential in the number of binary

variables (𝑘𝑁 ). As we will see in the numerical experiments (Sec. 4),

this is a major limitation for applying the MILP approach to learn

flagged regression models for real data sets.

2.4.2 MILP Formulation for Guarded Regression. The MILP formu-

lation for the guarded regression problem includes further decision

variables and constraints in addition to the ones in the MILP for-

mulation for flagged regression (Sec. 2.4.1). The decision variables

include 𝑘𝑛 additional continuous variables to represent the guard

coefficients: ®𝑐1, . . . , ®𝑐𝑘 ∈ R𝑛 . We will constrain ∥®𝑐𝑖 ∥ ≤ 1. Addition-

ally, we add the constraints:

(𝛿 −𝑀𝑏𝑖 (𝑡))∥ ®𝑥 (𝑡)∥ ≤ ®𝑐⊤𝑖 ®𝑥 (𝑡) ≤ (𝑀 (1 − 𝑏𝑖 (𝑡)) − 𝛿)∥ ®𝑥 (𝑡)∥ ,

wherein 0 < 𝛿 ≪ 1 is an additional input parameter that represents

a lower bound on the margin of separation of the guards, and𝑀 is

a big enough such that (𝛿 −𝑀)∥ ®𝑥 (𝑡)∥ ≤ ®𝑐⊤
𝑖
®𝑥 (𝑡) ≤ (𝑀 − 𝛿)∥ ®𝑥 (𝑡)∥

holds for all 𝑡 ∈ [𝑁 ] (when ∥®𝑐𝑖 ∥ ≤ 1). Note that when 𝑏𝑖 (𝑡) = 0,

®𝑐⊤
𝑖
®𝑥 (𝑡) ≥ 𝛿 ∥ ®𝑥 (𝑡)∥ and when 𝑏𝑖 (𝑡) = 1, ®𝑐⊤

𝑖
®𝑥 (𝑡) ≤ −𝛿 ∥ ®𝑥 (𝑡)∥. This

implies that for all 𝑡 ∈ [𝑁 ], ®𝑥 (𝑡) satisfies |®𝑐⊤
𝑖
®𝑥 (𝑡) | ≥ 𝛿 ∥®𝑐⊤

𝑖
∥∥ ®𝑥 (𝑡)∥.

Taking 𝛿 ensures that the condition is not restrictive.

3
This is the commonly known “big-M” trick in linear programming [40].

Here again, the complexity of solving the MILP is typically ex-

ponential in the number of binary variables (𝑘𝑁 ), which is a major

limitation for applying the MILP approach to learn guarded regres-

sion models for real data sets (see Sec. 4).

2.4.3 Complexity Bounds. We now present theoretical bounds on

the computational complexity of the flagged regression and guarded

regression problems using the NP-hardness of switched linear re-

gression as a starting point [26].

Theorem 2.6. The flagged regression problem and the guarded

regression problem are both NP-hard.

The proof is by reduction from the switched regression prob-

lem that is previously known to be NP-hard [26] and is provided

in Appendix B. Despite being NP-hard, the problem of piecewise

linear regression is known to have a complexity polynomial in the

number of data points [26, Sec. 5.3.1]. The complexity is bounded by

𝑂 (𝑁𝑛𝑠 (𝑠−1)/2) wherein 𝑠 is the number of modes [26, Theorem 5.3].

However, this approach is impractical for large 𝑁 . Note that a simi-

lar reasoning holds for the switched linear regression problem [26,

Sec. 5.3.2].

2.5 Relaxed Problem Formulation
We introduce the following relaxed formulation of the flagged re-

gression and guarded regression problems, using the idea of a “tol-

erance gap”. The resulting problem formulation is called a promise

problem or a gap problem [17, 19].

Definition 2.7 (Regression with Tolerance Gap). Given a data set

D, an absolute error tolerance 𝜏 , and two relative error tolerances

0 ≤ 𝜖1 < 𝜖2, the “gap” version of the flagged (guarded) regression

problem seeks to decide between two alternatives:

(1) yes: There exists matrices (and guard coefficients) that fits

the data with relative error 𝜖 ≤ 𝜖2 and absolute error 𝜏 .

Additionally, for this case the algorithm in this paper will

find matrices that fit the data with relative error at most 𝜖2.

(2) no: All matrices (and guard coefficients) that fit the data

with absolute error 𝜏 has relative tolerance 𝜖 > 𝜖1.

However, if the minimal relative error 𝜖 (for fixed absolute error

tolerance 𝜏) satisfies 𝜖 ∈ (𝜖1, 𝜖2], then our algorithm can provide

either yes or no answer, since they are both correct.

An equivalent way of expressing the guarantee of our algorithm

is that for fixed absolute error tolerance 𝜏 , if there is a model that

fits the data with relative error ≤ 𝜖1, our approach is guaranteed to

find a model with relative error ≤ 𝜖2. In practice, our algorithm can

be used in many ways by setting various values for 𝜖1, 𝜖2. (1) Setting

𝜖1 = 0, 𝜖2 = 𝜖 implies that our algorithm, upon a yes answer, yields

a model with relative error bounded by 𝜖 . However, if the algorithm

yields a no, we conclude that there is no model with relative error

𝜖 = 0 and absolute error 𝜏 . This is analogous to techniques that

find a local minimum, but do not establish a lower bound on the

global optimum. (2) On the other hand, given a user-input bound

𝜖gap, our algorithm can be used repeatedly to find a model that fits

the data to a relative error 𝜖 ≤ 𝜖∗ + 2𝜖gap, wherein 𝜖∗ is the least
relative error possible amongst all models whose absolute error

tolerance is 𝜏 . First, we place an upper bound 𝐵 on 𝜖∗ using linear
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regression and then repeatedly call our approach at most log

(
𝐵
𝜖gap

)
times. Appendix C presents this algorithm with a detailed analysis.

3 ALGORITHM
We will first start with the algorithm for flagged regression. The

extension for the guarded regression problem will be outlined in

Sec. 3.6. At the high level, the algorithm maintains a search tree

wherein each node of the tree guesses the assignment of flags for a

subset of the data points. Each iteration of the algorithm works by

expanding a leaf node in the tree as follows:

(1) Solve least norm linear regression problem to identify a

candidate model consisting of matrices𝐴0, . . . , 𝐴𝑘 that satisfy

the error tolerance bounds for just the subset of the data that

has been assigned values for the latent flags.

(2) Test the candidate model against the remaining data points

not yet assigned flag values. If the model fits these points,

we have found our desired solution. Otherwise, we have a

counterexample over which the candidate fails.

(3) For each possible assignment of latent flag values to the

counterexample, we create a new child node that retains all

the flag assignments from the parent node and additionally

assigns flag values to the newly discovered counterexample.

Through an appropriate choice of the candidate model in step ( 1),

we provide an upper bound on the depth of the tree constructed by

our algorithm that is independent of the number of data points 𝑁 .

We describe the tree structure, the computation of the candidate,

and the validation of the candidate in Secs. 3.1–3.4 below. Then, we

analyze the algorithm in Sec. 3.5.

3.1 Tree Structure
The algorithm constructs a tree data structure wherein each node

in the tree stores a flagged core: a subset of the data with each data

point in the subset being assigned values of the latent flags.

Definition 3.1 (Flagged Core Subset). A flagged core is a tuple

(𝑆, 𝜙) wherein 𝑆 ⊆ [𝑁 ] is a subset of time indices that selects a

subset D′ ⊆ D of the input data and 𝜙 : 𝑆 → {−1, 1}𝑘 is an

assignment of latent flag values to each element of 𝑆 .

Algo. 1 shows the overall algorithm. The initial tree is a root

node containing the empty flagged core, i.e., with 𝑆 = ∅ and 𝜙 = ∅
(Line 1). The algorithm then picks an unexplored leaf node 𝜈 from

the tree (Line 3) and computes a candidate model for this node using

the method FindCandidate (see Sec. 3.2) (Line 4). If no candidate

can be found, the algorithm moves to another unexplored leaf node

(Line 5). However, if a candidate has been found, then the algorithm

tries to find a counterexample for the candidate using the method

FindCounterexample (see Sec. 3.3) (Line 6). If no counterexample

is found, then the algorithm stops and outputs the candidate (Line 7).

