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Abstract—We consider the problem of parameter synthesis for
black-box systems whose operations are jointly influenced by a set
of “tunable parameters” under the control of designers, and a set
of uncontrollable stochastic parameters. The goal is to find values
of the tunable parameters that ensure the satisfaction of given
performance requirements with a high probability. Such problems
are common in robust system design, including feedback con-
trollers, biomedical devices, and many others. These can be nat-
urally cast as chance-constrained optimization problems, which
however, are hard to solve precisely. We present a simulation-
based approach that provides a piecewise approximation of a
certain quantile function for the responses of interest. Using the
piecewise approximations as objective functions, a collection of
local optima are estimated, from which a global search based
on simulated annealing is performed. The search yields tunable
parameter values at which the performance requirements are sat-
isfied with a high probability, despite variations in the stochastic
parameters. Our approach is applied to three benchmarks: an
insulin infusion pump model for type-1 diabetic patients, a robust
flight control problem for fixed-wing aircrafts, and an ODE-based
apoptosis model from system biology.

I. INTRODUCTION

Model-based design has become a common practice for
developing a variety of systems ranging from electronic cir-
cuits to embedded control systems. It also helps scientists to
understand the behavior of complex biochemical systems that
govern fundamental biological processes such as programmed
cell death. Working with large nonlinear mathematical models
requires sophisticated tools to synthesize and verify system
behaviors. This is often hard in the presence of numerous
model parameters, whose changes can drastically affect the
functionality of models and thus the overall behavior of a
system. Usually these parameters arise in two categories,
“tunable parameters” that can be set by the designers, and
stochastic parameters that represent modeling error, inherent
uncertainties and environmental disturbance.

In this paper, we examine the problem of adjusting tun-
able parameters in the presence of uncontrollable stochastic
parameters specified by a probability distribution. Examples
of tunable parameters include gains and switching thresholds
for controller design, and kinetic rate constants for biochem-
ical reaction models. Our goal is to find values of tunable
parameters that satisfy given performance requirements. Rather
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than optimizing the worst-case performance, we use a chance-
constrained optimization formulation that optimizes a given
quantile of the relevant response. Stated otherwise, we wish to
find a threshold such that the probability that the performance
level stays below the threshold is at least some value θ under
stochastic variations. For example, the specification of a PID
controller requires that with a probability of at least 95%, the
settling time of its step response is less than 10 ms.

We tackle chance-constrained problems for which models
and performance functions are not available in closed forms, or
too complex to handle even if the closed forms are available.
Therefore, we adopt a simulation-based approach. Conceptu-
ally, we cast the chance-constrained problem into a related
optimization problem over the θ-quantile of a performance
function. Under this formulation, we use a quantile regression
procedure to construct a piecewise approximation of the θ-
quantile function [1]. Such a model defines a set of locally op-
timal tunable parameter values. Once the model is constructed,
we perform a global optimization over the set of locally
optimal points, which results in a globally optimal solution.
The solution is checked against the performance function to
determine whether the performance requirements are satisfied.
If not, the procedure refines the approximation and iterates.

Our approach is evaluated over three applications. The first
one is a parameter tuning problem for a nonlinear insulin-
glucose system [2], which has 3 tunable and 15 stochastic
parameters. The second is a robust flight control system,
which has 27 tunable and 73 stochastic parameters. We also
study a biochemical model which describes the dynamics of
externally triggered programmed cell death [3]. It involves 71
tunable parameters for kinetic rate constants and 17 stochastic
parameters for uncertain initial concentrations. Our approach
tunes the rate constants so that the behavior of the model
matches experimental observations. In each application, we
show how our approach can find tunable parameter values that
result in satisfactory performance with high probabilities.

A. Related Work

Chance-constrained optimization has been studied and al-
gorithms have been proposed for restricted situations [4]–
[6]. It provides an alternative solution to traditional robust
control design problems. Tempo et al. summarizes the research
of this area in their book [7]. We refer the reader to this
book and references therein for further details. The main
distinction between this line of work and our work lies in



the assumptions about performance functions. Their approach
deals with convex performance functions such as H∞ over
(linear) models given in closed forms. Like ours, their approach
samples the stochastic parameters. However, well-known in-
equality bounds such as the Chernoff-Hoeffding bounds and
the Uniform Convergence of Empirical Means are used to
relate the required sample size with error bounds between
the estimated performance and the actual value. Using these
building blocks, they propose approaches such as sequential
design and scenario-based design that find parameter values by
solving convex problems [8]. In contrast, our approach does
not make assumptions about the performance functions and
treats the model as a black box. Simulation through sampling
and regression are used to construct models. This generality
comes at a cost: whereas our approach provides probability
guarantees on the final answer (if one is found), it does not
provide guarantees on the search process for this answer.

The parameter tuning problem has been considered by
Zhang et al. [9]. Their approach fits a linear approximation
of the quantile function, which is used to search for a design
point in the entire space. This is suboptimal since single linear
approximations can hardly capture complex quantile functions.
In contrast, our approach uses a piecewise approximation that
combines models built over subsets of the parameter space. It
is shown that our approach outperforms theirs which could not
handle the apoptosis model studied in Section V-C.

Our approach builds on advances in statistical model
checking (SMC). SMC combines simulation with hypothesis
testing to deduce useful bounds on the probability of satisfying
temporal properties with high confidence [10]–[12]. It can
be viewed as a synthesis approach, which finds parameter
values that enables a statistical model checker to certify the
probabilistic performance requirements of a system. Such an
example can be found in the work of Palaniappan et al. [13]
and Jha et al. [14]. Our approach differs in that before
attempting to optimize, it first uses simulation to model the
quantile function. As a result, our approach utilizes far fewer
simulations. There are also work in the SMC community that
aim to verify the correctness properties under the worst case
values of non-deterministic parameters [15], [16].

II. PROBLEM SETUP

This section introduces some preliminary notions and pro-
vides an overview of the proposed approach. First, we define
the notion black-box systems as follows.

Definition 2.1 (Black-Box System): A black-box system
M is a tuple 〈P,Q, r1, . . . , rn〉 where P ⊆ Rm is a set of
tunable parameter, Q ⊆ Rk is a set of stochastic parameters,
and r1, . . . , rn are response functions ri : P×Q 7→ R mapping
each parameter value to a real-valued response.

In a black-box system, tunable parameters can be assigned
to fixed values. In contrast, stochastic parameters are uncon-
trollable and follow an assumed distribution D. For simplicity,
we fix n = 1, considering just one response function. Response
functions are assumed computable, either through simulation
or physical measurements. Having fixed the tunable parameter
values, a response can be regarded as a random variable
whose distribution depends on the stochastic parameters and

the dynamics of the system. Let ri(p) denote the random
variable as a function of p for response ri for q ∼ D.

Problem statement: Given a black-box systemM, we intend
to find tunable parameter values p ∈ P such that the with a
probability of at least θ, the response is below a threshold r0.

find p ∈ P s.t. Prob
q∼D

(r(p,q) ≤ r0) ≥ θ . (1)

Eq. (1) provides a constraint r0 on the θ-quantile of the
response r. As such, Eq. (1) is called a chance constraint. We
may alternatively express a related formulation wherein the
maximum permissible level r0 is formulated as an objective
function. To do so, we recall the notion of a θ-quantile.

Definition 2.2 (Quantile): Let X be a random variable and
θ ∈ (0, 1). The θ-quantile of X , `θ(X), is the value x below
which the cumulative density is θ, i.e., Prob(X ≤ x) = θ.

Recall that r(p) is a random variable that characterizes
the spread in response for a fixed p. Denote `r,θ(p) as the
θ-quantile of the random variable r(p). Eq. (1) can be written
as the problem of finding p ∈ P such that

`r,θ(p) ≤ r0 . (2)

Eq. (2) is a feasibility problem that answers “yes” or “no”. In
many cases, it is better to consider the optimization version of
this problem that minimizes the quantile function,

min
p∈P

`r,θ(p) . (3)

For responses that larger values are preferred to smaller ones,
their negations are taken into Eq. (2) and Eq. (3).

Our goal is to solve the chance-constrained problem (1)
given a system M, a probability θ and a response threshold
r0. The search for a tunable parameter p is formulated as an
optimization in Eq. (3) that terminates as soon as p is found
such that `r,θ(p) ≤ r0. In the case that responses are not
required to be optimized (e.g., Section V-C), the feasibility
formulation in Eq. (2) is used instead.

Example 2.1: Figure 1 shows a closed-loop control sys-
tem [17]. The plant consists of two rigid bodies and a spring.
The masses and the spring constants are uniformly distributed
stochastic parameters, m1 = 1.0 ± 20%, m2 = 1.0 ± 20%
and k = 1.0 ± 20%. A force u is applied to m1 and the
position of m2 is measured as the output y. A lead compensator
controls y to track the change of yref , a reference position. It
has two tunable parameters: the pole p ∈ [−1200,−800] and
the zero z ∈ [−1.2,−0.8]. Consider two responses (1) rs - the
settling time, and (2) ro - the overshoot as a percentage of the
steady state value. With the constraints Prob(rs ≤ 2.5) ≥ 0.95
and Prob(ro ≤ 15%) ≥ 0.95, our approach constructs
approximations of the quantile functions `rs,0.95 and `ro,0.95.
A global search on the approximations leads to the optimal
tunable parameter values p = −1200 and z = −0.93.

A. Overview of Proposed Approach

Figure 2 shows an overview of the proposed approach.
The idea is to construct a piecewise model hr,θ(p) of the
quantile function `r,θ(p) using simulation, which substitutes
`r,θ in Eq. (2) or Eq. (3). Simulation is done with randomly
sampled tunable and stochastic parameters. The former are
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Fig. 1: The plant (left) and the closed loop system (right).
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Fig. 2: A high-level flow of the proposed approach.

sampled uniformly to explore the space P , and the latter are
sampled according to the distribution D. For systems with a
large number of tunable parameters, it is expensive to generate
data that sufficiently explore the space P . To best utilize the
existing data, we introduce a procedure called marginalization.
It constructs a series of restricted models g1(p), . . . , gk(p) for
overlapping subsets S1, . . . ,Sk ⊆ P . For any point p ∈ P , the
approximated quantile value is implicitly defined by averaging
the models that cover p.

Once the approximation hr,θ is built, we perform simulated
annealing to find a global minimum p∗ of hr,θ. For an ap-
proximation with small error, p∗ is expected to be close to the
actual minimizer. A check is performed to determine whether
p∗ satisfies Eq. (1). Failing this, we refine our approximation
by a finer-grained subdivision of the parameter space.

B. Feasibility Check

The check of whether p ∈ P satisfies Eq. (1) serves as the
termination criterion for our search and is performed at the
end of each iteration. However, unless the response function
r is given in a simple closed form and the distribution D is
explicitly defined (e.g., normal distribution), performing this
check can be prohibitively expensive if not impossible.

We resort to statistical hypothesis testing to decide Eq. 1.
It consists of deciding between two competing hypotheses,

H1 : Prob
q∼D

(r(p,q) ≤ r0) ≥ θ , H2 : Prob
q∼D

(r(p,q) ≤ r0) < θ ,

and has been studied using various sequential hypothesis
testing techniques in statistics, including the use of Wald’s
sequential probability ratio test [18] and Jeffreys’ Bayes factor
test [19]. Recent work on statistical model checking has
proved the power of these approaches to check probabilities
of property satisfaction in stochastic systems [10]–[12].

Another approach using Chernoff-Hoeffding bounds is sug-
gested by Tempo et al. [6], [7]. It estimates θ∗, the probability
of r(p∗,q) ≤ r0, with an error bound ε and confidence level
δ ∈ (0, 1). The idea is to choose a sample (q1, . . . ,qN ) of
size N ≥ − log(δ)/2ε2, and compute the fraction θ̂N that
r(p∗,qi) ≤ r0. Through Chernoff bounds it is shown that

Prob(|θ∗ − θ̂N | > ε) ≤ δ .

Example 2.2: For approaches based on Chernoff bounds,
with ε = δ = 0.01, a sample of size N ∼ 23000 is required.

The sample guarantees that we can approximate θ∗ with an
error bound ε = 0.01 with a probability of 1 − δ = 0.99.
On the contrast, sequential hypothesis tests do not attempt
to estimate θ∗. Rather, they examine enough evidence to
decide between H1 and H2. Furthermore, the nature of the
guarantees are “softer” than those provided by the application
of Chernoff bounds that hold regardless of the actual value of
θ∗. Therefore, in our experience, hypothesis testing techniques
need much smaller sample sizes.

In this paper, we use Bayesian sequential hypothesis testing
“out-of-the-box” [11] to test Eq. (1). We set the threshold for
the Bayes factor to 100 in our experiments.

III. QUANTILE FUNCTION MODELING

This section introduces how to model a quantile function
`r,θ using simulation data. Our approach relies on two tech-
niques, quantile regression and marginalization. The former is
a regression technique that fits functions to a desired quantile
of data. The latter is heuristic to construct piecewise models. It
is particularly useful when data are limited and cannot “cover”
the entire parameter space. These two techniques together
result in a piecewise approximation of the quantile function.

A. Quantile Regression

Consider the problem of approximating the quantile func-
tion `r,θ(p) given a set of simulation data. For a simple case,
suppose that a linear function of the form

gθ(p; c) = c0 +

k∑
i=1

cipi

is used to model `r,θ(p), where c = (c0, c1, . . . , ck) are
unknown coefficients and pi is the ith tunable parameter.
Conceptually, the coefficients c are calculated by minimizing
the error between `r,θ and gθ. However, it is unlikely that
`r,θ is available in practice. In fact, it is usually impossible to
explicitly evaluate `r,θ(p) for a given p.

One solution to this problem is known as quantile regres-
sion, which fits functions to some quantile of data. We provide
a brief sketch and refer the interested readers elsewhere [1].
Given the simulation data {pi,qi, r(pi,qi)} of size N , quan-
tile regression uses the following loss function,

ρθ(e) = θ
∑
ei>0

|ei|+ (1− θ)
∑
ei≤0

|ei| , (4)

where e = (e1, . . . , eN ), and ei = r (pi,qi) − gθ(pi) is the
error between the response and the approximation. Unless θ =
0.5, Eq. (4) places asymmetric losses on positive and negative
errors. For θ > 0.5 (θ < 0.5), positive (negative) errors incur
more loss and are minimized. The loss function (4) leads to
the following optimization problem.

min
c
ρθ (e) . (5)

Since Eq. (4) is piecewise linear (and thus convex), the
optimization has a unique minimum. Eq. (5) can be solved



as a linear program [1] by adding auxiliary variables s =
(s1, . . . , sN ) and t = (t1, . . . , tN ), which is then written as

min
c

θ

N∑
i=1

si + (1− θ)
N∑
i=1

ti

subject to
r (pi,qi)− gθ (pi; c) = si − ti, i = 1, 2, . . . , N ,

s ≥ 0 , t ≥ 0 .

(6)

Intuitively, s encodes the positive errors and t encodes the
negative ones. Since the difference between si and ti equals
to the error ei, at least one of them should be zero so that the
objective value is minimized.

B. Piecewise Model

Quantile regression extends naturally from fitting linear
models to nonlinear (e.g., polynomial) ones that are expressible
as a linear combination of chosen basis functions. Hence, it can
directly construct a single model of `r,θ(p) that minimizes the
approximation error. This approach has been used by Zhang
et al. [9]. However, it requires a large sample to adequately
“cover” the parameter space P . Furthermore, since the shape
of `r,θ is not known a priori, the use of a single functional
form to fit the entire space is unlikely to be scalable.

An alternative is to subdivide P into hypercubes by choos-
ing a partition along each dimension pi, and fit a model for
each hypercube. If the hypercubes are small enough and we
are able to draw sufficiently large samples, guarantees can be
obtained to bound the error between the approximations and
`r,θ restricted to each hypercube. However, subdividing P is
expensive for even a few parameters. With each dimension
pi partitioned into Ki subsets, P is subdivided into

∏n
i=1Ki

hypercubes. Furthermore, constructing a separate model for
each hypercube is also impractical unless we can afford
drawing samples in proportion to the number of hypercubes.
For a fixed sample size, there will be very few observations in
each hypercube due to the curse of dimensionality.

As such, we see that both extremes are problematic. Single
functional models cannot be accurately constructed in general,
whereas a full tiling of the parameter space cannot scale
beyond a few tunable parameters.

C. Marginalization

To address these difficulties, we propose a solution called
marginalization to implicitly construct piecewise models with-
out incurring an exponential cost. The idea is that for a
hypercube, instead of drawing samples within the hypercube
and fitting a model, we fit multiple models, each of which
is a superset of the hypercube. These models are called M-
models. For any point p in the hypercube, an approximation
of `r,θ(p) is taken to be the average of the approximations
from the M-models, thus implicitly defining an approximation
for the hypercube. Let m be the number of tunable parameters.
Marginalization is done in the following steps.

1) The range Ii of each parameter pi is partitioned into Ki

intervals Ii,1, . . . , Ii,Ki
;

2) For each interval Ii,k of parameter pi, define a M-cell as

Ci,k = {pi ∈ Ii,k and ∀j 6= i . pj ∈ Ij} .
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Fig. 3: Illustration of marginalization. The ranges of both x
and y are partitioned into three intervals. The model h1,1 of
the bottom-left cube is the average of the models gx,1 and gy,1
for M-cells Sx,1 and Sy,1.

A set of M-cells is complete if it has a size of m and
each M-cell is for an interval of a unique parameter;

3) For each M-cell, apply quantile regression to fit a linear
model gi,k (i.e., an M-model) of the quantile function `r,θ
using simulation data within the M-cell;

4) Each hypercube is the intersection of a complete set of
M-cells, Hk1,...,km =

⋂m
i=1 Ci,ki . For any point p ∈

Hk1,...,km , a linear approximation of `r,θ is defined as

hk1,...,km(p) =
1

m

m∑
i=1

gi,ki(p) .

We call the partitioning of parameter ranges in Step 1 a
subdivision of the parameter space. Note that Step 4 in the
above procedure is not actually executed. It merely shows how
to define the piecewise model from M-models. In Section IV,
the piecewise model is constructed “on-the-fly” during opti-
mization. It can be seen that the process of averaging models
results in averaging the error between the quantile function `r,θ
and the individual models gi,k. Figure 3 shows an illustration
of the procedure for a simple two-dimensional case.

For a subdivision that partitions each dimension pi into Ki

intervals, a system with m tunable parameters has
∑m
i=1Ki

M-cells. Therefore, marginalization takes
∑m
i=1Ki quantile

regressions to approximate `r,θ. Compared with the case of
explicit model construction for each hypercube, this approach
clearly incurs much lower cost in computation. Furthermore, it
does not require data in each hypercube, which is convenient
and also reduces the need for simulation.

IV. OPTIMIZATION

Given a subdivision of the parameter space, the marginal-
ization procedure leads to an implicitly defined piecewise
linear approximation hr,θ of the true quantile function `r,θ.
It is defined as for all (k1, . . . , km),

hr,θ(p) =
1

m

m∑
i=1

gi,ki(p) if p ∈ Hk1,...,km . (7)

An optimization with piecewise linear objective is obtained by
substituting Eq. (7) for `r,θ in Eq. (3). However, there is no



guarantee that the resulting problem is well-defined, since hr,θ
is generally discontinuous (thus non-convex) and implicitly
defined with exponentially many pieces.

Instead of using hr,θ as a single function, notice that
each piece is a linear model for the corresponding hypercube.
Finding the optimum in the hypercube with respect to the linear
model only involves selecting an appropriate vertex. Therefore,
we restrict our search to the discrete vertices in the tiling of
the state space and utilize simulated annealing over this lattice
to find a global optimal point for hr,θ.

Conceptually, the simulated annealing algorithm performs
a random walk over the lattice by moving from one hypercube
to a neighboring hypercube. Upon doing so, the optimal loss
value of the new hypercube is computed. If it improves over
the previous best loss, the move is accepted and the search
proceeds from the new hypercube. Otherwise, the move may be
accepted or rejected depending on the outcome of a coin toss.
The probability of accepting non-optimal moves is initially
high but subsequently lowered according to a cooling schedule.
When temperature is high, the algorithm explores the state
space randomly since there is a large chance to accept a
hypercube with a worse loss value. As temperature cools,
the algorithm focuses on local search, resulting in locally
optimal solutions. It can be shown that with a proper cooling
schedule, simulated annealing converges to the global optimal
solution [20]. In this paper, we adopt a linear cooling schedule
with a cooling coefficient of 0.8.

Once a solution p∗ is found, we need to check whether
it indeed satisfies Prob(r(p∗,q) ≤ r0) ≥ θ. As mentioned in
Section II-B, this is done by Bayesian sequential hypothesis
testing. If the check fails, a finer-grained subdivision of the
tunable parameter space is chosen, and the modeling and
optimization procedure is performed again. In practice, there
is not a general guild-line for the granularity of subdivisions,
which should be decided experimentally.

Optimizing over multiple responses. In the presence of
multiple responses, optimality needs to be defined in sophis-
ticated ways. For example, let `r1 and `r2 be the quantiles of
two responses r1 and r2. Is `r1 = 1 and `r2 = 100 better
than `r1 = 0.9 and `r2 = 110? The answer depends on both
the importance of the responses and their “usual” magnitude
of variations. To handle multiple responses, we introduce the
following scalarized objective function

min
p∈P

n∑
i=1

wizihri,θ(p) ,

where n is the number of responses, wi is the weight that
represents the relative importance of the ith response, and zi
is a normalization constant that brings the values of hri,θ to
a comparable range. The weights are set to 1 by default and
can be specified by designers. The normalization constant zi
is taken to be the inverse of hri,θ(p) at the nominal tunable
parameter values. The rationale is that the nominal parameter
values represent the performance level on average.

V. EXPERIMENTAL EVALUATION

We evaluate the proposed approach using three benchmark
examples. They include an insulin pump model for type-1

Diabetic
Patient

Background
Infusion

Insulin Bolus
Compensation

Glucose Level Monitor

Fig. 4: A model of an insulin pump.

diabetic patients, a flight control model for fixed-wing aircraft,
and an extrinsic apoptosis reaction model. The first two models
are control systems suffering from stochastic variations. The
third one is an ODE model derived from the biochemical
kinetics of protein interactions, used to study the fundamental
process of cell death. We include it to demonstrate that our
parameter synthesis technique can be applied to benchmarks
other than control systems.

For all the benchmarks, we consider three cases, each of
which utilizes different numbers of simulations for regression
(i.e., 500, 1000 and 2000 respectively). We fix the initial
number of subdivisions to be 5 along each dimension. Upon
each iteration, it is multiplied by a factor of 1.5, which is
experimentally determined.

For comparison, we implement the approach by Zhang
et al. [9]. All the experiments are performed on a Macbook
Pro running OSX 10.10.3, which has a 2.6GHz Intel Core i5
CPU and 8GB memory. The implementation is done in Matlab
R2015a. The convex optimization solver CVX [21] is used to
solve linear programs.

A. Insulin Infusion Pump

Insulin infusion pumps are commonly used by type-1
diabetic patients to control their blood glucose levels. These
pumps supply insulin at programmable rates over time. Typi-
cally, the use of insulin infusion pumps has two components:
(a) continuous background infusion provided at a fixed basal
rate to offset the endogenous glucose production, and (b)
a fixed amount of insulin bolus to cover elevated glucose
levels, especially after a meal. Figure 4 shows a diagram for
such pumps. Usually, the basal rate (basalRate) is set by
trial and error until the glucose level remains steady during
fasting conditions (e.g., overnight). Likewise, the bolus dosage
is calculated based on a fixed insulin to carbohydrate ratio
(icRatio) and a correction factor (cor). The parameter icRatio
reflects for a unit of carbohydrate in a meal, how much insulin
is required to compensate the increase of glucose levels. On
the other hand, the correction factor cor determines the dosage
when glucose levels become higher than desired. Note that all
the three parameters are patient-specific.

Ideally, human blood glucose level should be between 70
mg/dL and 180 mg/dL. A level below 70 mg/dL induces
hypoglycemia, and a level above 180 mg/dL is considered
hyperglycemia. In recent years, mathematical models of the
insulin-glucose regulatory system emerge to help find robust
parameter values that yield a good control over glucose levels.
This is especially important since varying timing and carbo-
hydrate amount of meals can deteriorate the effectiveness of
a predefined infusion scheme, thus causing hypoglycemia or
hyperglycemia. The goal of this case study is to find robust
parameter values under meal uncertainties.



We use a pump model developed by Sankaranarayanan et
al. [2], which is based on the human insulin-glucose regulation
model proposed by Dalla Man et al. [22]. As mentioned, the
model has three tunable parameters, basalRate, icRatio and
cor. Simulation is done for a 24-hour period, during which
patients take five meals. The start time and the duration of
each meal, and the amount of carbohydrate in each meal are
assumed to follow certain distributions, leading to a total of
15 stochastic parameters. A virtual set of in-silico patients
published by Dalla Man et al. [22] is employed for param-
eter synthesis. In this experiment, we consider hypoglycemia
more critical than hyperglycemia since it can cause seizures,
unconsciousness and even death. Hence, with Gmin being the
lowest glucose level during simulation, we require that the
probability of hypoglycemia is at most 1%,

Prob(Gmin ≥ 70mg/dL) ≥ 0.99 .

Besides, we intend to optimize the overall glucose level of
patients, which sets up the following optimization problems

min `−Gmin ,θ , min `Gmax ,θ , and min `−R,θ .

The response Gmax is the highest glucose level and should be
minimized. R is the percentage of time that the glucose level
is between 70 mg/dL and 180 mg/dL. Both Gmin and R
should be maximized, leading to the use of their negations in
the above formulation. We set θ = 0.99. Since it is acceptable
as long as Gmin ≥ 70mg/dL, we assign a weight of 0.2 to
Gmin and 1 to the other two responses.

We synthesize the three tunable parameters, basalRate ∈
[0.1, 1], icRatio ∈ [0.01, 0.1] and cor ∈ [0.01, 0.1], for three
different patients. The results are shown in Table I. The
nominal parameter values are tuned for each patient without
taking the meal uncertainties into account. Comparing the
performance at the predicted parameter values by our approach
(column “Performance”) and the nominal performance (col-
umn “Nominal”) we see that for all three patients, the peak
glucose level is lowered and the time without hyperglycemia
is extended. For patient 1 and 3, the resulting parameter values
also move the glucose level trajectories upward, thus staying
away from hypoglycemia. We also include a comparison
with the approach proposed by Zhang et al. [9] under the
“zhang2014” column 1. In most cases, our approach results in
a better-performed system in terms of Gmax and R. For Gmin ,
both approaches bring it above 70 mg/dL. Hence, we conclude
that our approach outperforms their approach in general.

B. Aircraft Flight Control

Orientation control in three dimensions is a critical subject
in the study of fixed-wing aircraft dynamics. Rotations about
the vehicle’s center of mass generate three flight dynamics
parameters, pitch, roll and yaw, which are angles from a
defined steady flight equilibrium state. These angles are also
known as angle of attack (AOA), bank angle and sideslip angle
(i.e., heading), respectively.

In aerospace engineering, fixed-wing aircrafts are often
modeled as control systems. Such a system includes actuators,

1Due to limited space, we only show the resulting performance values of
their approach. A complete table is available at https://www.dropbox.com/s/
7813xjp5x66fe1s/iccad table.pdf?dl=0.
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Fig. 5: An aircraft flight control model.

which exert forces in various directions, and generate rotational
forces or moments about the aerodynamic center of the aircraft,
and thus rotate the aircraft in pitch, roll, or yaw. Figure 5 shows
a control system model, which is available from the Matlab
Robust Control Toolbox (R2015a). The aircraft is modeled as
a 6th-order linear system with state matrix A and input matrix
B. The state variables include the velocities (u, v, w) on the
three dimensions, the pitch rate q, the roll rate p and the yaw
rate r. The output consists of the bank angle µ, the angle of
attack α, and the sideslip angle β. By setting proper amount of
deflections for elevators, ailerons and the rudder, the controller
controls the three angles µ, α and β so that they track changes
of the reference angles µ0, α0 and β0.

The controller consists of a state feedback component and
an integral control component, which are modeled by two gain
matrices, Kx and Ki, respectively. The matrix Kx has a size
of 3×6, and Ki of 3×3. Thus, we have a total of 27 tunable
parameters. The stochastic parameters arise from modeling
uncertainties in the state matrix A and the input matrix B,
and the stochastic wind disturbance. This leads to a total of
73 stochastic parameters.

This case study aims to find values of Kx and Ki that yield
the best tracking performance on µ, α and β. The performance
is defined by the settling time and the percentage of overshoot
from the steady state of each angle. These performance metrics
should satisfy

Prob(settling time ≤ 7.5s) ≥ 0.99 ,

Prob(overshoot ≤ 8%) ≥ 0.99 .

To achieve this, we minimize the 0.99-quantile of these perfor-
mance metrics. With θ = 0.99, this leads to the minimization
of the following quantile functions (s stands for “settling time”
and o for “overshoot”)

`r,θ , r ∈ {µs, µo, αs, αo, βs, βo} .

For parameter synthesis, a reasonable range is assigned to each
parameter in the matrix Kx and Ki.

An interesting comparison with our method is to search for
tunable parameter values at random and test if the resulting
responses satisfy Eq. (1). We randomly choose 200 points
in the tunable parameter space and use Bayesian sequential
hypothesis testing to test (1). The process takes around 8 hours,
since each test itself requires tens or hundreds of simulations.
Only 6 out of 200 pass the hypothesis testing. As a result,
finding a design point at random that satisfies our criteria has
a chance as low as 3%, which makes it a hard problem for a
pure guessing approach.



ID Sim Time(s) Iter Params Performance Nominal zhang2014
basalRate, icRatio, cor Gmin Gmax R Gmin Gmax R Gmin Gmax R

1
500+471 59 1 0.64, 0.082, 0.028 97.3 228.6 80%

68.7 236.2 73%
100.1 251.4 72%

1000+998 479 2 0.73, 0.100, 0.012 96.2 231.9 79% 103.0 250.7 71%
2000+459 86 1 0.82, 0.082, 0.017 98.2 235.2 78% 99.5 245.8 74%

2
500+459 79 1 1.00, 0.100, 0.028 91.3 164.7 100%

81.1 185.3 97%
99.4 177.5 100%

1000+554 60 1 0.46, 0.100, 0.066 90.2 159.9 100% 100.9 178.3 100%
2000+1075 407 2 1.00, 0.100, 0.028 91.3 164.7 100% 95.4 169.2 100%

3
500+459 68 1 1.00, 0.100, 0.026 76.1 210.5 79%

70.7 223.8 67%
88.7 234.5 73%

1000+459 63 1 1.00, 0.082, 0.028 85.9 209.1 74% 89.4 236.2 73%
2000+488 83 1 1.00, 0.082, 0.023 92.5 211.0 68% 85.2 221.2 75%

TABLE I: Insulin infusion pump results for different patients. Meaning of the columns: “ID” - patient ID, “Sim” - number of
simulations used for regression and for feasibility check respectively, “Time” - running excluding simulation, “Iter” - number of
subdivisions tried, “Params” - predicted tunable parameter values, “Performance”, “Nominal” and “zhang2014” - true performance
at predicted values from our approach, nominal values, and predicted values from the approach of Zhang et al. [9], calculated
from 500 simulations.

Sim Time(s) Iter Performance zhang2014
µs(s) µo αs(s) αo βs(s) βo µs(s) µo αs(s) αo βs(s) βo

500+558 257 1 5.9 5.2% 6.6 7.9% 5.1 6.5% Solution not found
1000+459 400 1 5.9 5.0% 7.4 3.5% 4.7 1.2% Solution not found
2000+493 481 1 5.9 5.2% 7.4 3.6% 4.6 3.4% 6.1 5.5% 6.9 6.4% 7.1 3.8%

TABLE II: Results for aircraft flight control model. Columns have the same meaning as in Table I. The nominal performance
for the six responses are 6.0s, 8.8%, 7.5s, 12.5%, 6.2s and 11.5%, respectively.

Our results are shown in Table II. The nominal values of
Kx and Ki are tuned without taking modeling uncertainties
and wind gust into account. Comparing “Performance” with
the nominal performance mentioned in the table description,
we observe significant performance improvement on over-
shoot and minor improvement on settling time. The approach
“zhang2014” is not able to find solutions in the cases that
500 and 1000 simulations are used for regression. This is not
surprising since their approach uses a single linear model to
approximate the whole parameter space. For the case of 2000
simulations, our approach out-performs their approach on five
out of six responses.

C. Extrinsic Apoptosis Reaction Model

Apoptosis, the process of programmed cell death, is es-
sential for the healthy development of organisms. Disruption
of apoptosis can lead to many diseases, such as Alzheimer’s
disease and cancer [23]. The extrinsic apoptosis reaction model
(EARM) characterizes dynamics of the amounts of key pro-
teins involved in apoptosis triggered by the TRAIL signaling
molecule. The model is described as ODEs derived from the
law of mass action for biochemical kinetics2.

The model consists of 69 state variables representing the
active and inactive form of proteins and their complexes. A
diagram of the key proteins in the pathway are shown in
Figure 6. Dynamics of the biochemical reactions are governed
by kinetic rate constants, which represent the rates of binding,
dissociation and catalysis reactions. Values of these parameters
are unknown and cannot be directly measured. In this case
study, we assume a total of 71 unknown rate constants,
which are treated as tunable parameters. EARM is especially

2A specific version of the model, EARM1.3 [3], is used.
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Fig. 6: A simplified diagram of EARM (version 1.3).

well suited to understand variability in the cell death process
among individual cells. Key aspects of this variability can be
explained by different total protein amounts in each cell [24].
Experiments have shown that the total protein amounts across
cells follow a log-normal distribution [3]. Consequently, we
regard the total protein amounts as stochastic parameters with
a log-normal distribution.

Our goal is to tune the values of the 71 kinetic parameters
such that the model responses are consistent with observed
behaviors of the system. We investigate the delay between
the initiation and the final commitment to cell death, which
is known as effector caspase delay. The extent of the delay
reveals whether cell death is reached through a fast, direct ac-
tivation cascade or through a slower, indirect process involving
the mitochondrion. The delay can be quantified by measuring
the difference between the time points when cleaved Bid and
cleaved PARP reach 10% of their total amounts. We require



Sim Time(s) Iter Performance Nominal
Dmin Dmax Dmin Dmax

500+1541 809 3 180 1055
2220 78001000+459 294 1 360 2162

2000+459 323 1 360 2130

TABLE III: Results for EARM. Columns have the same
meaning as in Table I. The performance values are in second.

that the delay D is nonnegative and at most one hour with
95% probability, i.e.,

Prob(Dmin ≥ 0) ≥ 0.95 and Prob(Dmax ≤ 3600s) ≥ 0.95 .

This is consistent with observations for cell death induced
by a fast, direct pathway. Since there is no requirement to
minimize or maximize the delay, this problem is formulated
as a feasibility problem

`−Dmin ,θ ≥ 0 and `Dmax ,θ ