
Multiple Shooting, CEGAR-based
Falsification for Hybrid Systems

Aditya Zutshi
University of Colorado, Boulder

aditya.zutshi@colorado.edu

Sriram Sankaranarayanan
∗

University of Colorado, Boulder
srirams@colorado.edu

Jyotirmoy V. Deshmukh
Toyota Technical Center

jyotirmoy.deshmukh@tema.toyota.com

James Kapinski
Toyota Technical Center

jim.kapinski@tema.toyota.com

ABSTRACT
In this paper, we present an approach for finding violations of safety
properties of hybrid systems. Existing approaches search for com-
plete system trajectories that begin from an initial state and reach
some unsafe state. We present an approach that searches over seg-
mented trajectories, consisting of a sequence of segments starting
from any system state. Adjacent segments may have gaps, which
our approach then seeks to narrow iteratively. We show that seg-
mented trajectories are actually paths in the abstract state graph
obtained by tiling the state space with cells. Instead of creating
the prohibitively large abstract state graph explicitly, our approach
implicitly performs a randomized search on it using a scatter-and-
simulate technique. This involves repeated simulations, graph search
to find likeliest abstract counterexamples, and iterative refinement
of the abstract state graph. Finally, we demonstrate our technique
on a number of case studies ranging from academic examples to
models of industrial-scale control systems.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and Analysis;
G.1.7 [Numerical Analysis]: Ordinary Differential Equations—
Boundary value problems

Keywords
Hybrid Systems, Falsification, Simulation-Based Methods, Multiple
Shooting, CEGAR.

1. INTRODUCTION
The problem of falsifying a safety property for a given system

involves finding a counterexample that starts from the initial states

∗Zutshi and Sankaranarayanan were supported, in part, by the US
National Science Foundation(NSF) under award numbers CNS-
1319457 and CNS-0953941 and in part by Toyota Engineering and
Manufacturing North America(TEMA). All opinions are those of
the authors and not necessarily of the NSF or TEMA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ESWEEK’14 October 12 - 17 2014, New Delhi, India
Copyright 2014 ACM 978-1-4503-3052-7/14/10 ...$15.00.
http://dx.doi.org/10.1145/2656045.2656061.

of the system and reaches an unsafe (error) state. In this paper, we
present a falsification technique for hybrid systems that relies on a
search over segmented trajectories, which consist of segments of tra-
jectories with gaps between the end of one segment and the start of
the next segment (see Fig. 1). We show that segmented trajectories
are, in fact, paths through a discrete abstraction of the hybrid system
obtained by partitioning the state-space into cells. Such an abstrac-
tion is often prohibitively expensive, if not impossible, to construct
explicitly. Therefore, our approach explores this abstraction implic-
itly through segmented trajectories. We present a counterexample-
guided refinement scheme that uses abstract counterexamples to
selectively refine this implicit abstraction. This yields a search over
segmented trajectories with ever decreasing gaps between segments,
potentially converging to a complete counterexample, as the number
of iterations is increased.

Our approach has two distinguishing features: (a) we assume
that the system under analysis is very likely to be incorrect for
the property of interest, and perform a best effort search to find a
violation. Such an assumption is complementary to verification tools
such as theorem provers and static analyzers that implicitly assume a
proof of correctness, and can be seen as a best-effort search for such
a proof. (b) We operate under a black-box assumption, with limited
knowledge of the system dynamics in each mode. This assumption
is standard for simulation-based techniques for falsification [1, 6,
10, 23]. The black-box assumption allows our technique to operate
on highly non-linear hybrid systems designed inside environments
such as SimulinkTM/StateflowTM 1. We also assume that the system
state is fully exposed to our technique through instrumentation.

Our approach constructs an abstraction incrementally through
simulation. At each step, the system is simulated with some discrete
time step, and each simulated point is “snapped” to an abstract cell.
Similarly, each trajectory segment between two time points yields an
edge. As a result, we obtain an abstract graph that approximates the
behaviors of the underlying system. We show that each path in this
graph is a segmented trajectory. Associating costs with these seg-
mented trajectories as the distances between end points of segments,
we search for minimal cost paths through the graph from initial
to final cells using a standard shortest path algorithm. Next, we
refine the abstraction by implicitly subdividing each cell into smaller
ones. However, doing so makes the finite state abstraction a lot more
complicated. To counter this, we focus our refinement on abstract
counterexample paths to explore them further. Doing so, is shown
to reduce the cost of the segmented trajectories. In the limit, as the
algorithm goes through refinement steps, the costs of the segmented

1Simulink and Stateflow are commercial model-based design tools
from Mathworks Inc.

trajectories converge towards zero, and therefore under some as-
sumptions about the underlying system, the segmented trajectories
themselves converge towards a trajectory of the underlying system.
In practice, our approach performs concrete simulations at each step
to check if the abstract counterexamples do correspond to concrete
simulation traces, and exits early upon success. Due to the black
box assumptions, we note two key limitations: (a) our approach is
limited to finding robust counterexamples, i.e., for every violation
found by our approach, there is a small neighborhood around every
state in the violation, such that initial conditions within this neigh-
borhood also lead to a violation, and (b) our approach is randomized
in nature, and performs a bounded number of simulations in each
iteration. Finally, our approach uses a given system simulator as a
black-box. If a guaranteed integrator such as VNODE is provided,
our approach can also guarantee the validity of any counterexamples
produced [21]. On the other hand, our approach can also work with
numerical simulators that are commonly used by control designers
to simulate their designs inside model-based design environments.

We have implemented our ideas in a prototype MATLABTM tool.
The prototype is evaluated over a suite of benchmarks of varying
sizes and complexities. We compare our approach against other
related techniques including S-Taliro [1,3], a simulation-based falsi-
fication tool, and dReach, a symbolic approach that uses unrolling
to find bounded depth counterexamples [14]. We find that our ap-
proach can find falsifications of properties in reasonable time and
succeeds in many cases where other approaches fail.

1.1 Related Work
Falsification techniques Falsification techniques for hybrid sys-
tems can be classified into single-shooting (SS) or multiple-shooting
(MS) approaches. SS approaches search over the space of complete
trajectories, while MS approaches attempt to find trajectory seg-
ments starting from multiple initial conditions (and hence, possibly
contain gaps between segments). Direct multiple-shooting (DMS)
is a commonly used optimal control technique, where a control task
over a finite time horizon is divided into segments and the control
problem for each segment is solved with the additional requirement
that the solutions should meet each other at the endpoints [7]. Our
previous work [27] used a DMS approach to find unsafe trajectories,
given the sequence of transitions. An NLP solver was used with gra-
dient information gained by sensitivity analysis, to reduce the gaps
between trajectory segments. This required knowledge of the system
dynamics and could potentially fail when the search reaches a local,
rather than global optimum. In this paper, we use randomized graph
search and a CEGAR procedure to iteratively narrow trajectory gaps.
Our current approach can work under black-box assumptions and
avoids the pitfalls inherent in gradient descent search algorithms.

S-Taliro [1, 3] and Breach [10] are single-shooting methods that
use robustness-guided optimization-based search of the state-space
to find initial states and inputs that cause violations of a given
temporal logic property. For hybrid systems, S-Taliro requires a
hybrid distance metric to perform efficiently, which requires detailed
system knowledge [22]. Our approach is carefully designed to
avoid system specific metrics. A direct comparison with S-Taliro is
provided in Section 6.