Otherwise, the algorithm expands the node with children nodes

using the counterexample (Line 8) and the method ExpandNode

(see Sec. 3.4) . If there are no further unexplored leaf nodes in the

tree, the algorithm returns infeasible (Line 9).

3.2 Finding a Candidate
Given a flagged core subset D′ of the data, indexed by 𝑆 ⊆ [𝑁 ],
and an assignment map 𝜙 : 𝑆 → {−1, 1}𝑘 , we define a candidate as

Algorithm 1: Flagged Regression Tree Search Algo.

Data: Data set D, relative error tolerances 0 ≤ 𝜖1 < 𝜖2,

absolute error tolerance 𝜏 , bound 𝛾 .

Result: Either feasible and a set of matrices 𝐴0, . . . , 𝐴𝑘
that fits D with error tolerances 𝜖2 and 𝜏 , or

infeasible.

1 𝑇 ← [⟨∅, ∅⟩] /* Initialize tree with root */

2 while 𝑇 is not empty do
3 𝜈 ← Any unexplored node from 𝑇

4 (𝐴0, . . . , 𝐴𝑘 ) ← FindCandidate(𝜈)
5 if not exists(𝐴0, . . . , 𝐴𝑘 ) then continue
6 𝑐 ← FindCounterexample(𝐴0, . . . , 𝐴𝑘 )
7 if not exists(𝑐) then return ⟨feasible, 𝐴0, . . . , 𝐴𝑘 ⟩
8 𝑇 ← ExpandNode(𝑇, 𝜈, 𝑐)
9 return infeasible

a model that fits D′ with relative error tolerance 𝜖2, using the flag

values given by 𝜙 , i.e., a set 𝐴0, . . . , 𝐴𝑘 satisfying




®𝑦 (𝑡) −
(
𝐴0 +

𝑘∑︁
𝑖=1

𝑞𝑖 (𝑡)𝐴𝑖

)
®𝑥 (𝑡)






 ≤ 𝜖2∥ ®𝑥 (𝑡)∥ + 𝜏, ∀ 𝑡 ∈ 𝑆,
wherein𝜙 (𝑡) = (𝑞1 (𝑡), . . . , 𝑞𝑘 (𝑡)), plus the norm constraints ∥𝐴𝑖 ∥ ≤
𝛾 , ∀ 𝑖 ∈ [𝑘] ∪ {0}. However, our algorithm requires us to select a

candidate that is robust to bounded perturbations. To achieve this,

we fix the notion of a 𝜃 -candidate.

Definition 3.2 (Set of 𝜃 -Candidates). Given 𝜃 > 0 and node 𝜈 =

(𝑆, 𝜙), the set of𝜃 -candidates at node𝜈 , denoted by𝐶 (𝜈, 𝜃 ), is defined
as the set of all tuples of matrices (𝐴0, . . . , 𝐴𝑘 ) satisfying




®𝑦 (𝑡) −

(
𝐴0 +

𝑘∑︁
𝑖=1

𝑞𝑖 (𝑡)𝐴𝑖

)
®𝑥 (𝑡)






 ≤ (𝜖2 − 𝜃 )∥ ®𝑥 (𝑡)∥ + 𝜏, ∀ 𝑡 ∈ 𝑆,
and ∥𝐴𝑖 ∥ ≤ 𝛾 − 𝜃

𝑘+1 , ∀ 𝑖 ∈ [𝑘] ∪ {0}.

When 𝜃 = 0, we denote 𝐶 (𝜈) = 𝐶 (𝜈, 0), and we simply refer to

this as the set of candidates. The key observation is that 𝜃 candidates

are robust to perturbations whose norm depends on 𝜃 .

Proposition 3.3. Let (𝐴0, . . . , 𝐴𝑘 ) ∈ 𝐶 (𝜈, 𝜃 ) and let Δ0, . . . ,Δ𝑘
be perturbation matrices with norm ∥Δ𝑖 ∥ ≤ 𝜃

𝑘+1 , ∀ 𝑖 ∈ [𝑘] ∪ {0}. It
holds that (𝐴′

0
, . . . , 𝐴′

𝑘
) defined by 𝐴′

𝑖
= 𝐴

𝑖
+ Δ

𝑖
belongs to 𝐶 (𝜈).

Proof. For each 𝑡 ∈ [𝑆], we have

∥𝐴′𝑖 ®𝑥 (𝑡) −𝐴𝑖 ®𝑥 (𝑡)∥ ≤ ∥𝐴
′
𝑖 −𝐴𝑖 ∥∥ ®𝑥 (𝑡)∥ ≤

𝜃

𝑘 + 1 ∥ ®𝑥 (𝑡)∥ .

Thus, ∥𝐴′ ®𝑥 (𝑡) −𝐴®𝑥 (𝑡)∥ ≤ 𝜃 ∥ ®𝑥 (𝑡)∥, wherein𝐴 = 𝐴0 +
∑𝑘
𝑖=1 𝑞𝑖 (𝑡)𝐴𝑖

and𝐴′ = 𝐴′
0
+∑𝑘𝑖=1 𝑞𝑖 (𝑡)𝐴′𝑖 . Since, ∥ ®𝑦 (𝑡)−𝐴®𝑥 (𝑡)∥ ≤ (𝜖2−𝜃 )∥ ®𝑥 (𝑡)∥+

𝜏 , we obtain ∥ ®𝑦 (𝑡) −𝐴′ ®𝑥 (𝑡)∥ ≤ 𝜖2∥ ®𝑥 (𝑡)∥ + 𝜏 . □

Furthermore, the assignment of the flag values makes the con-

straints on 𝐴0, . . . , 𝐴𝑘 linear and convex:

Proposition 3.4. 𝐶 (𝜈, 𝜃 ) is a a bounded convex polyhedron.

Proof is simply by examining the constraints in Def. 3.2. The

boundedness of𝐶 (𝜈, 𝜃 ) comes directly from the bound on the norms

of the matrices 𝐴𝑖 .
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Algorithm 2: FindCandidate
Data: Data set D, relative error tolerances 0 ≤ 𝜖1 < 𝜖2,

absolute error tolerance 𝜏 , matrix element bound 𝛾 ,

node 𝜈 = ⟨𝑆, 𝜙⟩.
1 if 𝐶 (𝜈, 𝜖2 − 𝜖1) = ∅ then return fail

2 return a central point in 𝐶 (𝜈)

Algorithm 3: FindCounterexample

Data: Data D, errors 𝜖2 and 𝜏 , matrices 𝐴0, . . . , 𝐴𝑘 .

1 for 𝑡 ∈ [𝑁 ] do
2 if no (𝑞1, . . . , 𝑞𝑘 ) ∈ {−1, 1}𝑘 satisfies (2) then return 𝑡

3 return fail

The procedure FindCandidate is implemented in Algo. 2. The

method first checks whether there is a set of matrices in𝐶 (𝜈, 𝜃 ) for
𝜃 = 𝜖2 − 𝜖1. If this is not the case, then the method returns fail.

Otherwise, the method selects a central point in 𝐶 (𝜈). Different
notions of central points can be considered, such as center of gravity,

analytic center, center of Maximum Volume Inscribed Ellipsoid,

Chebyshev center. The consequences of this choice are explained

further in Sec. 3.5. The following corollary of Prop. 3.3 shows that

the Lesbegue volume vol(𝐶 (𝜈)) of the set of candidates in a node

will not be become too small while running Algo. 1. Let V(𝑟 ) ⊆
R𝑚×𝑛 denote the volume of a unit ball of radius 𝑟 of𝑚 ×𝑛 matrices

with respect to the induced L∞ norm. Recall thatV(𝑟 ) = (2𝑟 )
𝑚𝑛

𝑛!𝑚
;

see, e.g., [8, Lemma 4].

Corollary 3.5. Let𝑉min =
(
V(𝜖gap)

)𝑘+1
, wherein 𝜖gap = 𝜖2−𝜖1.

If vol(𝐶 (𝜈)) < 𝑉min, then Algo. 2 will return fail.

Proof. If Algo. 2 does not return fail, it means that𝐶 (𝜈, 𝜖gap) ≠
∅. Prop. 3.3, 𝐶 (𝜈) contains the Cartesian product of 𝑘 + 1 balls of
radius at least 𝑟 =

𝜖gap

𝑘+1 , thereby providing the desired result. □

We clarify that our algorithmwill not attempt to compute volume

of polyhedra at any point since that can be quite expensive. Instead,

Corr. 3.5 will be used to place a bound on the depth of the tree. The

choice and the computation of the central point and the impact on

the complexity of the algorithm will be discussed in Sec. 3.5.

3.3 Finding a Counterexample
Given a candidate model 𝐴0, . . . , 𝐴𝑘 , we define a counterexample as

any data point ( ®𝑥 (𝑡), ®𝑦 (𝑡)) in D for which there are no flag values

𝑞1, . . . , 𝑞𝑘 satisfying




®𝑦 (𝑡) −
(
𝐴0 +

𝑘∑︁
𝑖=1

𝑞𝑖𝐴𝑖

)
®𝑥 (𝑡)






 ≤ 𝜖2∥ ®𝑥 (𝑡)∥ + 𝜏 . (2)

An implementation of FindCounterexample is given in Algo. 3.

The method returns fail if no counterexample exists.

Proposition 3.6. For node 𝜈 = ⟨𝑆, 𝜙⟩ and (𝐴0, . . . , 𝐴𝑘 ) ∈ 𝐶 (𝜈),
the result of FindCounterexample does not belong to 𝑆 .

Note that each element 𝑡 ∈ 𝑆 has an assignment 𝜙 (𝑡) that satis-
fies (2), and thus cannot be the result from FindCounterexample.

Algorithm 4: ExpandNode
Data: Tree 𝑇 , node 𝜈 = ⟨𝑆, 𝜙⟩ ∈ 𝑇 , counterexample 𝑐 ∉ 𝑆 .

1 for (𝑞1, . . . , 𝑞𝑘 ) ∈ {−1, 1}𝑘 do
2 Let 𝜈 ′ = ⟨𝑆 ∪ {𝑐}, 𝜙 ∪ {𝑐 ↦→ (𝑞1, . . . , 𝑞𝑘 )}⟩
3 Add 𝜈 ′ to 𝑇 as a child of 𝜈

4 return 𝑇

3.4 Expanding a Node with a Counterexample
Given a node 𝜈 = ⟨𝑆, 𝜙⟩ and an associated candidate 𝐴0, . . . , 𝐴𝑘 ,

the existence of a counterexample 𝑐 to the candidate reveals that

the flagged core at 𝜈 needs to be expanded with new data points.

Our strategy is to use the counterexample 𝑐 as the new data point.

For that, we also need to choose the flag values 𝑞1 (𝑐), . . . , 𝑞𝑘 (𝑐)
associated with the new data point. In order to be exhaustive, and

not miss any flagged core, we need to consider all possible flag

values 𝑞1 (𝑐), . . . , 𝑞𝑘 (𝑐) for 𝑐 . This requires to create 𝐾 = 2
𝑘
new

nodes, each of them with the same index set 𝑆 ′ = 𝑆 ∪ {𝑐} but with
a different map 𝜙 ′ : 𝑆 ′ → {−1, 1}𝑘 , accounting for the 2

𝑘
different

ways of assigning the values of the 𝑘 flags 𝑞1 (𝑐), . . . , 𝑞𝑘 (𝑐) to 𝑐 .
The implementation of ExpandNode is provided in Algo. 4. The

following proposition shows that the set of candidates gets strictly

smaller from a node to any of its children (Sec. 3.5 shows how to

decrease the volume of the set of candidates).

Proposition 3.7. For any node 𝜈 = ⟨𝑆, 𝜙⟩, let (𝐴0, . . . , 𝐴𝑘 ) ∈
𝐶 (𝜈) be the result of FindCandidate on node 𝜈 and 𝜈 ′ = ⟨𝑆 ′, 𝜙 ′⟩ be
any child of 𝜈 through Algo. 4. 𝐶 (𝜈 ′) ⊆ 𝐶 (𝜈) \ {(𝐴0, . . . , 𝐴𝑘 )} holds.

Proof. Since 𝑆 ⊆ 𝑆 ′, 𝐶 (𝜈 ′) contains the same constraints on

𝐴0, . . . , 𝐴𝑘 as 𝐶 (𝜈) plus additional constraints given by the coun-

terexample 𝑐 . Hence, 𝐶 (𝜈 ′) ⊆ 𝐶 (𝜈). Furthermore, by the choice of

𝑐 (Algo. 3), it holds that (𝐴0, . . . , 𝐴𝑘 ) ∉ 𝐶 (𝜈 ′). □

The definition of the expansion makes that the tree exploration

exhaustive (meaning that no feasible node is excluded) and non-

looping (meaning that a node is never revisited or produced twice).

Proposition 3.8 (Exhaustive). Let 𝜈∗ = ⟨[𝑁 ], 𝜙∗⟩ be a node

such that 𝐶 (𝜈∗, 𝜖gap) ≠ ∅. Then, at the beginning of each iteration

of Algo. 1 (before Line 3 is executed), there is an unexplored node

𝜈 = ⟨𝑆, 𝜙⟩ so that 𝜙 (𝑡) = 𝜙∗ (𝑡) for all 𝑡 ∈ 𝑆 .

Proof. The proof is by induction on the iterations of the algo-

rithm. This is obviously true at the first iteration since the only un-

explored node is the root. Now, for the induction step, assume that

the hypothesis is satisfied at the beginning of some non-terminal it-

eration iter. We show that it is still the case at the iteration iter+1.
Let 𝜈 = ⟨𝑆, 𝜙⟩ be an explored node at the beginning of the itera-

tion iter such that 𝜙 (𝑡) = 𝜙∗ (𝑡) for all 𝑡 ∈ 𝑆 , and let 𝜈iter be the

node picked during the iteration. If 𝜈iter ≠ 𝜈 , then 𝜈 is still unex-

plored at the iteration iter + 1 so that the property holds trivially

at that iteration as well. Now, assume that 𝜈iter = 𝜈 . Then, since

𝜙 (𝑡) = 𝜙∗ (𝑡) for all 𝑡 ∈ 𝑆 , it holds that 𝐶 (𝜈∗, 𝜖gap) ⊆ 𝐶 (𝜈, 𝜖gap),
so that 𝐶 (𝜈, 𝜖gap) ≠ ∅. Thus, FindCandidate does not fail and 𝜈
gets expanded (because the iteration iter is non-terminal). Let 𝑐

be the counterexample used for the expansion. By definition of

ExpandNode, there is a children node 𝜈 ′ = ⟨𝑆 ′, 𝜙 ′⟩ of 𝜈 such that
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𝑆 ′ = 𝑆 ∪ {𝑐} and 𝜙 ′ (𝑐) = 𝜙∗ (𝑐). This node is marked as unexplored,

so that at the iteration iter + 1, the property holds with 𝜈 ′. This
concludes the proof by induction. □

Proposition 3.9 (Non-Looping). For nodes 𝜈1 = ⟨𝑆1, 𝜙1⟩ and
𝜈2 = ⟨𝑆2, 𝜙2⟩ produced at different iterations of Algo. 1, 𝑆1 ≠ 𝑆2.

