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ABSTRACT
Neural networks present a useful framework for learning complex

dynamics, and are increasingly being considered as components to

closed loop predictive control algorithms. However, if they are to be

utilized in such safety-critical advisory settings, they must be prov-

ably “conformant” to the governing scientific (biological, chemical,

physical) laws which underlie the modeled process. Unfortunately,

this is not easily guaranteed as neural network models are prone

to learn patterns which are artifacts of the conditions under which

the training data is collected, which may not necessarily conform

to underlying physiological laws.

In this work, we utilize a formal range-propagation based ap-

proach for checking whether neural network models for predicting

future blood glucose levels of individuals with type-1 diabetes are

monotonic in terms of their insulin inputs. These networks are

increasingly part of closed loop predictive control algorithms for

“artificial pancreas” devices which automate control of insulin de-

livery for individuals with type-1 diabetes. Our approach considers

a key property that blood glucose levels must be monotonically

decreasing with increasing insulin inputs to the model. Multiple

representative neural network models for blood glucose prediction

are trained and tested on real patient data, and conformance is

tested through our verification approach. We observe that standard

approaches to training networks result in models which violate the

core relationship between insulin inputs and glucose levels, despite

having high prediction accuracy. We propose an approach that can

learn conformant models without much loss in accuracy.
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1 INTRODUCTION
In the recent years, neural networks have risen in popularity due to

their ability to “learn” complex phenomena from large data sets [28].

They are extensively being used for tasks such as classification, per-

ception, and, increasingly, control of autonomous systems [35, 37].

In this work, we focus on the use of feed-forward neural networks

as dynamic models for the physical, chemical and biological phe-

nomena which underlie the glucose-insulin regulatory system in

individuals with type-1 diabetes. An increasing number of papers

in this area have proposed neural networks trained from patient

data [42, 43, 48, 50, 53], in addition to a competition to improve

prediction accuracy for blood glucose levels [8], and substantial

investment in this area from the JDRF (formerly the Juvenile Dia-

betes Research Foundation) [36]. Some resulting models have been

proposed for use in closed-loop artificial pancreas systems which

automate the delivery of insulin to individuals with type-1 diabetes.

Therein, neural networks serve as a prediction model for model

predictive control (MPC) algorithms [22]. However, the question of

whether neural network models are safe to use in such applications

remains unanswered.

Mathematically, neural networks are complicated nonlinear func-

tions learned through a process of regression on data. Today, given

sufficient data, the training of these networks can be achieved using

off-the-shelf tools such as Tensorflow [1] or PyTorch [51]. Although

large amounts of data are often available, they can be laden with bi-
ases. This is particularly true in medical applications such as type-1

diabetes. In this work, we focus on identifying and explaining po-

tential biases in data, developing a framework for rigorously testing

if networks have incorrectly attributed correlations to causation,

and propose methods for improving model conformance to correct

causal relations based on known physiology.

Conformance to Scientific Facts: In the case of blood glucose pre-

diction, neural network models often achieve good accuracy as

measured by the root mean squared (RMSE) prediction error on

test data. However, whether the models actually capture the key

scientific facts governing regulation of glucose by insulin remains

unknown. Within the human body, the hormone insulin is the key

regulator of blood glucose levels. Insulin enables cells to uptake

glucose from the blood, and also encourages glucose uptake by the

liver, in the form of glycogen. Together, this results in a complex

nonlinear decrease in blood glucose levels, and understanding this

relation is central to safe control of T1D [12, 16, 31]. In this work,

we focus on testing and ensuring model conformance to this key

https://doi.org/10.1145/3365365.3382210
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property: all else equal, increasing insulin input must cause a decrease
predicted blood glucose levels.

Failure of a model to conform to this property, especially one

which is to be utilized in an advisory manner (eg. artificial pancreas

systems), can have fatal consequences for an individual. Imagine a

model that under some conditions predicts adding insulin increases

blood glucose levels: if used in an advisory system, such a model

could result in a controller increasing insulinwhen the blood glucose
levels are low. This is potentially dangerous, and poses significant

risks of coma or even death.

Domain of Validity. A related issue in utilizing neural networks

pertains to their domain of validity. These can be roughly defined as

the region of inputs for which the network produces valid outputs,

and can be estimated by considering the convex hull of the set

of learning points [14]. In general, how well a network is able

to generalize depends on the distance of the unseen pattern to

the domain of validity for the network. While previous work has

focused on algorithms for estimating this domain [14, 52], our

focus is on systematically quantifying howwell a network performs

within the domain of validity, and outside it. Rather than estimating

the region, we give sensitivity values for a network’s response to

inputs increasingly outside the domain of validity and show how

these values can differ between models and input ranges.

Contributions. In this work, we develop a range-estimation based

approach for verifying conformance of neural network models to

known scientific laws governing input-output relations within the

model. Results are shown as applied to the real-world example of

glucose-insulin regulatory models, a central component of artificial

pancreas systems. While models show significant promise for pre-

diction, their use in an advisory manner, such as within artificial

pancreas systems, requires models be trustworthy and conform to

known underlying physiology.

We focus first on explaining the data on which these models

are trained, including patterns inherently present and potential bi-

ases which may arise. We then present our range-estimation based

approach and protocol for testing model conformance, and demon-

strate how it can be implemented to test conformance of multiple

neural network models for blood glucose prediction. Models are

built and tested on real patient data from the at-home phase of a

previous clinical trial [6].

Remark: This work builds on an extended abstract which was

recently presented at a special invited session of ICCAD 2019 [49].

This paper presents a detailed explanation of both the techniques

involved and analysis of results on clinical trial data.

2 RELATEDWORK
We cover related work focusing on definitions of conformance, in

particular those used in formal verification, along with related work

in verification of neural networks.

2.1 Conformance
Conformance, and conformance checking, is a broad term used to

encompass methods for checking if an engineered artifact satisfies

(conforms to) a desired specification. In numerous prior research

studies, this term has been used when checking if a model satisfies

properties of a reference model. Often times, the reference model

has increased complexity that we desire to capture using a simpli-

fied model. Conformance specification checks whether the simpler

model is able to capture all the key properties present in the more

complex model. Multiple methods for doing so have been proposed

including an event log based method by Carmona et al. [9], and

an input-output conformance approach for model-based testing of

algorithms by Jan Tretmans [62].

For cyber-physical systems, conformance testing has been used

in applications ranging from checking similarity of traces obtained

from a deployed system to an abstract formal model [67], to whether

inputs can be crafted to identify behaviors of the implemented sys-

temwhichwere not seen in the referencemodel [2]. This latter work

of Abbas et al. extends the notion of conformance from a Boolean

predicate, to a real-valued measure of distance between models. In

our work, we likewise measure the degree of conformance, though

do so through sensitivity analysis on inputs, rather than a measure

distance. This enables us to study model conformance relative to

specific input locations.

2.2 Neural Network Verification
Broadly, verification problems for neural networks can be separated

into two categories: (1) properties defining an input-output relation

for a single neural network; and (2) system-wide or end-to-end

properties of a system with neural network components.

In terms of the first category, tools for checking networks tend

to fall into categories of either property checking, or image com-

putation. With respect to property checking, approaches have his-

torically focused on checking if a condition,ψ [y], on a network’s

outputs (y) holds whenever a precondition φ[x] is satisfied by its in-
puts (x ). Numerous approaches have been proposed in this domain,

notably posing SMT problems over piece-wise linear abstractions

of the activation functions proposed originally by Pulina and Tac-

chella [54]. Since the original publication, multiple improvements

upon the SMT-based approach have since been proposed including

the Reluplex tool [38], and Planet solver [24].

The second approach, image computation, refers to approaches

which compute a range over the outputy, given some pre-condition

φ[x]. Towards this end, many tools have formulated a neural net-

work’s operation using mixed-integer linear programs (MILP) [20,

44], or have utilized abstract intepretation-based approaches, origi-

nally proposed for program analysis problems [15]. Key examples

include an approach by Vechev et al which utilizes zonotopes as

an abstract domain to perform image computation across a neural

network [25], work by Xiang et al which uses an abstract domain

consisting of the union of polytopes [70], and an approach which

computes the abstract domain of symbolic intervals, which is im-

plemented in the Reluval tool [65].

More recently, the image computation approaches mentioned

above have been extended for use within a closed loop system

where neural network components are used. The simplest such

model consists of a neural network applying a feedback control to

a physical process, modeled as an ordinary differential equation.

This setup has often been used for performing reachability analysis

for resulting closed loop behaviors [19, 32, 34, 59, 64, 68, 69].
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2.3 Adversarial Inputs and Falsification
The susceptibility of neural networks to adversarial inputs was first

shown in [60], spurring the development of a large range of tech-

niques for producing adversarial images to dupe image classifiers. A

related, though slightly differing, line of research involving search-

ing for adversarial inputs has been the falsification and testing ap-

proach for systems. Similar to an adversarial input, the falsification

problem consists in finding an execution of a system which violates

a specified property. We mention a brief sampling of work in this

field, especially as it related to control-specific tasks [3, 18, 63, 71].

In this work, we utilize an optimization-based approach to find

what may loosely be considered as pairs of adversarial inputs to

a network. However, our work differs from the above approaches

as our concern is not on the identification of individual inputs

which result in a property violation, but rather on testing model

robustness across a range of inputs, and identifying specifically

those violations which have high likelihood to be encountered in

the field.

3 BACKGROUND: ARTIFICIAL PANCREAS
In this section, we will provide a brief background on type-1 di-

abetes mellitus (T1DM) [57], and the artificial pancreas. Further

details are available from one of the many surveys in this area [11,

13, 29, 42]. T1DM is an autoimmune disease in which the body

targets and destroys the pancreatic β-cells. Without these cells, the

human body is unable to produce insulin, the hormone required

in order for cells to be able to uptake glucose from the blood, the

main source of energy for cells. This leads to a dangerous cycle of

cell starvation, coupled with increasingly elevated blood glucose

levels, as the body breaks down glycogen stores to release more
glucose in order to feed the starving cells. If left untreated, this

results in increasingly acidification of blood leading to coma and

even death [10, 57]. Consequently, individuals with T1DM must

take external insulin analogs to counteract the lack of insulin. In

order to properly dose insulin, an individual must constantly mon-

itor their blood glucose levels, anticipating future changes in the

blood glucose levels due to impending meals and physical activities.

This process is incredibly burdensome, and error prone [56]. On

one hand, too little insulin results in elevated blood glucose levels

(hyperglycemia), which can lead to long-term organ damage. On

the other hand, too much insulin leads to extremely low blood

glucose levels (hypoglycemia), which risks coma or even death.

Artificial pancreas systems refer to a closed or semi-closed loop

system of medical devices which serve to automate the delivery of

insulin to individuals with T1DM [13, 17, 43]. The advent of artificial

pancreas is considered one of the most promising treatment strate-

gies to improve patient health, with the potential to free up time for

these individuals and lessen human error [41]. As they stand now,

these systems consist of two devices, a continuous glucose monitor

(CGM) which measures blood glucose levels, and an insulin pump,

along with an algorithm connecting the two [13, 17, 43]. Central

to these systems, is a model of human physiology which allows

the algorithm to predict an individual’s future blood glucose lev-

els and dose insulin accordingly [4, 11, 17, 58]. Developing such

models has been a nontrivial task to due to the complexity of the

human-glucose regulatory system, individual’s changing sensitivity

to insulin, and the long (up to 90minute) delay of activity onset of

insulin analogs, as well as their persistence in the body for upwards

of 7 hours. Insulin doses are typically delivered in two different

forms during open as well as closed loop insulin delivery:

(1) Basal insulin - this is insulin delivered continuously in the

background at levels < 0.1 Units. Basal insulin is delivered

to combat the rise in glucose levels resulting from the liver’s

“endogenous” release of glucose in the blood between meals.

(2) Bolus insulin - a single large dose of insulin, typically at

levels > 1 Units. Boluses are subdivided into two types: (a)

meal boluses that are delivered in anticipation of rising blood

glucose levels due to a meal. This can be seen in data as a

large insulin dose, followed by (or coinciding with) a rise

in blood glucose from the meal. The fall in blood glucose

caused by the insulin is not observed until 60-120 minutes

later; and (b) correction boluses: these are given to bring down
a high blood glucose level. They tend to be smaller in size

than meal boluses, and are most often followed by a decrease

in blood glucose levels. Such doses can vary but are typically

of 0.1 − 2 Units.

One-Sided Control: While the hormone insulin and its analogs

can be dosed through the device to enable cells to uptake glucose

from the blood, thereby lower blood glucose levels, the counter-

regulatory hormone glucagon which serves to increase blood glu-

cose level, cannot be dosed outside of a research setting. This is due

to the current lack of availability of shelf-stable glucagon in a form

which can be variably dosed for commercial use. As a result, if too

much insulin is delivered to a patient, the device lacks the ability

to counteract this dose and it is left to the individual to counteract

the affects of excess insulin through a fast-acting external glucose

supply (eg. drinking juice). This makes current commercially viable

artificial pancreas systems one-sided.

3.1 Modeling Insulin Glucose Regulation
We will briefly overview mathematical models of insulin-glucose

regulation. A detailed survey of mathematical modeling approaches

can be found in Kushner et al [42].

Differential equation models have been important for modeling

insulin-glucose regulation, starting with the pioneering work of

Bergman [5]. Since then, many differential equation models have

been proposed and refined through studies on patients using tracer

labeled foods [12]. Prominent modeling efforts include the Hov-

oroka et al model [30, 31, 66] and the Dalla-Man et al model [16, 46].

The latter model is part of the UVa-Padova simulator for Type-1

Diabetes which has been approved by the US Food and Drug Ad-

ministration (FDA) to replace animal trials for new closed loop

control devices [40]. While such high fidelity ordinary differential

equation (ODE) models of the glucose-insulin regulatory system

exist, translating these models to specific patients, as is needed in

artificial pancreas systems, has had limited success. A key reason

lies in the large number of patient-specific parameters that govern

the behavior of the models and must be identified. This is further

complicated by the use of state variables that are hard if not impos-

sible to measure. These include states that attempt to capture blood

glucose concentration in a fictitious “remote chamber” [5] or the
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plasma insulin concentration which requires radioactive studies to

measure directly.

The nonlinear nature of ODEs and the difficulties of identify-

ing parameters has spurred interest in a number of data-driven

approaches for predicting blood glucose values using historic CGM

and insulin pump data have been proposed, many of which utilize

neural networks [26, 27, 33, 47, 53]. Additionally, interest in such

neural network based models continues to grow as can be noted

by a recent NIH supported “Blood Glucose Prediction Challenge”

held as part of the KDH workshop in 2018 [8] and recent JDRF

investment [36].

4 NEURAL-NETWORK BASED MODELS
While data-driven models have shown promise for developing

patient-specificmodels towards use in artificial pancreas systems [23,

26, 27, 33, 47, 53], conformance of such models to known underly-

ing physiological properties has not yet been tested. In this section,

we explain a core conformance requirement for such models. Next,

we present an overview of the type of data these models are trained

on, and potential incorrect causal relations and biases which may

potentially lead to models that fail to be conformant.

4.1 Conformance Property
In this work, we verify models with inputs of glucose and insulin

and an output of future blood glucose levels. A key conformance

property states that: “Insulin should cause blood glucose levels to

decrease”. In particular, we test that given all other factors remain-

ing equal, if an insulin input is increased monotonically, predicted

blood glucose levels must decrease. At a physiological level, insulin

binds to receptors in cells that increase the uptake of glucose and

causes the storage of blood glucose in the liver as glycogen. While

nonlinear, this relationship is known to be monotonic.

However, data-driven models, such as neural networks, need not

capture this natural causal relationship even if we have “sufficient”

data. This is due to reliance of such data-driven methods on the

most common correlations within the data, rather than underlying

causality. Here we describe one common pattern in data which

could result in models learning non-conformant dynamics (insulin

results in blood glucose rise) due to the correlation between meals

and insulin bolus:

(1) Large insulin boluses are commonly given before meals.

(2) The nutrients in the meal cause blood glucose levels to rise.

(3) The insulin bolus is input to the network but meal inputs

are often unreliable or not present as input to the network

(they are difficult to collect in a reliable manner).

(4) As a result, the data driven model “attributes” the rise in

blood glucose levels to the insulin.

Since neural networks are opaque models, such an improperly

learned causal relationship cannot explicitly be seen in a human

readable format, however the danger this poses is easy to see: if a

neural network model incorrectly attributes a rise in blood glucose

to a large insulin dose rather than a meal, a network may lead to

a decision that treating hypoglycemia with an insulin bolus is the

optimal course of action since it causes blood glucose levels to rise.

In this work, we utilize our conformance testing methodology to

identify if such relations exists.

4.2 Structure
Figure 1 depicts the structure of neural network models analyzed

in this paper. The neural networks considered here are feedforward

neural network models, with inputs and structures selected to be in

line with recently proposed models of blood glucose prediction [26,

27, 33, 47, 53]. The general network structure analyzed is a two-

layer feed forward network utilizing ReLU (rectified linear unit)

activation functions. The networks input longitudinal blood glucose

data, asmeasured by a continuous glucose sensor, alongwith insulin

pump doses. Inputs are restricted to the past 30 minutes, with

readings obtained every 5 minutes. The output of the network is

the predicted blood glucose value T minutes into the future, where

T is the prediction horizon. Here, we will set T = 60 minutes. As

observed in the literature, smaller networks perform better on the

test data.

Neural

Network

Model

G(t − 30)

G(t − 25)
· · ·

G(t )

I (t − 30)

G(t + 60)

I (t − 5)
· · ·

I (t )

Glucose

Insulin

Figure 1: Structure of the predictive model for future blood
glucose (BG) levels from past BG and insulin levels.

We consider three different types of network structures:M1-M3.

Basic Neural Network (M1): The basic structureM1 has two dense
layers with 8 neurons per layer, with a single output neuron. This

model was selected as a generalization of various feedforward neu-

ral network models recently proposed models of blood glucose

prediction [26, 27, 33, 47, 53].

Split Structure (M2): Figure 2 shows a split first layer topology
first considered by Dutta et al. [22]. This network “splits” the first

hidden layer into two parts: one part connected just to the glucose

inputs and the other to the insulin inputs before these are connected

to a joint second hidden layer. The reason for the split is to mimic

physiological models of insulin-glucose regulation, wherein the

insulin inputs are combined to calculate a “insulin-on-board” that

affects the future course of blood glucose levels. This model is

included to test how conformance changes, and if it improves,

when compared to a “standard” model,M1.

Split Structure with Monotonicity Constraints (M3): Finally, we
consider the split structure in modelM2 and additionally constrain

the network to be monotonic with respect to the insulin inputs.

Let N be a neural network with inputs (x1, . . . ,xn ), and whose

activation functions are monotone with respect to their inputs.

Definition 4.1 (Negative Monotonic Neural Networks). An input

xi is said to be negative monotonic with respect to an output x of

a network with monotonic activation functions iff the product of

weights along each path from xi to the output x is non-positive.

Let FN (x1, . . . ,xn ) be the function computed by a neural net-

work N .
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Figure 2: Neural network structure consisting of a split
first layer with a fully connected second layer, as proposed
in [22].

Lemma 4.2. If an input xi is negative monotonic (Def. 4.1) with
respect to to an output x of a network N , then FN (x1, . . . ,xn ) is a
monotonically non-increasing function of xi : i.e, for all (x1, . . . ,xn )
and x̂i ,

(xi ≤ x̂i ) ⇒ FN (x1, . . . ,xn ) ≥ FN (x1, . . . , x̂i , . . . ,xn ) .

To ensure partial monotonicity (negative monotonicity with

respect to insulin inputs), we follow a common procedure of impos-

ing weight constraints on paths from monotone inputs to output.

[55, 72]. Utilizing the split network structure ofmodelM2 enables us
to maintain unconstrained weights for paths from glucose inputs to

the first layer, while placing non-positivity constraints on weights

from insulin inputs to the first layer of separate neurons, and non-

negativity constraints for the second layer and output neuron. To

ensure that the constraints are respected during the backpropa-

gation process, we perform a “projection” operation during the

gradient descent that clips weights which violate the monotonicity

constraints to 0 weights. The resulting model is denoted M3. This
model is included to both demonstrate how weight constraints may

be utilized to improve conformance, and test prediction accuracy

against unconstrained models.

4.3 Data, Model Training and Test Accuracy
ModelsM1-M3 are trained and evaluated using previously collected
real-world data from continuous glucose monitor (CGM) and in-

sulin pump data from a cohort of twenty-four subjects. The data set

was collected during the observation period of a clinical trial in indi-

viduals with type 1 diabetes mellitus (T1DM). The data set consists

of average 37.8 ± 14 days of CGM and insulin logs from 29 adults

and adolescents with T1DM, 11-57 years of age, and was collected

during the observational period of a clinical trial [6]. Additionally,

358.0 ± 242.4 associated blood glucose monitor measurements are

present. For each individual, 211.1 ± 181.5 meals and snacks are

consumed and 258.2 ± 197.0 U of insulin boluses are injected. All

measurements are taken at 5 minute intervals. To obtain training

and test data, we clean and process this data to clean and extract

sequences of contiguous glucose and insulin input values after

ensuring that no meals occurred during the interval between in-

put data and output prediction (since this would constitute a large

external disturbance the model would be unable to capture).

In order to train the network, the data is separated using a stan-

dard 80/20 division between training and test data. Due to the high

temporal correlation in blood glucose data, we ensure at least a

180 minute separation between data placed into the training versus

testing bins. Data is otherwise divided randomly, after this condi-

tion is met. Models are trained using backpropogation using the

Adam optimizer in Tensorflow[1], with training done to 100,000

epochs with an average time of 10min 42sec to train a model on a

Macbook Pro with 16GB of RAM.

Table 1 shows the results along with a standard linear control

model that simply predictsG(t +∆) = G(t) (such a linear prediction

has been shown to be surprisingly effective for predictions of up to

30minutes). With respect to prediction accuracy, we find very little

substantial difference between models M1, M2, as measured by the

two main metrics for blood glucose prediction accuracy, root-mean

square error (RMSE) and the number of predictions falling within

20% of the actual value.

Table 1: Model accuracy networks M1-M3, as well as a stan-
dard linear control model. Note accuracy does not differ sig-
nificantly between models M1-M3, and prediction accuracy
is improved over the control.

Model RMSE (mg/dL) Predictions within 20%
M1 46 63%

M2 47 62%

M3 46 61%

Control 56 58%

5 VERIFYING MONOTONICITY THROUGH
RANGE ESTIMATION

We will now describe the setup for a formal verification approach

for determining if the predictive networks have the appropriate

relationship that increased insulin inputs decrease glucose predic-

tions. Let N be a network whose inputs include a vector of Kд > 0

past glucose values ®G and a vector of Ki > 0 past insulin values

®I , as depicted in Figure 1. In particular, the values Kд = Ki = 7

representing 30 minutes of history at intervals of 5 minutes.

To verify that a network N computing a function FN (x1, . . . ,xn )
is monotonically non-increasing with respect to input xi over some

domain D, we would like to show that
∂FN
∂xi

≤ 0 for all inputs

(x1, . . . ,xn ) ∈ D. For functions computed by neural networks,

this is doubly hard: (a) they are not differentiable everywhere, in

particular if non-differentiable activation functions are used (eg.

ReLu); and (b) the verification problem is quite hard to solve.

In order to solve this problem, we define the following notion of

δ -Monotonicity, which enables us to analyze dynamics of networks

which are not necessarily differentiable.

Definition 5.1 (δ -Monotonicity). Let δ > 0 be a fixed limit and

F (x1, . . . ,xn ) be any function over a domain D. Then, the function
F defined over a domain D is δ monotonically increasing over

input x j iff for all inputs (x1, . . . ,xn ) ∈ D and for all increments

0 ≤ sj ≤ δ , if (x1, . . . ,x j + s, . . . ,xn ) ∈ D, then

F (x1, . . . ,x j , . . . ,xn ) ≤ F (x1, . . . ,x j + s, . . . ,xn ) .
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Likewise, we say that F is δ monotonically decreasing iff

F (x1, . . . ,x j , . . . ,xn ) ≥ F (x1, . . . ,x j + s, . . . ,xn ) .

In other words, upon increasing the input x j by a quantity

s ∈ [0,δ ], the output monotonically increases (decreases for a

monotonically decreasing function). The δ -monotonicity require-

ment makes no demands that that function F be continuous or

differentiable.

It is easy to see that any monotonic function is also δ -monotonic

but not vice-versa, since the domain D may not necessarily be

connected. Nevertheless, we use δ -monotonicity as a working re-

quirement for the insulin-glucose regulatory model. Specifically,

fixing a minimal increment for insulin δ = 0.1U, we wish to check

that for the same glucose history, increasing any of the insulin in-

puts by more than δ units yields an overall decrease in the predicted
blood glucose value.

5.1 Verifying Monotonicity in Neural Networks
In order to check if a neural network is δ -monotonic with respect

to some input x j , we leverage recent approaches for output range
estimation of neural networks, given constraints over the inputs.

The definition follows:

First, let N be a neural network computing function FN with

inputs x1, . . . ,xn and a single output x , and let φ[x1, . . . ,xn ] rep-
resent linear inequality constraints over the network inputs.

Definition 5.2 (Range Estimation). The range propagation prob-

lem asks for an over-approximate interval [ℓ,u] such that the lower

bound l satisfies

ℓ ≤ min {FN (x1, . . . ,xn ) | φ[x1, . . . ,xn ] holds} ,

and the upper bound u satisfies

u ≥ max {FN (x1, . . . ,xn ) | φ[x1, . . . ,xn ] holds} .

The range estimation problem asks for a conservative over-

approximation of the output of a network given constraints on

the inputs. In recent years, a profusion of approaches to solve this

problem has been proposed, employing ideas ranging from interval

analysis to mixed integer optimization [7, 21, 39, 45, 61].

In order to solve the δ -monotonicity problem, we take a network,

N , and create a composite network consisting of two identical

copies of the network placed side-by-side, Fig. 3.We then restrict the

input space such that the two copies share all inputs except the input

at a single location at which we wish to test the “δ -monotonically

decreasing” property (eg. index x j ), where they differ by amount

ϵ , such that 0 ≤ ϵ ≤ δ . Next, we take the difference of output

ranges between these two instances of the network and define this

difference as z. The input constraints φ are given as follows:

(x1, . . . ,xn ) ∈ D ∧

(x1, . . . ,x j−1,x j + ϵ,x j+1, . . . ,xn ) ∈ D ∧

x j ≤ x j + ϵ ≤ x j + δ
(1)

Wewill use the range estimation approach to estimate themaximum

and minimum values of the output z.

Lemma 5.3. A network N is δ -monotonically decreasing with re-
spect to input x j over a domain D if the maximum value of the output
z of the composite network under the input constraints (1) is non-
positive.

N N

x1 x2 · · · x j x j + ϵ x j+1 · · · xn

−

z

Figure 3: Scheme for checking δ-monotonicity of a network
with respect to a specific input location, x j . Here 0 ≤ ϵ ≤ δ .

To apply this approach to the insulin-glucose regulation net-

works, we utilize the framework presented in Fig. 3, and perform

analysis for each insulin input location by iterating through the

locations in sequence, eg. x j = I (j) where j = t − 30, t − 25, ..., t .
In order to consider model dynamics under physiologically rea-

sonable conditions, we employ constraints to the insulin and glu-

cose profiles, described below. For each case we employ physiologi-

cal constraints on the glucose domain D as:

(1) Blood glucose inputs must be with a “reasonable range” of

[40, 400] mg/dl.

®Gi ∈ [40, 400], i ∈ {1, . . . , 7} . (2)

(2) Themaximum change of blood glucose levels over a 5minute

period is bounded:

| ®Gi − ®Gi+1 | ≤ 25, i ∈ {1, . . . , 6} . (3)

As we wish to test insulin sensitivity across a wide range of

values, we allow insulin input at test location I (j) to be within a

bolus range of [0, 5] Units, stepping through at δ = 0.1 Unit steps.

This range is identified to be within the domain of validity of the

network through an analysis of the data set described in Section 4.3.

In general, it is considered “unreasonable” to see two large insulin

doses (boluses) within a 30 minute period. Thus, we restrict basal

insulin rates to lie in the range [0, 0.1] Units.

Ij ∈ [0, 5] ∧
∧
k,j

(Ik ∈ [0, 0.1]) . (4)

This procedure enables us to test conformance of each insulin

location independently. We then compute the sensitivity of each

input location as the max change in output range for each δ change

in input. The maximum positive sensitivity (increased output range

due to increased insulin) and negative sensitivity (decreased output

due to increased insulin) are computed independently.

5.2 Verification Results
We implemented the verification procedure for δ -monotonicity

using a mixed integer linear programming (MILP) encoding along

the lines used in many neural network analysis tools [7, 21]. The
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Figure 4: Plot showing sensitivity of each insulin input location for networksM1 (left),M2 (middle), andM3 (right). Differences
above 0 are shown in red since they correspond to a violation of the conformance property. Note that all plots have the same y-
axis ranges. The range of blood glucose values are [40, 400]mg/dL, the maximum 5minute change in blood glucose is restricted
to 25 mg/dL and insulin boluses are allowed in the range [0, 5] U.

verification is performed on the three networksM1-M3 described
in section 4.2.

We obtain a picture of overall conformance by observing themax-

imum positive and negative sensitivities across the entire domain

of insulin and glucose values. In Figure 4, we show how sensitivity

differs across each insulin input location within the three networks.

The insulin inputs are labeled t − 30, . . . , t to denote when the in-

sulin was given relative to the current time t . We note that networks

M1 andM2 clearly violate the property of interest, at times exhibit-

ing changes of almost 25 mg/dL Unit increases in glucose due to a

0.1 Unit increase in insulin. Note the alarming sensitivity of model

M2 where blood glucose can rise by as much as 250 mg/dL/Unit of

insulin at the t − 15 input location. The use of a small value δ = 0.1

that is comparable to basal insulin values further highlights the

lack of conformance.

Unlike networks M1, M2, we find network M3 verifiably con-

formant in that the insulin inputs are verified to monotonically

decrease the blood glucose predictions. Note that the observed sen-

sitivity of the network’s output to the change in insulin is also

smaller for networkM3 when compared to M1 andM2.
In addition to overall sensitivity, the use of MILP solvers allows

us to obtain concrete examples of glucose and insulin traces which

result in violations to the conformance property that increased

insulin should decrease glucose levels. Table 2 provides one such

example.

−30 −25 −20 −15 −10 −5 0 +60 (Pred)

Ins. 0 0 0.1 0.09 0 0 0

Gluc. 176 151 176 151 127 102 77 287

Ins. 0 0 0.1 0.2 0 0 0

Gluc. 176 151 176 151 127 102 77 313

Table 2: Counterexample trace showing conformance viola-
tion for networkM2 showing two different inputs: the same
glucose values are input in both cases, the insulin values dif-
fer only at times t−15. However, the increased insulin results
in an increased blood glucose level.

Although this counterexample is valid, it also demonstrates limi-

tations of the formal approach thus far: (a) the pattern of BG values

observed in this counterexample is seldom seen in actual patient

data; and (b) the counterexample involves zero insulin delivered

when the patient’s BG levels are near the upper limit of the normal

range. This scenario is also unrealistic in clinical practice.

In the following section, we address this limitation and check if

conformance violations exist in more realistic scenarios by using

the patterns of blood glucose values that are actually observed in

the user data.

5.3 Data-Based Verification Results
In the previous section, we formulated optimization problem that

checked for δ monotonicity for a range of “reasonable” glucose in-

puts and found networks M1 and M2 have significant conformance

violations. The linear inequality constraint approach enabled us

to properly test the networks by ensuring we capture all phys-

iologically possible glucose and insulin profiles. However, as is

highlighted by the counterexample in 2, the notion of what is a

“reasonable” input is difficult to capture through linear inequality

constraints alone. This begs the question: can we demonstrate lack

of conformance under more realistic inputs?

In order to address this question, we perform a secondary data-

based verification approach wherein the initial glucose traces are

constrained to be those observed in data.

Data Source: As we are testing sensitivity to glucose traces and

not model accuracy, initial glucose traces vectors consisting of 7

continuous values are pulled from both the training and testing sub-

sets of our clinical trial dataset described previously in Section 4.3.

We regard these values as samples from an underlying true dis-

tribution of values. The data set yielded N = 10, 800 such sample

inputs.

Analysis Approach: The analysis approach is identical to that

presented in section 5.1, which formulates constraints described

in (2), (3) and (4). However, rather than allow the glucose inputs

to be decision variables of the resulting MILP problem, we fix the

7 glucose inputs to a sample ®дj taken from the test data. In other

words, the constraints (2) and (3) are removed and replaced simply
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Figure 5: Plots showing network sensitivity at input locations t − 30, . . . t for networks M1 (left), M2 (middle), and M3 (right),
when glucose inputs are restricted to samples from clinical trial data. Differences above 0 correspond to a violation of the
conformance property and are hence shown in red.

−30 −25 −20 −15 −10 −5 0 +60 (Pred)

Ins. 0.1 0 0 0.21 0.1 0.1 0.1

Gluc. 81 79 77 76 75 72 43 181.4

Ins. 0.1 0 0 0.31 0.1 0.1 0.1

Gluc. 81 79 77 76 75 72 43 207.7

Table 3: Counterexample trace showing conformance viola-
tion for networkM2 for differing insulin inputs at time t−15
using actual blood glucose measurements from clinical trial
data-set: the same glucose values are input in both cases, the
insulin values differ only at times t − 15. However, the in-
creased insulin results in an increased blood glucose level.

by a constraint: ®G = ®дj , where ®дj is a sample from the data. The

insulin inputs, on the other hand, is allowed to vary as described in

the constraints (4). As a result, we solve N different MILP instances,

one for each sample ®дj , and compute the maximum/minimum over

the outputs obtained from each MILP.

Results: Fig.5, presents the results of maximum positive and neg-

ative sensitivity at each insulin input location for modelsM1-M3
when computed over the 10, 800 sample glucose inputs taken from

the clinical trial data. We observe that the bounds are nearly iden-

tical to those seen in Figure 4 which used constraints on glucose

ranges and difference between successive glucose inputs. This indi-

cates that the alarming conformance violations detected in models

M1-M2 were not edge cases and are observable under clinically ob-

served glucose input values. One such case for model M2 is shown
in Table 3 (compare with violation reported in Table 2). Note that

the blood glucose levels in this counterexample are taken from ac-

tual clinical trial data and are thus viable in practice. Also note that

the relatively small insulin dose is consistent with insulin delivery

when blood glucose levels are low. However, we see an increase of

0.1 in the insulin given causes an increase in the predicted blood

glucose values.

5.4 Domain of Validity
The domain of validity for a network is defined as the region of

inputs for which the network produces valid outputs, which can

Mode Mean Median Max Min
Glucose 400 191.3 175 40 400

Insulin 0.0208 0.0614 0.0208 0 5.17

Table 4: Descriptive statistics for the data set on modelsM1-
M3 were trained, separated by glucose (CGM) and insulin
inputs.

be estimated roughly by considering the convex hull of the set of

learning points [14]. Importantly, how well a network is able to

generalize depends on the distance of the unseen pattern to the

domain of validity for the network.

In this section, we present a detailed discussion of network dy-

namics and conformance results when tested within various re-

stricted input ranges both within and outside the convex hull of

learning points for both insulin and glucose values, and demon-

strate how dynamics, even within the domain of validity, may vary

significantly depending on distributions of underlying data.

Training Data: We first present details of the dataset available for

training the predictive models. In the case of both insulin and glu-

cose data, we find that while a wide range of values are represented,

Table. 4.

However, we note distributions within these ranges are highly

skewed, Fig. 7.

For insulin data, we find that 98% of values fall into the basal
insulin category of < 0.1 Units. This is to be expected as basal

insulin is typically delivered every 5-minutes throughout the day,

while bolus values occur only around meal time (pre-meal or correc-

tive post-meal bolus). With respect to glucose values, we note the

particularly uneven distribution across the three clinically defined

ranges:

(1) The hypoglycemic range of [40, 70] mg/dL.

(2) The normal euglycemic range of [70, 180] mg/dL.

(3) The hyperglycemic range of [180, 400] mg/dL.

We note these ranges are bounded to [40, 400] mg/dL due to sensor

bounds and that levels about 300 mg/dL correspond to a dangerous

condition called diabetic ketacidosis (DKA).
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Figure 6: Effects of changing the 5minute difference in BGvalues to 25mg/dL for networksM1 (left),M2 (middle) andM3(right).
The range of glucose inputs is [70, 180]mg/dL. Compare with the middle row Figure 8.

Figure 7: Distribution of glucose values within training
dataset. Note sensor range is [40, 400].

Overall we find that 44% of values fall into the euglycemic range,
48% fall into the hyperglycemic range, and only 6% fall into the

hypoglycemic range.

Effects of Restricting Glucose Profiles: While the training data

ranges from 40 to 400mg/dL, the distribution of data within this

range is quite skewed towards high glucose values, Fig. 7. Herein

we demonstrate how model dynamics (sensitivities) are affected by

the underlying distribution of training data.

We consider the three clinical scenarios of hypo, hyper, and

euglycemia separately. As values above 300mg/dL are consistent

with DKA, we restrict the hyperglycemic range to be [180,300]

mg/dL. We also restrict the maximum 5 minute change in blood

glucose levels to a more conservative 15 mg/dL, to better represent

the typically observed changes in glucose.

Figure 8 shows the range of differences in network sensitivities

when the blood glucose levels are constrained within the hyper-

glycemic, euglycemic and hypoglycemic ranges, respectively. Under

these conditions, we note that networks M1 and M2 continue to
show conformance violations but they are markedly smaller espe-

cially in the hyperglycemic range. On the other hand, the violations

become much larger for the hypoglycemic and euglycemic condi-

tions.

We propose two aspects which may contribute to the “less bad”

conformance results when glucose values are constrained to the hy-

perglycemic range. First, the distribution of glucose values within

the training dataset is skewed towards the hyperglycemic range

with a mean of 191.3 mg/dL and 48% of values falling into this range

(32% within the more restrictive non-DKA hyperglycemic range of

[180,300] mg/dL). Additionally, the type of glucose-insulin relation

most often observed within this range is the correction bolus: an

individual takes a larger dose of insulin due to high blood glucose

values, with no meal occurring, resulting in a bolus followed by

a drop in glucose values. This could contribute to the networks

becoming more biased towards learning the desired negative sen-
sitivity relation. Albeit we note this is not enough as networks

M1,M2 still exhibit non-conformance.

Furthermore, we find the split structure network, M2, has a
notable change in output sensitivity when we allow the 5-minute

change in blood glucose to be further restricted from 25mg/dL

(Fig. 4) to 15mg/dL (Fig. 8).While sensitivities of networkM1 change
very slightly, network M2 shows decrease in max sensitivity of

about 15 mg/dL for a 0.1 U change in insulin. We note the accepted

clinically reasonable change in blood glucose is 5mg/dL/min (or,

25mg/dL per 5 minutes).

Effects of Varying Max Insulin: Interestingly, the verification re-

sults in Figures 4 do not change when the maximum insulin bolus

is varied beyond the domain of validity of the networks (0 − 5.17)

to the range 1 − 10.0 Units of insulin. This suggests that the worst

cases are also achieved under small insulin doses (see Tables 3, 2,

for instance). As a result, changing the limit on maximum insulin

has no effect on the worst cases showing conformance violations.

6 CONCLUDING DISCUSSION
With the ever increasing use of neural-network-based process mod-

els within advisory settings, it is vital that these networks conform

to known scientific laws which govern the underlying processes.

Whereas significant work has been done to identify adversarial

cases and “explain” such models utilizing simpler models, until

now, little work has been done to formally test the time-dependent

dynamics of these models, and check conformance to known phys-

iological facts. In this work, we develop a formal verification-based

approach for checking dynamics of neural network models enables

the analysis of time-varying dynamics of trained networks, and

quantification of the extent to which a network conforms to a

specified property.
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Figure 8: Plot showing model sensitivity of each input location for models M1 (left column), M2 (middle column), and M3
(right column). Top row: blood glucose ranges [180, 300] mg/dL, middle row: blood glucose ranges [70, 180] mg/dL and bottom
row [40, 70]mg/dL.Max positive sensitivities are shown in red since they correspond to a violation of the conformance property.
Note that all plots have the same y-axis ranges.

We have demonstrated how this approach may be utilized to

verify if the dynamics of neural network models used to predict

blood glucose values conform to the key underlying process that in-

creased insulin should result in decreased blood glucose values. We

have shown how verification results may be utilized to understand

sensitivity of networks, both for different locations in input history,

as well as for different regions within the domain of validity of

training data (eg. hypo, hyper, and euglycemic ranges).

The main conclusion of this paper is that obtaining monotonicity

guarantees over a large range of possible inputs is hard for neural

networks unless the monotonicity is guaranteed through a com-

bination of a careful choice of network topology and constraints

over the weights.

By providing a framework to rigorously test conformance of a

network to key underlying physiology, we demonstrate how we

may analyse and guarantee safer neural networks which may be

used in an advisory manner even in cases of previously unseen

patterns in data. This is a first step towards providing more formal

guarantees to neural network models, and overcoming limitations

in training data in the case where data may be limited, such as in

medical research.
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