Approaches based on Rapidly exploring Random Trees (RRT)
[19] have been used to falsify non-autonomous systems [6, 9, 23].
These explore the search space by growing a random tree (backward
or forward in time). As such, RRTs are a single-shooting approach
and are performed on the concrete system. However, while RRTs
have proved immensely successful in robotic path planning, their
successful use in falsification of systems seems to be limited. The
performance of RRTs relies on many factors including the local

planner used, and the nature of the system under test. In our ex-
perience, the technique performs suboptimally on systems whose
reachable set is smaller relative to the full state-space. Our approach,
on the other hand, does not require a local planner and explores the
reachable states on-the-fly. Interestingly, our approach can be easily
extended to use RRT as the underlying search technique over the
abstract state space.

Verification techniques Counterexample guided abstraction refine-
ment (CEGAR)-based verification of hybrid systems involves sym-
bolic techniques to build abstractions and model checking tools to
explore the abstractions [2]. Ratschan and She present a symbolic
approach over a rectangular tiling of the state-space similar to the
one presented in this paper [24]. Their work uses a combination of
grid-based state-space abstraction and refinement using constraint
propagation to prune away unreachable states. Our approach ex-
plores a similar abstraction to falsify rather than prove. As a result,
we do not insist on exploring the entire abstract state space. While
this makes our approach unsuitable for proving properties, our eval-
uation shows the power of our approach for finding violations in
a small amount of time for complex non-linear systems. A related
approach combining interval constraint propagation with branch-
and-bound is implemented in iSAT and dReal [13, 14, 16]. Our
approach defines similar abstractions, but does not explicitly create
them, rather exploring them through directed random simulations;
however, in doing so, it loses the ability to find non-robust witnesses
and proofs.

2. PRELIMINARIES
In this section, we present the basic model of dynamical system

used in our work. We will focus on continuous and hybrid systems
driven by external inputs.

LetX ⊆ L×Rn be the (infinite) set of hybrid states of the system
S , where L is a finite set of discrete modes, and U be the set of input
signals to S of the form [0, T]→ Rk for some given time horizon
T . In this paper, we assume a family of relations

t,u−−→⊆ X × X ,
parameterized by time t ≥ 0 and input signal u ∈ U defined over
time [0, T]. We use the notation x

t,u−−→ y to denote (x,y) ∈ t,u−−→.
The relations

t,u−−→ satisfy the following basic properties:

• Each state is reachable from itself in 0 time, ∀u : x
0,u−−→ x.

• Forward determinism: For each x ∈ X , t ≥ 0, and input
u ∈ U , there is a unique y ∈ X such that x

t,u−−→ y.

• Causality: For each x ∈ X , time t ≥ 0, and for every inputs
u1, u2 ∈ U , if u1(s) = u2(s) for 0 ≤ s ≤ t and x

t,u1−−→ y

then x
t,u2−−→ y.

• Semi-group Property: For each x,y, z ∈ X and every t1, t2 ≥
0 and signals u1, u2 ∈ U , if x

t1,u1−−−→ y and y
t2,u2−−−→ z

then x
t1+t2,u1;u2−−−−−−−−→ z. Here we define u1;u2 as the com-

posed signal u(t) with u(t) = u1(t) for t ∈ [0, t1) and
u(t) = u2(t− t1) for t ∈ [t1, t1 + t2).

We assume that the system S is equipped with a forward sim-
ulation function SIMS that takes x ∈ X , t ≥ 0 and u ∈ U , and
computes the unique successor state y = SIMS(x, u, t) such that
x

t,u−−→ y. The subscript S will be dropped whenever the system S
being referred to is clear from the context.

Black-Box Assumptions: For above properties of the
t,u−−→ relation to

hold, we require that S be deterministic. We also assume that S can

τ1
τ2

τ3

τ ′1
τ ′2

τ ′3

τ ′′1
τ ′′2

τ ′′3

(a) (b) (c) (d)

Figure 1: An illustration of our approach: (a) segmented trajectory reaching unsafe states (shaded red) starting from initial states (shaded blue),
(b) refining an abstract counterexample and narrowing the inter-segment gap, (c) further narrowing the gap by refinement, and (d) a concrete
trajectory with no gaps.

Figure 2: Van-der-Pol ODE trajectories with initial set
X0 : [−0.4, 0.4] × [−0.4, 0.4] and unsafe set [−1.2,−0.8] ×
[−6.7,−5.7], shown in red.

be simulated from a given initial state using function SIMS . This
requires existence and uniqueness of trajectories over a finite time
horizon [0, T], which can be guaranteed by Lipschitz continuity of
the vector field in each hybrid mode and ruling away issues such as
finite escape times [20]. From a practical standpoint, these assump-
tions do not pose significant restrictions for the type of problems
that we wish to address. Finally, we assume full observability of the
system state, ignore numerical errors due to simulation and do not
assume that an analytic closed-form representation of the system
dynamics is available.

Time-Bounded Reachability Problem: Given a system S, an initial
set X0 ⊆ X , a set of unsafe states Xf ⊆ X , and a time bound
T > 0, the reachability problem decides if there exists an initial
state x0 ∈ X0, an unsafe state y ∈ Xf , time t ∈ [0, T] and input
signal u ∈ U such that x0

t,u−−→ y.
Verification techniques typically focus on proving that the set Xf

is unreachable from the initial state X0 for the given time horizon T .
Our approach here, focuses on falsification. Given a time-bounded
reachability problem instance 〈S,X0,Xf , T 〉, we seek a concrete
witness of the form of x0 ∈ X0, y ∈ Xf , time t ∈ [0, T] and an
input signal u ∈ U , such that x0

t,u−−→ y.

EXAMPLE 2.1. Fig. 2 shows the trajectories of a van der Pol
oscillator whose dynamics are defined by a system of ODEs over
(x1, x2) ∈ R2: dx1

dt
= x2,

dx2
dt

= −5(x2
1 − 1)x2 − x1. Con-

sider the reachability of the set Xf : [−1.2,−0.8]× [−6.7,−5.7]
(shown as a red rectangle in Fig. 2) starting from an initial set
X0 : [−0.4, 0.4] × [−0.4, 0.4] (shown as a green rectangle in
the center). Attempting 1000 random simulations on the initial set
yields precisely one trajectory that witnesses the violation.

Metrics
Let d : X × X → R≥0 ∪ {∞} be a metric2 over the state-space
X of a system. Common metrics over continuous state spaces
include the L1, L2, L∞ metrics. Our approach assumes a suitable
metric d that defines the distance between two points in the state
space. Many such metrics are available for purely continuous state-
spaces. However, for hybrid systems, the state-space requires us to
define a metric d that compares two hybrid states (`,x) and (`′,x′)
belonging to different modes. The difficulties involved in designing
a hybrid metric are discussed elsewhere by Nghiem et al. [22]. Our
approach side-steps this difficulty. Let d̂ be a metric defined over
Rn. Its lifting over a hybrid state-space X : L × Rn is defined as:

d((`1,x1), (`2,x2)) =

{
d̂(x1,x2), if `1 = `2
∞, otherwise

It is easy to verify that d is a metric, provided d̂ is a metric and
d̂(x1,x2) is finite for all pairs of continuous states x1,x2.

3. TILING-BASED ABSTRACTIONS OF HY-
BRID STATE-SPACES

In this section, we introduce the notion of segmented trajectories,
and show that segmented trajectories are paths through an abstrac-
tion of the underlying system. We stress that our approach does
not construct such an abstract state-space fully. Instead, we explore
a subset of the abstract states in a randomized fashion using the
scheme detailed in Sec. 4.

DEFINITION 3.1 (SEGMENTED TRAJECTORIES). A segmented
trajectory σ is a finite sequence 〈τ1, . . . , τk〉 of trajectory segments,
wherein each trajectory segment τi is a system trajectory starting
from a source state xi (denoted src(τi)), evolving for time ti under

input ui to a destination yi (denoted dest(τi)), i.e., xi
ti,ui−−−→ yi.

The cost of a trajectory segment w.r.t to a metric d is given
by adding up the “gaps” between adjacent segments: COST(σ) :∑k−1
i=1 d(dest(τi), src(τi+1)).

LEMMA 3.1. A zero cost segmented trajectory is an actual sys-
tem trajectory.

The central idea in our approach is to search for a sequence of
segmented trajectories of decreasing cost, that in the limit tends to
an actual system trajectory.
2For x,y ∈ X , a function d(x,y) is a metric iff: (a) d(x,y) ≥
0, (b) d(x,y) = 0 iff x = y, (c) d(x,y) = d(y,x), and (d)
d(x, z) ≤ d(x,y) + d(y, z).

−2 −1 0 1 2
−9

−6

−3

0

3

6

9

(a) (b)

Figure 3: Van der Pol oscillator example: (a) single segmented
trajectory. Green box denotes initial and red box denotes unsafe
and (b) Randomly simulated segmented trajectories. Blue boxes
highlight the gaps between segments.

EXAMPLE 3.1. Fig. 3 shows segmented trajectories for the
van der Pol system from Example 2.1. The Fig. 3(a) shows an
example of a segmented trajectory, while Fig. 3(b) shows a collection
of 100 segmented trajectories. Each segmented trajectory in this
collection has two segments; the source of the first segment is picked
from a random sampling of the initial state set, while the source
of the second segment is chosen by adding a random vector to the
destination of the first segment.

Abstraction: To present falsification using search over the space of
segmented trajectories as an instantiation of CEGAR, we first for-
mally define an underlying abstraction of the continuous state-space.
The abstraction is best described as an ε-tiling of the continuous
state space Rn with a given ε > 0.

DEFINITION 3.2 (ε-TILINGS). Formally, a tiling C : {C1, . . . ,
Cj , . . .} is a finite or countably infinite family of closed and bounded
subsets Cj of X called cells. We require that the following condi-
tions are met:

1. The union of cells must cover the entire state space.⋃
Ci∈C

Ci = X

2. Cell interiors must be pairwise disjoint.

interior(Ci) ∩ interior(Cj) = ∅, for i 6= j

3. For each cell Ci ∈ C there exists a representative state [x]i ∈
Ci that is no farther than ε away from every state in the cell.

∀ Ci ∈ C, ∃ [x]i ∈ Ci, ∀ x ∈ Ci, d([x]i,x) ≤ ε .

Fig. 4 shows a tiling of a subset of the state-space for the van der
Pol system from Ex. 2.1, with ε = 0.5. The meaning of the different
colors assigned to the tiles will be explained subsequently.

Constructing a Tiling: We define a simple yet “canonical” construc-
tion to produce ε-tilings for any given ε > 0, using an L∞-norm3

based distance metric. Informally, the proposed tiling uses hyper-
cubes as tiles. Assume for convenience that ε = 10−k for some
k > 0. We first define an equivalence relation ∼k over R wherein
x ∼k y iff the decimal representation of x, y agree to first k decimal
places. We extend∼k to relate vectors in Rn wherein x ∼k y iff ev-
ery entry xi ∼k yi. Similarly, for hybrid state spaces, we relate two
states (`1,x1) ∼k (`2,x2) iff `1 = `2 and x1 ∼k x2. It is easy to
3For a vector x = (x1, . . . , xn) ∈ Rn, ||x||∞ is defined as
max(|x1|, . . . , |xn|).

see that ∼k is an equivalence relation, i.e., it is reflexive, symmetric
and transitive. Consider the tiling defined by the equivalence classes
of ∼k.

DEFINITION 3.3 (∼k-DEFINED TILING). The set of cells C,
where each Ci ∈ C is the closure of an equivalence class of ∼k
defines an ε-tiling. All hybrid states (`,x) in any given cell Ci have
the same mode `, and the decimal representations of the continuous
states x matches for at least the first k decimal points. A representa-
tive element [x]i ∈ Ci is defined as the hybrid state (`, [x]i), where
[x]i is the state obtained by truncating the continuous state for any
element Ci to the first k decimal digits.

LEMMA 3.2. Given ε = 10−k for k > 0, the ∼k-defined tiling
C as defined in Def. 3.3 is an ε-tiling of X .

As noted earlier, explicitly constructing this tiling is impractical
for most systems. The number of cells is infinite if X is unbounded.
If X is bounded, then the number of cells is generally exponential
in the dimensionality of X and dependent on the volume of X . We
reiterate that our technique does not seek to fully construct the tiling,
or the abstraction resulting from it.

Abstraction: Given an ε-tiling, we can now define the abstract sys-
tem through a standard existential abstraction over these tilings. We
define a family of abstract timed reachability relations t

 between
cells, wherein, we denote Ci

t
 Cj iff

∃ xi ∈ Ci, ∃ xj ∈ Cj , ∃ u ∈ U , xi
t,u−−→ xj .

DEFINITION 3.4 (ABSTRACT STATE GRAPH). Let ∆ > 0 be
a fixed time step. The abstract state graph H(∆) for time step ∆
is defined by the set of vertices C, and edges (Ci, Cj) whenever

Ci
∆
 Cj . Let C0 denote the collection of initial cells in C, i.e., cells

Ci such that Ci ∩X0 6= ∅. Further, let Cu denote the set of unsafe
cells, or cells Cj such that there is a state xj ∈ Cj that reaches
an unsafe state y ∈ Xf within time 0 ≤ tj < ∆. The abstraction

H(∆) is given by
〈
C, ∆
 , C0, Cu

〉
.

Besides the lack of scalability, there are other computational
barriers to constructing such an abstract state graph. For instance,
we would need a theorem prover to (1) determine if two cells Ci, Cj
are connected, and (2) decide if a cell Ck is unsafe in the abstraction.
Such tasks require us to perform symbolic reasoning about dynamics
of nonlinear systems, which is often infeasible. Therefore, we resort
to a simulation-based approach to explore the abstract graphH(∆).

EXAMPLE 3.2. Fig. 4 is a partial depiction of H(∆) for the
system from Ex. 2.1. The figure shows C0, Cu, and a subset of cells
reachable from the initial cells. Edges between cells are shown by
showing a trajectory between states that belong to the cells.

Abstract Paths and Segmented Trajectories Consider a path π :
C0 → C1 → · · · → CN through the abstract graph H(∆).
Corresponding to this path, we define a witness segmented trajec-
tory σ(π) with segments 〈τ0, τ1, . . . , τN−1〉, where src(τi) ∈ Ci,
dest(τi) ∈ Ci+1 and src(τi)

∆,u−−→ dest(τi). The existence of this
witness σ(π) follows immediately from the construction ofH(∆).
Furthermore, since the tiling C is an ε-tiling, we have that each
inter-segment gap d(dest(τi), src(τi+1)) is at most 2ε. Therefore
the overall cost is COST(σ) ≤ 2Nε. Finally, having fixed a time
step ∆ for each error trajectory and an overall time horizon T for the
reachability property in question, we note that N ≤ T

∆
. Combining,

these observations we obtain the following lemma.

−2 −1 0 1 2

−6

−3

0

3

(a) A tiling with ε = 0.5

−2 −1 0 1 2

−10

−5

0

5

10

(b) ∆ = 0.25

−2 −1 0 1 2
−8

−6

−4

−2

0

2

4

6

8

(c) ∆ = 0.75

−2 −1 0 1 2
−8

−6

−4

−2

0

2

4

6

8

(d) ∆ = 1.5

Figure 4: (a) A tiling of the state-space. (b)-(d) Visualization of a subset ofH(∆) showing cells reachable from the initial set of states for the
van der Pol system. Yellow cells are initial (but not unsafe), cells shaded brown are unsafe and blue cells are neither initial nor known to be
unsafe. The dotted trajectory segments represent the edges.

LEMMA 3.3. For every path π through the abstract graphH(∆),
there exists a witness segmented trajectory σ(π), such that COST(σ) ≤
2Nε ≤ 2Tε

∆
.

Time Step ∆: As ∆ increases, the relation ∆
 becomes more com-

plex, involving more mode switches and effects of non-linear dy-
namics. At the limit, as ∆ = T , constructing the abstraction reduces
to the (undecidable) reachability problem. At the other extreme, as
∆→ 0, every cell is connected to its neighboring cell by virtue of
sharing a common boundary. As a result, the abstraction becomes
too conservative, and no longer reflects the dynamics of the underly-
ing system. We can see the effect of varying ∆ for the van der Pol
system in Fig. 4.

4. EXPLORATION BY THE SCATTER-AND-
SIMULATE APPROACH

In this section, we explore the abstract graphH(∆) by sampling a
finite subgraph G(V,E). We call the approach scatter-and-simulate
to reflect its two main steps: (1) uniformly sample a reachable
cell to obtain initial states (2) perform repeated simulations from
the obtained states for a fixed time step ∆. We assume that the
space of input signals U is compact, and assume a suitable sampling
distribution over U .

The basic algorithm is shown in Figure 1. The two main parame-
ters for the algorithm are the fixed time step ∆ and a scatter amount
K > 0. The search is initialized by sampling the initial region X0,
and adding the sampled cells into a worklist (Line 1). For each cell
Cj in the worklist, we (uniformly) sample K concrete states in the
cell and K inputs from signals U (Lines 5,6). We then use a nu-
merical simulator to obtain trajectories for ∆ seconds (Line 8). We
identify the cells corresponding to the end states of the trajectories
and add them to workList and V, if previously unseen (Lines 11,12).
We also add appropriate edges to E (Line 13). If the simulation start-
ing from xi,j ∈ Cj intersects the unsafe set Xf , then we mark the
entire cell Cj as unsafe in the abstraction (Line 14). We bound the
size of the subgraph G that we wish to explore with the parameter
L. We note that the size of the graph G thus obtained is restricted to
L vertices and O(L×K) edges.

The data structure used to implement the workList affects the
nature of the search. A guided state-space search A∗ using an ad-
missible (under-approximating) heuristic (cf. [18]) is implemented
by using a priority queue for workList. Alternatively, our approach
can be modified using motion planning techniques such as RRTs
to explore the discrete abstraction in a probabilistically complete
fashion.

Algorithm 1: Scatter-and-Simulate search for exploringH(∆).

Input: Time-bounded Reachability problem 〈S,X0,Xf , T 〉,
Scatter amount K, Simulator function SIMS , size limit
L

Output: Subgraph G(V,E), initial cells V0 and unsafe cells
Vu.

1 workList := sampleInitialSetAndCollectCells(X0) ;
2 V := workList, V0 := workList;
3 while workList 6= ∅ and |V| < L do
4 Cj := pop(workList) ;
5 (x1,j , . . . ,xK,j) := sampleUniformly(Cj) ;
6 (u1, . . . , uK) := sampleInputSignals(U) ;
7 for i ∈ [1,K] do
8 τi,j = SIMS(xi,j , ui,∆) ;
9 Ci := identifyCellFromConcreteState(dest(τi,j)) ;

10 if Ci 6∈ V then
11 workList := push(Ci,workList) ;
12 V := V ∪ {Ci} ;
13 E := E ∪ (Cj , Ci) ;
14 if dest(τi,j) ∈ Xf then Vu := Vu ∪ {Cj} ;

Scatter-And-Simulate on ∼k-defined tilings: We consider Algo-
rithm 1 on a ∼k-defined tiling. The routine
identifyCellFromConcreteState(x) (Line 9) identifies a cell Ci by
obtaining the representative element [x]i from x by truncating the
values of the continuous state component of x to its first k decimal
digits. The subroutine sampleUniformly(Cj) (Line 5) is imple-
mented by adding a uniform random number in the range [0, 10−k]
to each of the continuous state components of the representative
element [x]j .

Fig. 4 depicts the scatter-and-simulate algorithm for the van der
Pol system in Ex. 2.1, by limiting the number of vertices (L) to 200
and the scatter per cell (K) to 60.

Maintaining the Time Horizon: Since we are interested in exploring
S up to the time horizon T , Algorithm 1 should be restricted to
nodes that are reachable within N =

⌈
T
∆

⌉
steps from an initial cell.

Therefore, Algorithm 1 is modified to ensure that every node that is
popped out of the workList has a shortest path length of at most N .

Identifying Likeliest Abstract Counterexamples: We now explain
how we can use the graph G to help search for abstract counterex-
amples. These are paths in G of length at most N =

⌈
T
∆

⌉
from

initial cells V0 to cells labelled unsafe Vu. In order to prioritize the
likeliest counterexamples, we need a notion that associates costs

with paths. As each path π is associated with at least one witnessing
segmented trajectory σ, we equate the cost of a path with the cost
of the minimal cost witnessing segmented trajectory for π.

For a given edge e in G, let TS(e) be a set of trajectory segments
defined as the set {τ | src(τ) ∈ src(e) ∧ dest(τ) ∈ dest(e)}, i.e.,
the collection of all trajectory segments beginning and ending in the
source and destination cells of e respectively. Two edges e1, e2 ∈ E
are said to be adjacent iff dest(e1) = src(e2). Let τi ∈ TS(e1)
and τj ∈ TS(e2), we then define a weight W (e1, e2) for edges e1,
e2 as follows:

W (e1, e2) =

{
min (.dest(τi), src(τj)) if e1, e2 are adjacent
∞ otherwise.

(1)
The cost of path π : e1e2 . . . em inG is then defined as COST(π) =∑m−1
j=1 W (ej , ej+1); this quantity is finite as each edge ei in π is

adjacent to ei+1.
Even though the cost is defined over pairs of edges rather than

edge weights, a simple modification of Dijkstra’s shortest path
algorithm can be used to compute shortest paths from an initial node
to an unsafe node. If no such path exists, our approach re-executes
the scatter-and-simulate step (Algorithm 1) with increased values
for the size of the graph L and the scatter amount K.

4.1 Analysis of Scatter and Simulate
Scatter-and-simulate (Algorithm 1) explores the abstract state

graphH(∆) in a randomized fashion. In doing so, it suffers from
two drawbacks w.r.t. discovering violations: (a) it may miss an edge
and (b) it may fail to label a node as unsafe.

For a cell Cj in the ε-tiling, let N(Cj) represent its neighbors in
H(∆). Algorithm 1 samples a subset of the neighbors fromH(∆).
Unfortunately, not every neighbor in N(Cj) will be explored by
scatter and simulate, even when system has simple constant dynam-
ics as in Example 4.1.

EXAMPLE 4.1. Consider a one dimensional autonomous system
with dynamics ẋ = 1 and a cell C defined by the interval x ∈ [0, 1].
Let us fix ∆ = 1. Consider the cell D defined by the interval [2, 3].
We note that C 1

 D, since (x = 1)
1−→ (x = 2).

0 1 2 3

C D

If we sampled the cell C uniformly at random in Algorithm 1, the
probability of a single trajectory segment reaching D is zero. This
is because, x = 1 is the single state in C that can reach D in one
time step. Sampling this single state has probability 0.

Consider the function defined by SIMS(x0, u,∆) for a fixed ∆;
let us denote it by Φ. Consider the probability that the edge e :

C
∆
 D inH(∆) can be discovered by sampling C, and denote it

by P(C,D). The probability is well-defined if we assume that Φ
is measurable when restricted to cell C. The value of P(C,D) is a
function of the distributions chosen to sample states and inputs. For
the purpose of this discussion, let us fix a uniform distribution for
sampling the “scatter” states, and also fix the set of inputs to a finite
set, and consider a uniform distribution over this set.

DEFINITION 4.1 (ROBUST EDGES). An edge e : (C,D) ∈
H(∆) is robust iff its probability P(C,D) > 0. A path π is robust
if each of the edges in the path is robust.

The following shows that if a robust path exists from an initial to
an unsafe cell inH(∆), then Algorithm 1 will discover it in the limit
with probability 1. As a technicality, we assume that the workList
data structure is fair (e.g., a FIFO queue), i.e., every cell placed
in it is eventually processed. The result that follows directly from
the definition of robust edges, and from the fundamental laws of
probability:

LEMMA 4.1. LetC be a cell reachable from some initial cellC0

through a robust path π of length at most
⌈
T
∆

⌉
. As L→∞,K →

∞, the cell C will belong to the graph G explored by Algorithm 1
with probability 1.

A limitation of our approach is the lack of probabilistic guarantees
on its ability to discover non-robust edges inH(∆). However, even
for a fixed scatter amount K for each cell, we are not guaranteed to
discover all the robust outgoing edges in N(Cj), for a given cell Cj .
The choice of value K is thus a crucial tradeoff between scalability
and effectiveness. A simple technique is to fix two thresholds p and
c to find a value K that guarantees that edges e : C

∆
 D with

P(C,D) ≥ p are discovered with probability at least c. Assume
that Algorithm 1 draws K independent and identically distributed
samples for the states and inputs.

LEMMA 4.2. If K ≥ log(1−c)
log(1−p) then an edge e : C

∆
 D with

Pr(C,D) ≥ p is discovered with probability at least c.

PROOF. Consider a sequence ofK simulations and let us assume
that none of them allowed us to discover the edge e. The probability
of this happening is at most (1− p)K . We therefore wish to ensure
that this event happens with probability at most (1− c).

(1− p)K ≤ (1− c)

Therefore, we obtain K ≥ log(1−c)
log(1−p) .

For instance, drawing K = 59 or more samples per cell will guar-
antee that any single outgoing edge with probability 0.05 or more is
found more than 95% of the time by our sampling process.

In summary, Algo. 1 finds robust edges in H(∆), while non-
robust edges are discovered almost never (with probability 0). Lemma 4.1
guarantees if the workList in Algorithm 1 is fair, as K,L→∞, all
robust edges inH(∆) are discovered almost surely (with probability
1). As a result, all robust paths are also discovered almost surely.
Next, Lemma 4.2 provides bounds on the number of samples per
cell K to achieve guarantees on the probabilities of missing an edge.

5. REFINING ABSTRACT COUNTEREXAM-
PLES

In the previous section, we outlined an approach to explore a
subgraph of the abstract graph corresponding to an ε-tiling, using
segmented trajectories. Further, we also discussed a notion of using
weights on pairs of adjacent edges in this subgraph to obtain a set of
prioritized abstract counterexamples with path cost less than a given
budget. We now present a way to refine the abstraction induced by
an ε-tiling C by defining the notion of a refined tiling. The basic
idea of refinement is to construct a δ-tiling D where δ < ε, and
the cells in D subdivide those in C. We then wish to check if the
abstract counterexamples corresponding to the ε-tiling continue to
be counterexamples in the δ-tiling. We first formalize the notion of
a refined tiling.

DEFINITION 5.1 (REFINED TILING). Let C be an ε-tiling of
X . A refinement D of C is a tiling of X that satisfies the following:

Algorithm 2: Multiple Shooting CEGAR Algorithm.
Input: Problem 〈S,X0,Xf , T 〉, Scatter amount K, Simulator

SIMS , size limit L, Max Refinement steps P , ε0: start
tiling width, and shrink : scale factor for ε.

Output: VIOLATION or FAIL.
1 ε := ε0, G := ∅, PATHS := ∅;
2 for i ∈ [1, P] do
3 G := scatterAndSimulate(S,X0,Xf , T , ε, L, K, Paths);
4 Π := findAbstractCounterExamples(G) ;
5 if Π = ∅ then return FAIL ;
6 if checkIfConcretizable(Π) then return VIOLATION ;
7 PATHS := Π, ε := ε

shrink ;

8 return FAIL ;

1. D is a δ-tiling for some δ < ε.

2. For every Dj ∈ D, there is a unique cell Cj ∈ C such that
Dj ⊆ Cj . Dj is called a sub-cell of Cj .

3. For everyDj ∈ D andCk ∈ C if interior(Dj) ∩ interior(Ck) 6=
∅ then Dj ⊆ Ck.

For an ε-tiling, and its corresponding refined δ-tiling, let us denote
their respective abstract state graphs (as defined in Def. 3.4) by
Hε(∆) andHδ(∆) .

Algorithm 2 summarizes the overall approach using scatter-and-
simulate with repeated refinements. The approach performs up to
P refinement steps. At each step, a slight modification of scatter-
and-simulate algorithm (Line 3) is applied. The resulting graph G is
then analyzed to find all abstract counterexamples (Line 4). The cost
of the counterexamples can be used to select the most promising
ones. If no counterexamples exist, we declare failure (and possibly
restart). Otherwise, Line 6 checks if any of the abstract paths are
concretizable. This step samples initial states from the initial cells
for the abstract counterexamples. For each sample, it performs a
complete simulation and checks if the concrete simulation results
in a violation. If so, the algorithm terminates with a real violation
witnessed by a concrete trajectory. Line 7 computes a set of abstract
counterexample paths (PATHS) to guide the exploration of the re-
finement in the next step. Finally, the value of ε is scaled down for
the refinement. We note that the scatter-and-simulate algorithm is
modified by providing it a set of cells PATHS (Line 3). The set of
abstract paths serves to restrict the search for counterexamples in
the refinement. We consider two strategies for this restriction.
Likely Initial Cells: In this strategy, we use the initial cells of coun-
terexample paths in PATHS. Here, we replace the RHS of Line 1 of
Algorithm 1 by a random sampling of such initial cells.
Refining Abstract Counterexample Paths: In this strategy, we use all
cells that belong to some path in PATHS. We exploreHδ(∆) using
Algorithm 1, while restricting our attention to the cells in PATHS.
Therefore, Algorithm 1 is modified at line 9 and line 11 to ensure
that a cell is added only if it is a sub cell of a cell in the set PATHS.

In practice, we observe that both approaches yield similar re-
sults. However, the likely initial cells approach is the simplest to
implement.

EXAMPLE 5.1. Fig. 5 shows a series of refinements for the van
der Pol system from Example 2.1 with decreasing values of ε. In each
step, we obtain paths in the resulting abstract state graphs, leading
from some initial to an unsafe cell. The corresponding segmented
trajectories also have costs that decrease in direct proportion to ε.

5.1 Asymptotic Analysis of Refinement
Using the above mentioned strategies to explore the state graph

based on a δ-tiling restricts the exploration to regions associated
with previously explored abstract states in the ε-tiling. As a result,
each concrete state obtained by sampling is now clustered within a
smaller cell. Let the tiling granularity in the ith refinement step be
εi, and let a witnessing segmented trajectory corresponding to an
abstract counterexample path π inHεj (∆) (if one exists) be denoted
σj . Then, recalling the result from Lemma 3.3, COST(σj) ≤ 2Tεj

∆
.

Consider a series of refinement steps, wherein the ith step in-
volves an εi-tiling Di, such that ε1 > ε2 > · · · is a strictly de-
creasing sequence converging to 0 in the limit. Assume that at each
refinement step, we obtain an abstract counterexample πi from an
initial cell of Hεi(∆), the graph at the ith step to an unsafe cell.
The costs of the witnessing segmented trajectories converge to zero
as well. This could lead us to believe that, in the limit, our approach
is guaranteed to find a violation. We show that this is not true, in
general, for hybrid systems.

EXAMPLE 5.2. In this example, we show that convergent limits
of segmented trajectory may not be a trajectory For simplicity, we
consider a system S with no inputs and two discrete modes `0 and
`1. Let the dynamics in mode `0 be the ODEs dx

dt
= 1, dx

dt
= 2,

and in `1 be the ODEs dx
dt

= dy
dt

= 0. The system transitions from
mode `0 to `1 upon hitting the guard set x+ y = 4. The initial set
is taken to be X0 : {`0} × [0, 0.5] × [0, 0.5] and the unsafe set is
taken to be Xf : {`0}× [2, 3]× [4, 5]. We note that no behavior can
reach Xf , as any trajectory in mode `0 will hit the switching surface
x+ y = 4, and remain there in mode `1. Now consider a sequence
of segmented trajectories σε, each with two segments of the form:
(0.5 − ε, 0.5 − ε)

1−→ (1.5 − ε, 2.5 − ε), (1.5 + ε, 2.5 + ε)
1−→

(2.5 + ε, 4.5 + ε).
COST(σε) is 2ε with the L∞ norm. However, as ε → 0, we

expect the segments to converge onto the zero cost “trajectory”
(0.5, 0.5)

1−→ (1.5, 2.5)
1−→ (2.5, 4.5). But the limit is not a valid

trajectory as the system switches to the mode `1 at (`0, 1.5, 2.5) and
never changes state again.

The counterexample above illustrates “non-robust” behavior that
hybrid systems can exhibit. The example relies on the system switch-
ing at a precisely defined surface that our segmented trajectories
happen to converge to asymptotically. While certainly possible,
this behavior is pathological; real-life hybrid systems often exhibit
robust behavior such as continuous dependence on initial condition
over a small neighborhood. Under the following conditions that
guarantee robust counterexamples, a zero cost segmented trajectory
in the limit is, in fact, an actual system trajectory:

(1) Each cell in a counterexample π(j) in the jth refinement is a
sub-cell of a cell in a counterexample π in the ith step for i ≤ j.

(2) There is an i such that for all cells in counterexample paths at
refinement steps j > i, the flow map defined by Φ(x0, u) (i.e.,
SIMS(x0, u,∆) for a fixed ∆) is continuous over x0 for each
u ∈ U .

Let us consider a sequence of segmented trajectories π(1), · · · , that
satisfy conditions (1) and (2) above.

THEOREM 5.1. The segmented trajectories π(j) converge uni-
formly to a zero cost segmented trajectory π∗ that is an actual
violation of the underlying system.

−2 −1 0 1 2
−8

−6

−4

−2

0

2

4

6

8

(a) ε = 1
4

−1 0 1 2

−6

−4

−2

0

2

(b) ε = 1
8

−1 −0.5 0 0.5 1 1.5

−6

−4

−2

0

2

(c) ε = 1
16

−2 −1.5 −1 −0.5 0 0.5
−7

−6

−5

−4

−3

−2

−1

0

1

(d) Error Trajectory

Figure 5: A series of refinements for the van der Pol system with decreasing values of ε. A counterexample path exists in each refinement step,
yielding a concrete violation.

We note that condition (2) is not very stringent. It is satisfied by
continuous systems with Lipschitz continuous ODEs, and in our
experience by most hybrid system models that can be numerically
simulated in tools such as SIMULINK/STATEFLOW(TM).

6. EXPERIMENTAL EVALUATION
We have implemented 4 Algorithm 1 and the refinement heuristics

described in Sec. 5 in MATLABTM , and tested our falsifier on a
number of systems. These range from small but complex systems
with challenging falsification problems, to representative examples
of complex industrial systems.

6.1 Implementation Details
This section highlights the various aspects of our implementation.
System description: The input format can either be an explicit

hybrid automaton, or a user-defined function SIMS . Though we
use ODE solvers and event detection mechanisms provided by
MATLABTM in the former case to simulate the system, it is still
treated as a black box system during falsification.

Parameters: Our implementation allows a user to customize
various system specific parameters within Algorithm 1, such as
the initial tiling granularity defined by ε, the time step ∆, and the
overall time horizon T . A maximum number of switches can also
be specified to avoid trajectories with Zeno behavior.

Scaling: Thus far, our definition of tiling subdivides the space
uniformly for all variables. However, in practice, different system
variables have different ranges and therefore, our implementation
treats ε as a vector of size n (number of continuous states), with
each element defining the tiling size for that particular dimension.

Refinement: As stated in Sec. 4, in every refinement iteration,G is
found by samplingH(∆). The finite representation of G is limited
by various budgets on the number of samples and the number of
vertices. Our technique can fail in two ways: (a) failing to find a
abstract counterexample path or (b) going beyond maximum number
of refinement steps without finding a concrete violation. Upon
such a failure, our implementation restarts the search from the first
iteration. The Likely Initial Cells approach was used for refining the
abstraction and to obtain the presented results.

Success: The implementation can either succeed or fail because
of a timeout. Upon success we return all found concrete coun-
terexample traces, each represented by its initial condition, discrete
transition sequence and sequence of inputs. This enables easy repro-
duction of traces using SIMS .

Being a generic framework, several aspects of the scatter-and-
simulate are configurable. For instance, the sampling distribution of
the cells can be varied. Moreover, when exploring the state space,
adjacent cells to reachable cells can also be added, thus ensuring
a more thorough search. In addition to using forward simulations
4https://csel.cs.colorado.edu/~zutshi/

beginning from the initial set, backward simulations originating
from the unsafe cells can be used. This might not always be possi-
ble or tractable, specially when multiple backward solutions exist
or the property is defined only on a subset of the state variables,
respectively. Several guiding heuristics for the exploration of the
abstraction in a given iteration can be used. Our implementation se-
lects uniformly random inputs and samples in a cell, but techniques
like RRT can be used to explore the state space more uniformly.

6.2 Case Studies
We evaluated our method on a number of examples ranging from

academic examples of nonlinear and hybrid dynamical systems to
representative models of industrial control systems.

Academic examples The first set of benchmarks includes well
known examples of complex nonlinear systems such as the Van
Der Pol oscillator [25], the Brusselator, and the Lorenz reactor [25].
The second set of benchmarks contains hybrid dynamical systems:
a 4 state model of a bouncing ball [27], a variation (B.Ball+S.H.M.)
with the ball bouncing on a simple harmonically oscillating plat-
form, and a constrained pendulum [26]. As such, these systems
have no formal specification of an unsafe region. We use random
testing to synthesize challenging falsification goals by identifying
“hard-to-reach” regions.

The third set of benchmarks consists of a modified instance of
navigation benchmark (NAV-30) [27], derived from [11]. These
benchmarks describe a particle moving through a 2D grid, with
different affine motion dynamics for each cell. The falsification
problem is to determine if certain cells are reachable, given the
initial position and velocities of the particle.

Automotive Control System Examples
Idle Speed Controller: When a car is stationary, but the engine is
running, it is required for the engine speed to be maintained at a
certain reference value in the presence of external disturbances such
as torque demand (τ`) (e.g., due to the A/C system) and the clutch
being operated. We use a simplified affine hybrid automaton model
of a closed-loop system containing a model of the engine and the
powertrain, with a single control input: the throttle plate angle. The
controller uses Proportional + Integral (PI) control to maintain the
engine speed to 800± 35rpm. The aim of the falsifier is to find a
simulation trace in the closed-loop model which exceeds this range
for time-varying values of τ` (∈ [0, 5]Nm).

Diesel engine airpath control: This benchmark contains a simplified
version of the system presented in [17]. It is a piecewise affine repre-
sentation of a diesel engine model and a model-predictive controller
regulating the intake manifold pressure in the engine. The state
space of the closed-loop system consists of 69 polytopes, each repre-
senting a certain region of operation of the plant and a corresponding
control law. The falsifier tries to find a system trajectory that leads

to an increase of intake manifold pressure beyond a reference value.

Glucose-Insulin Models (G-I) This benchmark is based on work
by Fisher [12] and describes an artificial pancreas controller to
maintain safe levels of plasma blood glucose (pbg) in type I dia-
betes patients. The insulin-glucose dynamics are modeled using
the Bergman minimal model [4]. The plant model uses an expo-
nential glucose absorption sub-model. Using data of 18 different
subjects [5] we search for scenario of hypoglycemia (i.e., pbg < 3.6
mmol/L). We incorporate an uncertainty interval for each of the
patient parameters in our model. We only report the result for case
(patient ID:1) where we found a violation.

dReal Benchmarks We also try our approach on dReal’s determin-
istic benchmarks 5, the quadcopter and cardiac benchmarks. For the
quadcopter (14 continuous states), we try to find initial conditions
which can lead to instability. This is naively detected when a state
exceeds desired bounds. In the cardiac example, we try to detect the
critical condition of atrial fibrillation. Note that we have modified
the properties slightly to make them harder to detect by random
testing.

6.3 Results
To obtain results, we focused on properties which are hard to

falsify using random testing. Testing vectors were generated by
(uniform) randomly sampling 100,000 states in the initial set, and
simulating for the given time horizon and noting the number of
violations, which are reported along with time taken in Table 1. This
provides a qualitative reference (of difficulty of finding a violation)
as well as a quantitative comparison against sampling based tools.

The comparison with S-Taliro was done by observing the suc-
cessful runs and noting the mean time taken for 10 runs. A run of
S-Taliro/scatter-and-simulate is successful if a concrete violation is
found within 1hr, and is mentioned in the Succ. Runs column of
Table 1. Both S-Taliro and scatter-and-simulate use restarts and a
run can comprise of several restarts. Clearly, our tool is able to find
a falsification in every run, whereas S-Taliro fails in some instances.
Though, the times taken by S-Taliro and our tool are listed, they are
hard to compare because our implementation is parallelized and uses
multiple threads (4), which gives it a substantial performance boost
(verified by a 2X speedup for the bouncing ball benchmark). This is
in contrast with S-Taliro’s single threaded implementation. Finally,
our performance seems comparable, if not superior, to S-Taliro. This
may be attributed to S-Taliro’s use of global search on robustness
function, which can be overly dependant on a good distance metric.
In comparison, we are relatively insensitive to distance metrics.

We also compare with dReal/dReach. dReal is a SMT solver and
symbolically analyses a reachability problem. It either returns an ab-
stract counterexample in the form of a δ-satisfiability trace or proves
unreachability (unsat). The latter capability is a clear advantage over
our simulation based approach, which will be unsuccessful when no
violations exists. Hence, we compare our results with dReal only
when a violation is known to exist. We ran dReal on our benchmark
suite, but timed out in 1hr on all of them, except the cardiac bench-
mark. The cardiac benchmark was completed by dReal in 33s with
a precision of 0.001, and in 2.5min with precision of 0.0001.

Even though dReal can work with complex and highly non-linear
benchmarks, as evident from the results presented by Gao et al. [14],
the falsification instances considered in their work do not pose
challenges for an approach based on numerical simulations. For
instance, for the deterministic dReal benchmarks (bouncing ball,

5http://dreal.cs.cmu.edu/#!dreach.md
We will add functionality to handle benchmarks with non-
determinism in the future.

stabilized quadcopter, cardiac), we found that numerical simulations
with uniform random sampling are almost always successful in
finding violations. Hence, we adjusted the properties for these
models to pose more of a challenge to simulation-based falsification
tools.

Overall, we note that our technique can successfully find falsifi-
cations where 105 random simulations are unable to find any. Our
approach scales successfully to some systems with as many as 14
state variables and in some cases systems with hundreds of modes.
In general, our tool succeeds because we use

• relatively inexpensive simulations which can be easily com-
puted in parallel, and

• multiple shooting, which is an efficient way to break down
the complexity of the problem, specially in the presence of
highly non-linear trajectories.

A comparison with the HTG [9] was also attempted, but did not
succeed due to the restricted semantics of resets in the tool.

7. CONCLUSION
In conclusion, we presented and implemented a generic frame-

work for falsification of safety properties, which relaxes the search
over trajectories to trajectory segments to efficiently explore the
state space. We justified this relaxation by introducing tiling-based
abstraction of the hybrid state space. We also included a set of
benchmarks to emphasize the practicality of our approach.

8. REFERENCES
[1] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivancic, and

A. Gupta. Probabilistic temporal logic falsification of
cyber-physical systems. Trans. on Embedded Computing
Systems (TECS), 12:95–, 2013.

[2] R. Alur, T. Henzinger, G. Lafferriere, and G. J. Pappas.
Discrete abstractions of hybrid systems. Proceedings of the
IEEE, 88(7):971–984, July 2000.

[3] Y. Annapureddy, C. Liu, G. Fainekos, and
S. Sankaranarayanan. S-taliro: A tool for temporal logic
falsification for hybrid systems. Proc. TACAS, pages 254–257,
2011.

[4] R. N. Bergman. Toward physiological understanding of
glucose tolerance: minimal-model approach. Diabetes,
38(12):1512–1527, 1989.

[5] R. N. Bergman, L. S. Phillips, and C. Cobelli. Physiologic
evaluation of factors controlling glucose tolerance in man:
measurement of insulin sensitivity and beta-cell glucose
sensitivity from the response to intravenous glucose. Journal
of Clinical Investigation, 68(6):1456, 1981.

[6] A. Bhatia and E. Frazzoli. Incremental search methods for
reachability analysis of continuous and hybrid systems. Proc.
of HSCC, pages 451–471, 2004.

[7] H. G. Bock and K.-J. Plitt. A multiple shooting algorithm for
direct solution of optimal control problems. 1983.

[8] A. Casagrande, A. Balluchi, L. Benvenuti, A. Policriti,
T. Villa, and A. Sangiovanni-Vincentelli. A new algorithm for
reachability analysis of hybrid automata. Technical report,
Citeseer.

[9] T. Dang and T. Nahhal. Coverage-guided test generation for
continuous and hybrid systems. Formal Methods in System
Design, 34(2):183–213, 2009.

[10] A. Donzé. Breach, a toolbox for verification and parameter
synthesis of hybrid systems. In Proc. CAV, pages 167–170,
2010.

Table 1: All times are in minutes. Mean falsification times (Tavg) were computed on only the successful runs out of 10 total runs.
Unsuccessful runs indicate a timeout (≥ 1hr). Columns at the left summarize the benchmarks, with the number of continuous states(S),
inputs(I), parameters(P) and discrete Modes. Random simulations (100,000) and scatter-and-simulate use 4 threads, while S-Taliro used a
single thread. All the computations were done on Ubuntu 12.04, running on a 4 core Intel i7-2820QM CPU @2.30GHz with 8GB RAM.

Benchmark S I P Modes Prop. Random Testing S-Taliro Scatter-Sim
Num. T Succ. Tavg Succ. Tavg
Vio. (mins.) Runs (mins.) Runs (mins.)

P1 0 10.2 10 0.9 10 0.4
Van der 2 0 0 - P2 21 41.9 10 11.8 10 2.9
Pol [25] P3 19 26.4 10 2.5 10 1.6

P4 11 42.5 8 18.4 10 6.6
Lorenz [25] 4 0 0 - P 36 132 3 20.6 10 3.1
Brusselator 2 0 0 - P 429 22 10 1.1 10 0.2
B.Ball [27] 4 0 0 1 P1 3 20 1 11.0 10 6.5
B.Ball P1 13k 202 10 0.5 10 0.4
+ 5 0 0 1 P2 3k 202 10 1.4 10 0.4
S.H.M. P3 378 202 10 6.3 10 0.4
Pendulum [26] 3 0 1 2 P1 0 6.6 10 4.7 10 4.7

P2 0 25 10 5.2 10 1.2
P 1 200 3 24.9 10 5.0

Nav.30 4 0 0 625 Q 7 200 1 48.1 10 5.5
[11, 27] R 1 200 10 23.2 10 17.5

S 108 495 3 33.2 10 20.1
Idle Speed [8] 9 2 0 4 P 70 262 2 7.3 10 7.6
MPC [17] 3 0 0 69 P 1 5.6 10 0.5 10 0.6
G-I [4, 5, 12, 27] 4 0 2 2 P 1 30 10 5.0 10 4.0
Quadcopter 14 0 0 - P 40 6 21.8 8 10.9 10 5.9
Cardiac [14, 15] 5 0 0 4 P 7 12.6 10 4.0 10 0.4

[11] A. Fehnker and F. Ivanĉić. Benchmarks for hybrid systems
verification. In Proc. of HSCC, volume 2993, pages 326–341,
2004.

[12] M. E. Fisher. A semiclosed-loop algorithm for the control of
blood glucose levels in diabetics. Biomedical Engineering,
IEEE Transactions on, 38(1):57–61, 1991.

[13] M. Fränzle, C. Herde, S. Ratschan, T. Schubert, and T. Teige.
Efficient solving of large non-linear arithmetic constraint
systems with complex Boolean structure. JSAT—Journal on
Satisfiability, Boolean Modeling and Computation, Special
Issue on SAT/CP Integration, 1:209–236, 2007.

[14] S. Gao, S. Kong, and E. M. Clarke. Satisfiability modulo odes.
In Formal Methods in Computer-Aided Design (FMCAD),
2013, pages 105–112, 2013.

[15] R. Grosu, G. Batt, F. H. Fenton, J. Glimm, C. Le Guernic,
S. A. Smolka, and E. Bartocci. From cardiac cells to genetic
regulatory networks. In Computer Aided Verification, pages
396–411. Springer, 2011.

[16] C. Herde, A. Eggers, and T. Franzle, M. Teige. Analysis of
hybrid systems using HySAT. In Third International
Conference on Systems, 2008. ICONS 08., pages 13–18. IEEE,
2008.

[17] M. Huang, H. Nakada, S. Polavarapu, R. Choroszucha,
K. Butts, and I. Kolmanovsky. Towards combining nonlinear
and predictive control of diesel engines. In American Control
Conference, 2013. Proceedings of the 2004, pages 2852–2859.
IEEE, 2013.

[18] S. Kupferschmid, J. Hoffmann, H. Dierks, and G. Behrmann.
Adapting an AI planning heuristic for directed model
checking. In Proc. of SPIN, pages 35–52, 2006.

[19] S. M. LaValle. Rapidly-exploring random trees a new tool for
path planning. Technical Report TR 98-11, Computer Science
Dept., Iowa State University, Ames, Iowa, 1998.

[20] J. D. Meiss. Differential Dynamical Systems. SIAM
publishers, 2007.

[21] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated
solutions of initial value problems for ordinary differential
equations. Applied Mathematics and Computation,
105(1):21–68, 1999.

[22] T. Nghiem, S. Sankaranarayanan, G. E. Fainekos, F. Ivančić,
A. Gupta, and G. J. Pappas. Monte-carlo techniques for
falsification of temporal properties of non-linear hybrid
systems. In Hybrid Systems: Computation and Control, pages
211–220. ACM Press, 2010.

[23] E. Plaku, L. Kavraki, and M. Vardi. Falsification of LTL
safety properties in hybrid systems. Proc. TACAS, pages
368–382, 2009.

[24] S. Ratschan and Z. She. Safety verification of hybrid systems
by constraint propagation based abstraction refinement. In
HSCC, volume 3414, pages 573–589, 2005.

[25] S. H. Strogatz. Nonlinear Dynamics And Chaos. Perseus
Books Group, 1 edition, 1994.

[26] A. J. van der Schaft and J. M. Schumacher. An introduction to
hybrid dynamical systems, volume 251. Springer London,
2000.

[27] A. Zutshi, S. Sankaranarayanan, J. V. Deshmukh, and
J. Kapinski. A trajectory splicing approach to concretizing
counterexamples for hybrid systems. In IEEE Conf. on
Decision and Control (CDC). IEEE Press, 2013.

6out of 1,000 simulations

APPENDIX
A. LEMMAS

LEMMA A.1. A zero cost trajectory segment σ is an actual tra-
jectory of the system.

PROOF. As d(x,y) ≥ 0 for all x,y, COST(σ) = 0 implies
that for each pair dest(τi), src(τi+1), the distance is 0. Further,
d(dest(τi), src(τi+1)) = 0 iff dest(τi) = src(τi+1). Thus, σ is an
actual system trajectory.

LEMMA A.2. Given ε = 10−k for k > 0, the ∼k-defined tiling
C as defined in Def. 3.3 is an ε-tiling of X .

PROOF. By definition,
⋃

Ci∈C
Ci = X . and any state (`,x) ∈ Ci

satisfies the inequality ||x − [x]i||∞ ≤ 10−k ≤ ε (satisfying the
first and third conditions of Def. 3.2). Let Ci, Cj be two different
cells, we can prove that their interiors are disjoint by contradiction.
Suppose there is a state (`,x) that belongs to the interiors of both
Ci andCj . Thus, the first k decimal digits of x would have to match
both [x]i and [x]j (which by definition are distinct), leading to a
contradiction.

LEMMA A.3. LetC be a cell reachable from some initial cellC0

through a robust path π of length at most
⌈
T
∆

⌉
. As L→∞,K →

∞, the cell C belongs to the graph G explored by Algorithm 1 with
probability 1.

PROOF. Algorithm 1 will explore each node along π starting
with C0 with some probability p > 0. Therefore, as K →∞, for
each node C′ in the graph G, every robust edge outgoing from C′

is discovered with probability 1. Since L → ∞ and the workList
data structure is “fair”, we note that every discovered node is even-
tually processed and therefore every node along π is eventually
discovered.