Proof. Let 𝜈 = ⟨𝑆, 𝜙⟩ be the least common ancestor of 𝜈1 and

𝜈2. If 𝜈1 = 𝜈 (or 𝜈2 = 𝜈), we note that 𝑆1 ⊂ 𝑆2 (𝑆2 ⊂ 𝑆1). Otherwise,
𝜈1 and 𝜈2 descend from two distinct children 𝜈 ′

1
= ⟨𝑆 ′

1
, 𝜙 ′

1
⟩ and

𝜈 ′
2
= ⟨𝑆 ′

2
, 𝜙 ′

2
⟩ of 𝜈 . Let 𝑐 be the counterexample associated to 𝜈 . By

definition of the expansion, it then holds that 𝜙 ′
1
(𝑥) ≠ 𝜙 ′

2
(𝑐). Thus,

since 𝜙𝑖 (𝑐) = 𝜙 ′
𝑖
(𝑐) for 𝑖 ∈ [2], it follows that 𝜙1 (𝑐) ≠ 𝜙2 (𝑐), so

that 𝜈1 ≠ 𝜈2, concluding the proof. □

3.5 Analysis of the Algorithm
We start by showing the soundness of the algorithm, then discuss

the termination and complexity.

3.5.1 Soundness. Soundness of the algorithm means that the out-

put set of matrices must fit the data with relative error tolerance 𝜖2,

and when the algorithm outputs infeasible, then no set of matrices

(with bounded norm) can fit the data with relative error tolerance

𝜖1. This is shown in the following theorem:

Theorem 3.10. Algo. 1 is sound: (1) If it outputs ⟨feasible, 𝐴0, . . . , 𝐴𝑘 ⟩,
then 𝐴0, . . . , 𝐴𝑘 fits the data with error tolerances 𝜖2 and 𝜏 . (2) If it

outputs infeasible, then no set of matrices 𝐴0, . . . , 𝐴𝑘 with bounded

norm ∥𝐴𝑖 ∥ ≤ 𝛾 −
𝜖gap

𝑘+1 fits the data with error tolerances 𝜖1 and 𝜏 .

Proof. If case 1) occurs, this means that a candidate 𝐴0, . . . , 𝐴𝑘
had no counterexample and the algorithm outputted𝐴0, . . . , 𝐴𝑘 . By

definition of a counterexample, the non-existence of one means

that 𝐴0, . . . , 𝐴𝑘 fits the data with error tolerances 𝜖2 and 𝜏 .

If case 2) occurs, this means that at the end of some iteration there

was no unexplored node since this is the only way to reach Line 9.

Assume, for a contradiction, that there is a set of matrices𝐴0, . . . , 𝐴𝑘
satisfying the hypothesis in case 2). Then, there is 𝜈∗ = ⟨[𝑁 ], 𝜙∗⟩
such that 𝐶 (𝜈∗, 𝜖gap) ≠ ∅. This is a contradiction with Prop. 3.8,

which guarantees that at the beginning of each iteration there is an

unexplored node that either has no counterexample or is expanded

(thereby creating more unexplored nodes). □

3.5.2 Termination and Complexity. The termination of the algo-

rithm is guaranteed by the non-looping property of the exploration

process (Prop. 3.9), which guarantees that nodes never get visited

twice. Since the set of possible nodes is finite (bounded by 2
𝑘𝑁

),

the algorithm terminates in finite time.

The upper bound 2
𝑘𝑁

on the number of iterations is not satisfac-

tory since it is exponential in the number of data points (it is in fact

the same as for the MILP formulation). We will show that the num-

ber of iteration can in fact be upper bounded by 𝜅 (𝑛,𝑚, 𝑘, 𝜖gap, 𝛾)
for some 𝜅 depending on 𝑛,𝑚, 𝑘, 𝜖gap, 𝛾 but not 𝑁 . For that, we rely

on an argument of volume contraction, inspired from cutting-plane

or localization methods in convex optimization [11].

Volume Contraction. To explain the argument of volume contrac-

tion, let us start with a deeper analysis of the property in Prop. 3.7.

This proposition implies that as we go deeper in the tree, the set

of candidates gets smaller with respect to set inclusion. If we can

show that the set of candidates actually gets a guaranteed decrease

in Lebesgue volume, then we can combine this observation with the

property in Corr. 3.5 (that a node is not expanded if the volume of

the set of candidates is too small) to bound the depth of the tree,

thereby obtaining a second bound on the number of iterations of

the algorithm. This is formalized below:

Theorem 3.11. Let𝛼 > 1. Consider an execution of Algo.1. Assume

that whenever 𝜈 and 𝜈 ′ are two nodes in 𝑇 such that 𝜈 ′ is a child of
𝜈 , it holds that vol(𝐶 (𝜈 ′)) ≤ 1

𝛼 vol(𝐶 (𝜈)). Then, the depth 𝐷 of 𝑇

satisfies 𝐷 ≤
⌊
(𝑘 + 1)𝑚𝑛 log𝛼

(
𝛾 (𝑘+1)
𝜖gap

)⌋
+ 1.

Proof. Let 𝜈1, . . . , 𝜈𝑝 be a sequence of nodes in 𝑇 such that

𝜈 𝑗+1 is a child of 𝜈 𝑗 . By definition of 𝐶 (𝜈), it holds that 𝐶 (𝜈1) ⊆

{(𝐴0, . . . , 𝐴𝑘 ) : ∥𝐴𝑖 ∥ ≤ 𝛾}. Hence,vol(𝐶 (𝜈1)) ≤ 𝑉min

(
𝛾 (𝑘+1)
𝜖gap

) (𝑘+1)𝑚𝑛
.

Furthermore, by assumption, vol(𝐶 (𝜈𝑝−1) ≤ 𝛼1−𝑝vol(𝐶 (𝜈1)).
On the other side, since 𝜈𝑝−1 got expanded, it holds by Corr. 3.5

that vol(𝐶 (𝜈𝑝−1)) ≥ 𝑉min. Hence, 𝛼
1−𝑝 ≥

( 𝜖gap

𝛾 (𝑘+1)
) (𝑘+1)𝑚𝑛

. Thus,

𝑝 − 1 ≤
⌊
(𝑘 + 1)𝑚𝑛 log𝛼

(
𝛾 (𝑘+1)
𝜖gap

)⌋
. Since 𝜈1, . . . , 𝜈𝑝 was arbitrary,

this gives the desired upper bound on the depth 𝐷 of 𝑇 . □

Remark 5. Note that it is the ratio 𝛾/𝜖gap that is relevant in the

bound in Theorem 3.11, and not 𝛾 and 𝜖gap separately. This shows

that the complexity depends on the desired relative precision on

the matrix entries with respect to the assumed bound 𝛾 .

Theorem 3.12. Under the assumption of Theorem 3.11, Algo. 1

explores at most
2
𝑘𝐷−1
2
𝑘−1 nodes and terminates in finite time.

Proof. For a tree with max depth 𝐷 and branching factor is

𝐾 = 2
𝑘
, total number of nodes is

∑𝐷−1
𝑗=0 𝐾 𝑗 = 𝐾𝐷−1

𝐾−1 . □

Guaranteed Volume Decrease. We now explain how to guarantee

the relative volume decrease with factor 𝛼 > 1 required in Theo-

rem 3.11. This can be guaranteed if we choose the candidate of each

node carefully. For instance, if we select the candidate as the center

of gravity of 𝐶 (𝜈), then we can guarantee a volume decrease with

factor
1

𝛼 = 1 − 1

𝑒 ≈ 0.63. Alternatively, if we select the candidate as

the center of the Maximum Volume Ellipsoid inscribed in 𝐶 (𝜈), then
we can guarantee a volume decrease with factor

1

𝛼 = 1 − 1

(𝑘+1)𝑚𝑛 .

Lemma 3.13. [11, Sec. 4.2 and 4.3] Let 𝐴, 𝐵 ⊆ R𝑑 be two bounded

convex sets such that 𝐵 ⊆ 𝐴. If 𝐵 does not contain the center of gravity

of 𝐴, then vol(𝐵) ≤ (1 − 1

𝑒 )vol(𝐴). If 𝐵 does not contain the center

of the MVE inscribed in 𝐴, then vol(𝐵) ≤ (1 − 1

𝑑
)vol(𝐴).

Note that in our case the sets 𝐶 (𝜈) are bounded convex subsets

of (R𝑚×𝑛)𝑘+1 by Prop. 3.7, and 𝐶 (𝜈 ′) is a convex subset of 𝐶 (𝜈)
that does not contain the candidate so that Lemma 3.13 applies.

We are now able to finish the complexity analysis of the algo-

rithm. Under the above assumptions on the choice of the candidate,

we first give an upper bound 𝜅 on the number of iterations of the

algorithm, then we derive an upper bound on the computational

complexity of the algorithm.
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We start with the center of gravity as the choice of the candidate.

By Theorem 3.12, the number of iterations is upper bounded by

2

−𝑘 (𝑘+1)𝑚𝑛 log
0.63

(
𝛾 (𝑘+1)
𝜖gap

)
+1 − 1

2
𝑘 − 1

≤ 2

𝑂

(
𝑘2𝑚𝑛 log

(
𝛾𝑘

𝜖gap

))
.

The complexity of computing the center of gravity of a polytope

in R𝑑 described by 𝑒 linear constraints can be upper bounded by

a function of 𝑑 and 𝑒 [32]. Since any data point in 𝑆 for a node

𝜈 = ⟨𝑆, 𝜙⟩ adds a fixed number of linear constraints to 𝐶 (𝜈), and
since the size of 𝑆 is bounded by the depth 𝐷 , we obtain that the

computation of the candidate has a complexity that depends only

on 𝑘 , 𝑛,𝑚 and 𝐷 . In particular, the complexity of computing the

candidate does not depend on 𝑁 . Finally, finding a counterexample

amounts to check all remaining data points and find those for which

the candidate does not satisfy (2) for any flag values. This can be

done in time linear in 𝑛,𝑚, 2
𝑘
and 𝑁 . Thus, the overall complexity

of the algorithm is linear in 𝑁 .

If the MVE center is used to choose the candidate, By Theo-

rem 3.12, the number of iterations is upper bounded by
4

2

−𝑘 (𝑘+1)𝑚𝑛 log
1− 1

(𝑘+1)𝑚𝑛

(
𝛾 (𝑘+1)
𝜖gap

)
+1
− 1

2
𝑘 − 1

≤ 2

𝑂

(
𝑘3𝑚2𝑛2 log

(
𝛾𝑘

𝜖gap

))
.

The complexity of computing the MVE center of a polytope in R𝑑

described by 𝑒 linear constraints can be upper bounded by a poly-

nomial function of 𝑑 and 𝑒 [7]. Thus, the complexity of computing

the candidate is polynomial in 𝑘 , 𝑛,𝑚 and 𝐷 , and again does not

depend on 𝑁 , The computation of the counterexample is the same.

In conclusion, the complexity of the algorithm is linear in 𝑁 , and

can be upper bounded by

2

𝑂

(
𝑘3𝑚2𝑛2 log

(
𝛾𝑘

𝜖gap

))
poly

(
𝑘, 𝑛,𝑚, log

(
𝛾

𝜖gap

))
𝑁, (3)

wherein poly is a polynomial function. Note that the factor𝑚2
in

the exponent can be changed to𝑚 using an argument similar to

the one in [8, Lemma 9]. However, for the sake of simplicity, this

argument is not expanded here.

Note that (3) is an upper bound: to be tight, it would need that

all nodes up to maximal depth 𝐷 are explored. In practice, many

nodes are deemed infeasible (and thus not expanded) way before

reaching the maximal depth, so that the tree contains only a few

deep branches. This implies that in practice the number of explored

nodes and consequently the overall algorithmic complexity is way

below the theoretical upper bound.

This concludes the presentation and analysis of the algorithm for

the flagged regression problem. We now turn to guarded regression.

3.6 Algorithm for Guarded Regression
The modification of Algo. 1 to solve the guarded regression problem

is rather straightforward. For each node 𝜈 = ⟨𝑆, 𝜙⟩, we try to find

a candidate model consisting of a set of matrices 𝐴0, . . . , 𝐴𝑘 and

guard coefficients ®𝑐1, . . . , ®𝑐𝑘 such that




®𝑦 (𝑡) −
(
𝐴0 +

𝑘∑︁
𝑖=1

𝑞𝑖 (𝑡)𝐴𝑖

)
®𝑥 (𝑡)






 ≤ (𝜖2 − 𝜃 )∥ ®𝑥 (𝑡)∥ + 𝜏, ∀ 𝑡 ∈ 𝑆,
4
We used that the facts that log𝑎 (𝑥 ) =

log(𝑥 )
log(𝑎) and log(1 −

1

𝑟
) ≤ − 1

𝑟
.

and 𝑞𝑖 (𝑡) ®𝑐⊤𝑖 ®𝑥 (𝑡) ≥ 𝛿 ∥ ®𝑥 (𝑡)∥, ∀ 𝑖 ∈ [𝑘], ∀ 𝑡 ∈ 𝑆 , wherein 𝜙 (𝑡) =
(𝑞1 (𝑡), . . . , 𝑞𝑘 (𝑡)), ∥𝐴𝑖 ∥ ≤ 𝛾 − 𝜃

𝑘+1 , ∀ 𝑖 ∈ [𝑘] ∪ {0}, and ∥®𝑐
⊤
𝑖
∥ ≤ 1,

∀ 𝑖 ∈ [𝑘], for given parameters 𝜃 > 0 and 𝛿 > 0. Here, 𝜃 plays

the same role as in Sec. 3.2, while 𝛿 bounds the minimal allowed

angle between the points ®𝑥 (𝑡) and any of the guard hyperplanes

𝐻𝑖 � {®𝑥 : ®𝑐⊤
𝑖
®𝑥 = 0}, since the conditions imply that |®𝑐⊤

𝑖
®𝑥 (𝑡) | ≥

𝛿 ∥®𝑐⊤
𝑖
∥∥ ®𝑥 (𝑡)∥. Analogously to the flagged regression case, we let

𝐶 (𝜈, 𝜃, 𝛿) be the set of matrices 𝐴0, . . . , 𝐴𝑘 and guard coefficients

®𝑐1, . . . , ®𝑐𝑘 satisfying the above conditions. The computation of the

candidate then amounts to check whether 𝐶 (𝜈, 𝜖gap, 𝛿) ≠ ∅, and if

this is the case, compute a central point in 𝐶 (𝜈) = 𝐶 (𝜈, 0, 0).
The verification of a candidate 𝐴0, . . . , 𝐴𝑘 and ®𝑐1, . . . , ®𝑐𝑘 simply

computes for all 𝑡 ∈ [𝑁 ], 𝑞𝑖 = ®𝑐⊤
𝑖
®𝑥 (𝑡), then checks whether (2)

is satisfied. Any 𝑡 ∈ [𝑁 ] for which this fails can be returned as a

counterexample. The node expansion is the same as in Algo. 1.

Soundness. The algorithm is sound in the sense that if it returns a

set of matrices and guard coefficients, those provide a valid solution

to the guarded regression problem with error tolerances 𝜖2 and 𝜏 ,

while if the algorithm returns infeasible, this means that no set

of matrices and guard coefficients solves the guarded regression

problem with error tolerances 𝜖1 and 𝜏 , plus the additional con-

straints on the norm of the matrices (bounded by 𝛾 − 𝜃
𝑘+1 ) and the

minimal angle between the input points and the guard hyperplanes

(bounded by 𝛿) as discussed above.

Remark 6. The minimal angle condition can be alleviated by in-

troducing a “gray region” in the determination of the flags from

the guards, meaning that if |®𝑐⊤
𝑖
®𝑥 (𝑡) | < 𝛿 ∥®𝑐⊤

𝑖
∥∥ ®𝑥 (𝑡)∥, then 𝑞𝑖 (𝑡)

can be either −1 or 1. This formulation makes sense for instance

if the points ®𝑥 (𝑡) are corrupted by noise, and is solved by simply

changing 𝐶 (𝜈, 𝜖gap, 𝛿) to 𝐶 (𝜈, 𝜖gap, 0+) and 𝐶 (𝜈) to 𝐶 (𝜈, 0,−𝛿) in
the generation of the candidate.

Complexity. The complexity analysis follows the same reasoning

as for the flagged regression algorithm. The only difference is that

this time the unknown variables are𝐴0, . . . , 𝐴𝑘 and ®𝑐1, . . . , ®𝑐𝑘 so that
the volume decrease argument of𝐶 (𝜈) must be adapted accordingly.

If we use the MVE center as the candidate, we obtain the following

upper boun on the running time (poly is a polynomial function):

2

𝑂

(
𝑘3𝑚𝑛2 log

(
𝛾𝑘

𝜖gap

)
+𝑘2𝑛2 log( 1𝛿 )

)
poly

(
𝑘, 𝑛,𝑚, log

(
𝛾

𝜖gap

)
, log 𝛿

)
𝑁 .

Approximation of the MVE Center: The MVE center can be com-

puted in polynomial time using for instance semidefinite program-

ming [7]. Nevertheless, in practice, the computation can be cum-

bersome and subject to numerical instability. Therefore, in our

numerical experiments, we used the Chebyshev center (center of

a Maximum Volume Inscribed Ball), which can be computed effi-

ciently using Linear Programming [12].

4 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of the proposed ap-

proach (flagged and guarded regression), along with that of the ref-

erence MILP approach, on a set of mixed logical dynamical (MLD)

system benchmarks. We compare our approach with two local op-

timization techniques: 1) Feedforward neural networks (NN), and

2) Piecewise Affine Regression and Classification tool (PARC) [3].



Algorithms for Identifying Flagged and Guarded Linear Systems HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong

Implementation. We assume that the number of flags 𝑘 is an

input to the algorithm. One can also systematically search for 𝑘

to identify a regression model with the desired level of trade-off

between the model complexity and data fit (refer to [31]). In all our

experiments, we used 𝜖1 = 0 and 𝜖2 as the desired bound on the

model’s relative error. See discussion in Section 2.5.

All experiments were conducted on a Linux server running

Ubuntu 22.04 OS with 24 cores and 64 GB RAM. Both the MILP and

the proposed approach were implemented in Python 3 as single-

threaded programs. The LPs for estimating the Chebyshev centers

of 𝑃 in the proposed approach and the MILPs in the reference ap-

proach were encoded and solved using the Python interface of the

Gurobi optimizer (version 10.0.3) [20].

4.0.1 Micro-Benchmarks. We synthesized severalmicro-benchmarks

with varying number of flags 𝑘 , number of inputs 𝑛, and number

of outputs 𝑚 by randomly generating 𝑘 + 1 matrices 𝐴0, . . . , 𝐴𝑘
from R𝑛×𝑚 . The matrices were generated by uniformly sampling

each matrix entry from the interval [−1, 1]. For guarded regres-

sion, we additionally generated the guard coefficients ®𝑐1, . . . , ®𝑐𝑘 by

uniformly sampling points on the unit sphere.

For each micro-benchmark, we generated 𝑁 data points by uni-

formly sampling a random input point ®𝑥 (𝑡) ∈ [−1, 1]𝑛 and com-

puting the output ®𝑦 (𝑡) according to the synthesized matrices and

the latent flag values (or guard coefficients). In the case of flagged

regression, we picked the flag values ®𝑧 (𝑡) uniformly at random from

{−1, 1}𝑘 . In guarded regression, the switching signal was directly

determined by the synthesized guard coefficients. We also added

uniform additive noise with amplitude 𝜏 to each ®𝑦 (𝑡).

Comparison against MILP. We evaluated the timing performance

of the MILP, flagged regression and guarded regression approaches

with parameter values 𝛾 = 2, 𝜖2 = 0.1, and 𝜏 = 0.05. For guarded

regression, we set 𝛿 = 0.02. All the experiments were repeated 10

times and we computed the mean and standard deviation of the

computation time of the approaches. Fig. 2 shows how the proposed

approaches and the MILP approaches scale with the number of data

points 𝑁 , for a micro-benchmark with 𝑛 = 𝑚 = 2 and 𝑘 = 3.

We observed that the MILP approaches time out at 𝑁 ≥ 20 (for

timeout values Δflagged = 90 sec, Δguarded = 30 sec). The proposed

approaches, in contrast, exhibit a linear trend, consistent with the

results presented in Sec. 3.5, as we scale 𝑁 from 10 to 10000.

Fig. 3a shows how the proposed approaches and the MILP ap-

proaches scale as the dimension 𝑛 is varied for a micro-benchmark

with𝑚 = 𝑛 outputs, 𝑘 = 2 flags, and 𝑁 = 100 data points (parameter

values same as above). Similarly, Fig. 3b shows how the approaches

scale as the number of flags 𝑘 is varied for a micro-benchmark with

𝑛 =𝑚 = 1 and 𝑁 = 100. These results show that i) the theoretical

complexity guarantees bear out in practice and ii) our prototype

outperforms a highly-optimized commercial MILP solver.

We now present an evaluation of the proposed approach on a

set of mixed logical dynamical system identification benchmarks.

Cartpole with Soft Walls. The benchmark from Aydinoglu et

al. [2] consists of a cartpole system moving on a frictionless track

between two walls modeled as spring contacts. A controller bal-

ances the pole in the inverted position on the cart. The benchmark

has four state variables, representing the position and velocity of

Figure 2: Timing comparison of MILP (green) with flagged
regression (top) and guarded regression (bottom) approach
on micro-benchmark with 𝑛 =𝑚 = 2 and 𝑘 = 3 as the number
of data points 𝑁 scales from 10 to 10000. The error bars report
the average and standard deviation of the time taken across
10 experiments. The red crosses indicate timeouts.

(a) Scaling 𝑛 (b) Scaling 𝑘

Figure 3: Timing comparison of MILP (green) and the pro-
posed flagged regression (top) and guarded regression (bot-
tom) approach as input/output size 𝑛,𝑚 and the number of
flags 𝑘 scale up. The red crosses indicate timeouts (300 sec).

both the cart and the pole. Hence, we set 𝑛 = 5 (we augment the

input ®𝑥 (𝑡) with 1 for affine regression; see Rem. 4) and𝑚 = 4.

Table 1 presents the performance of the proposed approaches:

flagged regression (FR) and guarded regression (GR), alongwith that

of a feedforward neural network (NN) and PARC on a held-out test

data set. We sampled trajectories of length 𝑇 = 100 time steps and

created a data set with𝑁 data points. The relevant parameter values

for FR/GR are 𝑘 = 4, 𝜖 = 0.1, 𝜏 = 0.0, 𝛿 = 0.05, and 𝛾 = 100. We

ran the PARC algorithm with parameter values 𝐾 = 10, 𝛼 = 10
−4
,

and maxiter = 15. We trained a feedforward neural network with 2

layers, each containing 32 nodes with ReLU activation using the

Adam optimizer in Tensorflow [1] with a batch size of 32 for 100

training epochs. The MILP approach timed out after 100 sec.
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Figure 4: (Left) Simulation of the Acrobot with Soft Joint Limits (Left) and the Cartpole with Soft Walls (Middle), using flagged
regression (blue), guarded regression (green), a feedforward neural network (red), and PARC (purple) on a test trajectory with a
prediction horizon of 30 steps. (Right) Performance on the robotic arm benchmark.

Table 1: Performance of proposed approach (FR, GR) in com-
parison to the MILP, NN, PARC approaches on a test dataset
(of size N) from the Acrobot and Cart-Pole benchmarks.

N=200 N=400 N=800 N=1000

Acrobot 𝑅2 score t(s) 𝑅2 score t(s) 𝑅2 score t(s) 𝑅2 score t(s)

NN -0.75 1.90 0.74 2.84 0.87 5.17 0.89 6.9

PARC -0.95 1.34 0.94 4.23 0.99 6.9 0.96 7.04

FR 0.99 2.25 0.99 7.6 0.99 8.41 0.99 11.5

GR 0.99 13.16 0.99 12.0 0.92 21.8 0.99 19.1

Cart-Pole 𝑅2 score t(s) 𝑅2 score t(s) 𝑅2 score t(s) 𝑅2 score t(s)

NN 0.72 1.61 0.79 2.95 0.89 3.81 0.90 6.0

PARC -0.01 1.62 0.68 5.37 0.89 6.09 0.92 9.8

FR 0.93 4.28 0.92 3.68 0.99 11.62 0.97 18.4

GR 0.91 4.51 0.89 13.69 0.92 48.23 0.97 44.4

Fig. 4 shows the performance of the proposed algorithm on an

(unseen) test trajectory. The identified model tracks the reference

trajectory for a prediction horizon of 30 time steps. We also observe

that the NN and PARC approaches rapidly diverge, underscoring

the challenges associated with these approaches.

Acrobot with Soft Joint Limits. This benchmark from Aydinoglu

et al. [2] features a double pendulum with an elbow actuator and

soft joint limits. It has four state variables to represent the angles

and velocities of the two links in the pendulum. Hence, for the

proposed approaches, we set 𝑛 = 5 and𝑚 = 4.

Table 1 presents the performance of the proposed approaches:

flagged regression (FR) and guarded regression (GR), along with

that of a feedforward neural network (NN) and PARC on a held-out

test data set. We sampled trajectories of length 𝑇 = 100 time steps

and created a data set with 𝑁 data points. The parameter values for

FR/GR, PARC algorithm and the neural network training are the

same as for the cartpole system. The MILP approach timed out after

100 sec with the same parameters. Fig. 4 shows the performance

of the flagged regression, guarded regression, and a feedforward

NN on an (unseen) test trajectory. The NN and PARC approaches

rapidly diverge, whereas FR and GR track the reference trajectory.

Robotic Arm Benchmark. This nonlinear system identification

benchmark from Weigand et al. [39] contains measurement data

Table 2: Comparison using robotic arm benchmark data.

Approach Test NMRSE 𝑅2 score Time (s)

Linear [39] 0.83 0.31 unspecified
NN 0.30 0.88 3.02

PARC 1.78 -7.63 27.71

FR 0.14 0.98 82.32

GR 0.19 0.93 115.84

from a real-world industrial robotic arm. It includes six state vari-

ables to represent the positions of the six joints on the robot, along

with the six motor torque inputs that control and maneuver them.

We applied the proposed approaches (with 𝑛 = 13,𝑚 = 6, 𝑘 = 4,

𝛾 = 10, 𝜖 = 0.1, 𝜏 = 1, 𝛿 = 0.01) to solve the forward model iden-

tification task as specified in the benchmark. We also applied the

NN and PARC approaches with similar parameters as specified

in the previous benchmarks. Fig. 4 shows the performance of the

flagged regression and the guarded regression algorithm on the test

data in simulation mode. The normalized-root-mean-squared-error

(NMRSE) and 𝑅2 scores, averaged over all joints for the test data

set are reported in Table 2. We see that the proposed approaches

perform better (on the test data set) than the other approaches.

5 CONCLUSION
We introduced the flagged regression and guarded regression prob-

lems as interesting cases of switched linear and piecewise linear

regression. We provided an approximation algorithm for this prob-

lem, whose complexity scales very well with the number of data

points, as demonstrated in theory and in experiments. In future

work, we plan to extend this approach to other classes of hybrid

systems, such as switched/piecewise nonlinear systems, and hybrid

automata, and to take physics-informed constraints into account.
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A PROOF OF LEMMA 2.5

We will prove that the function

𝑓 (𝑥,𝑦) =
{
𝑥 + 𝑦 if 𝑥 ≥ 0, 𝑦 ≥ 0,

0 otherwise

cannot be expressed as a GLS 𝑓0 +
∑𝑘
𝑖=1 sign(𝑔𝑖 ) 𝑓𝑖 where 𝑓0, . . . , 𝑓𝑘

and 𝑔1, . . . , 𝑔𝑘 are linear functions of 𝑥 and 𝑦.

Let us assume without loss of generality that no guard 𝑔𝑖 is

identically zero, i.e., 𝑔𝑖 . 0 for all 𝑖 ∈ [𝑘]. It is then a trivial fact that

the set 𝑆 where no guard vanishes, i.e., 𝑆 = {(𝑥,𝑦) ∈ R2 : 𝑔𝑖 (𝑥,𝑦) ≠
0∀ 𝑖 ∈ [𝑘]}, is open, dense in R2 and symmetric with respect to the

origin. Let 𝑆1 be an open subset of 𝑆 ∩R2≥0. Then, for all (𝑥,𝑦) ∈ 𝑆1,
𝑓 (𝑥,𝑦) = 𝑥 + 𝑦, and 𝑓 (−𝑥,−𝑦) = 0 since (−𝑥,−𝑦) ∈ R2≤0. Plugging
such (𝑥,𝑦) and (−𝑥,−𝑦) into the GLS expression, we get:

𝑓0 (𝑥,𝑦) +
𝑘∑︁
𝑖=1

sign(𝑔1 (𝑥,𝑦)) 𝑓𝑖 (𝑥,𝑦) = 𝑥 + 𝑦, (4)

𝑓0 (−𝑥,−𝑦) +
𝑘∑︁
𝑖=1

sign(𝑔1 (−𝑥,−𝑦)) 𝑓𝑖 (−𝑥,−𝑦) = 0. (5)

Using the linearity of 𝑓𝑖 and 𝑔𝑖 , (5) is equivalent to

−𝑓0 (𝑥,𝑦) +
𝑘∑︁
𝑖=1

sign(𝑔1 (𝑥,𝑦)) 𝑓𝑖 (𝑥,𝑦) = 0. (6)

By subtracting (6) from (4), we get that 𝑓0 (𝑥,𝑦) =
𝑥+𝑦
2

for all

(𝑥,𝑦) ∈ 𝑆1. Since 𝑆1 is an open set and since 𝑓0 is linear, we de-

duce that 𝑓0 (𝑥,𝑦) = 𝑥+𝑦
2

for all (𝑥,𝑦) ∈ R2. We can do the same

https://www.tensorflow.org/
https://doi.org/10.1007/10722167_15
https://doi.org/10.1016/S0019-9958(84)80056-X
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1109/CDC.2003.1272554
https://doi.org/10.1109/CDC.2003.1272554
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reasoning with an open subset 𝑆2 ⊆ 𝑆 ∩ (R≥0 × R≤0). This pro-
vides the conclusion that 𝑓0 (𝑥,𝑦) = 0 for all (𝑥,𝑦) ∈ R2. This is a
contradiction with 𝑓0 (𝑥,𝑦) = 𝑥+𝑦

2
, concluding the proof. □

B PROOF OF THEOREM 2.6
We will start with the proof that the flagged regression problem is

NP-hard. The “bounded-error” switched linear regression problem

with two modes can be reduced in polynomial time to the flagged

regression problem with one flag. Indeed, the first problem amounts

to find two matrices 𝐵1, 𝐵2 ⊆ R𝑚×𝑛 such that for all 𝑡 ∈ [𝑁 ], there
is 𝜎 (𝑡) ∈ [2] satisfying that ∥ ®𝑦 (𝑡) −𝐵𝜎 (𝑡 ) ®𝑥 (𝑡)∥ ≤ 𝜂, for some given

error tolerance 𝜂. This can be formulated as a flagged regression

problem with one flag and error tolerances 𝜖 = 0 and 𝜏 = 𝜂. Indeed,

𝐵1, 𝐵2 and 𝜎 (𝑡) for 𝑡 ∈ [𝑁 ] is a solution of the switched linear

regression problem iff 𝐴0 =
1

2
(𝐵1 + 𝐵2) and 𝐴1 =

1

2
(𝐵1 − 𝐵2) and

𝑞(𝑡) = 3 − 2𝜎 (𝑡) for 𝑡 ∈ [𝑁 ] is a solution of the flagged regression

problem. Since the switched linear regression problem is NP-hard

[26, Sec. 5.2.4], the flagged regression problem is too.

Secondly, the “exact” piecewise affine regression problem with

twomodes can be reduced in polynomial time to the guarded regres-

sion problem with one guard. Indeed, the first problem amounts to

find twomatrices 𝐵1, 𝐵2 ⊆ R𝑚×𝑛 and a vector ®𝑔 ∈ R𝑛\{0} such that
for all 𝑡 ∈ [𝑁 ], ®𝑦 (𝑡) = 𝐵𝜎 (𝑡 ) ®𝑥 (𝑡), wherein𝜎 (𝑡) = 1

2
+ 1
2
sign( ®𝑔⊤ ®𝑥 (𝑡)).

This can be formulated as a guarded regression problem with one

guard and error tolerances 𝜖 = 𝜏 = 0. Indeed, 𝐵1, 𝐵2 and ®𝑔 is a solu-
tion of the piecewise linear regression problem iff 𝐴0 =

1

2
(𝐵1 + 𝐵2)

and𝐴1 =
1

2
(𝐵1−𝐵2) and ®𝑐 = ®𝑔 is a solution of the flagged regression

problem. Since the piecewise linear regression problem is NP-hard

[26, Sec. 5.2.3], the guarded regression problem is too. □

C APPROXIMATION OF OPTIMAL SOLUTION
USING REPEATED CALLS TO ALGO. 1

In this appendix, we show how repeated calls to Algo. 1 can be

used to construct a model that approximates the optimal solution

to within 2𝜖gap.

As inputs, we assume a fixed data setD, absolute error tolerance

𝜏 , bound 𝛾 on the coefficients and 𝜖gap > 0. For technical reasons,

we require the data setD to be fit with a linear regression model (no

flags) with absolute error tolerance 𝜏 and bound𝛾 on the coefficients

(Cf. Remark 3). However, the relative error of such a model is not

required to be within bounds. Let 𝐵 be the relative error achieved

by such a linear regression model.

Let 𝜖∗ be the optimal relative error tolerance such that (a) there

exits a model with relative error 𝜖∗ and (b) no model fits the data

with absolute error tolerance 𝜏 and bound 𝛾 and relative error < 𝜖∗.

Lemma C.1. If a linear regression model with coefficients bound 𝛾 ,

absolute error 𝜏 and relative error 𝐵 exists, then 0 ≤ 𝜖∗ ≤ 𝐵.
Note that we can find a linear regression model and the corre-

sponding relative error bound 𝐵 in polynomial time using linear

programming.

Algo. 5 presents the repeated-call algorithm to approximate the

optimal solution. We provide below a detailed analysis of the algo-

rithm.

Lemma C.2. Whenever control is in Line 3 of Algo. 5, the following

facts hold:

Algorithm 5: Approximation of Optimal Solution.

Data: Data set D, absolute error 𝜏 , bound 𝛾 , gap 𝜖gap.

Result: Bounds (ℓ,𝑢) such that there is a model that fits the

data with error 𝜏 , bound 𝛾 and relative error 𝑢,

𝑢 − 𝑙 ≤ 2𝜖gap and ℓ ≤ 𝜖∗ ≤ 𝑢.
1 𝐵 ← findLinearRegressorWithBounds(D, 𝜏, 𝛾)

/* Assume: linear regression succeeded and 𝐵 is

an upper bound on 𝜖∗. */

2 (ℓ,𝑢) ← (0, 𝐵)
3 while (𝑢 − 𝑙) > 2𝜖gap do
4 𝑚 ← 𝑢+𝑙

2

5 Run Algo. 1 with D, 𝜏, 𝛾 , 𝜖1 =𝑚 − 𝜖gap/2,
𝜖2 =𝑚 + 𝜖gap/2

6 if Feasible then
7 𝑢 ← relative error of model returned by Algo. 1

8 else
9 𝑙 ←𝑚 − 𝜖gap

2

10 return (ℓ,𝑢)

(1) There exists a flagged linear model with relative error 𝑢, abso-

lute error 𝜏 , and bound 𝛾 .

(2) ℓ ≤ 𝜖∗ ≤ 𝑢

Proof. Proof is by induction on the number of times, the body

of the while loop runs. The base case is when the loop has run 0

times. We have ℓ = 0, 𝑢 = 𝐵 and the statements hold trivially.

Suppose it were true after 𝑖 iterations of the loop. If the loop ran

once more. Suppose the call to Algo. 1 was feasible, then the new

value of 𝑢 corresponds to the relative error of a model. The two

statements hold at the beginning of the next iteration. Otherwise,

Algo. 1 guarantees that 𝜖∗ > 𝜖1 =
𝑙+𝑢−𝜖gap

2
. Therefore, the statement

holds at the start of the next iteration in this case as well. □

Let ℓ𝑖 , 𝑢𝑖 be the values of the program variables ℓ,𝑢 after 𝑖 ≥ 0

iterations of the while loop. We can prove by induction that

𝑢𝑖 − ℓ𝑖 ≤
𝐵 − 𝜖gap

2
𝑖
+ 𝜖gap .

Theorem C.3. If there exists a linear regression model satisfying

with absolute error 𝜏 , gap 𝛾 and relative error 𝐵 then Algo. 5 yields

bounds ℓ,𝑢 such that (a) there exists a flagged linear model with

relative error 𝑢, absolute error 𝜏 , and bound 𝛾 ; (b) ℓ ≤ 𝜖∗ ≤ 𝑢; (c)
𝑢 − ℓ ≤ 2𝜖gap. Furthermore, its running time is in𝑂

(
log

2

(
𝐵−𝜖gap
𝜖gap

))
.

Proof. Note that at any iteration of the algorithm, we know that

there are no models with relative error < ℓ𝑖 and there is a model

with relative error ≤ 𝑢𝑖 . This is true at the very beginning and note

that after each iteration of the while loop, the Algo 1 guarantees

either a model with relative error at most 𝜖2 or no models with

relative error < 𝜖1. Thus, when the algorithm exits after 𝑘 iterations,

we automatically note that there are no models with relative error

< ℓ𝑘 , there is a model with relative error ≤ 𝑢𝑘 and 𝑢𝑘 − ℓ𝑘 ≤ 2𝜖gap.

This proves (a), (b).

The bound on the running time is a direct consequence of LemmaC.2.

Note that at the very beginning, 𝑙0 = 0, 𝑢0 = 𝐵 and furthermore,
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after 𝑖 steps of the loop iteration, we have

𝑢𝑖 − ℓ𝑖 ≤
𝐵 − 𝜖gap

2
𝑖
+ 𝜖gap .

The algorithm exits when 𝑢𝑖 − ℓ𝑖 ≤ 2𝜖gap. Combining, these ob-

servations, we obtain that the running time is upper bounded by

𝑂

(
log

2

(
𝐵−𝜖gap
𝜖gap

))
. □

D PARAMETERS FOR NEURAL NETWORK
AND PARC APPROACHES

The neural networks used in Sec. 4 consist of 2 layers of 32 ReLU-

activated nodes. We ensured that the neural networks used in Sec. 4

for the experimental evaluation were sufficiently large to capture

the various modes in the system. Training of these networks was

performed using the Adam optimization algorithm in TensorFlow.

Our training approach is “standard”: adapted from the scripts pro-

vided for training NNs for regression as part of the TensorFlow

package user manual. We used a batch size of 32 for 100 training

epochs. We also ensured that in each case, the reported training

error was quite small ( ∼ 10
−4
). We used a (single fold) cross-

validation approach wherein 80% of the data was used for training

while 20% of the data was used for testing.

The PARC tool [3] fits a piecewise affine model over a polyhe-

dral partitioning of the feature region. The parameters of the tool

include 𝐾 which represents the maximum number of regions in

the partitioning. We set this value to 10, in accordance with the

examples provided in the tool. In the experimental evaluation in

Sec. 4, all of the identified models used fewer partitions than 𝐾 . We

also set 𝛼 = 10
−4, and maxiter = 15, as recommended by the tool.
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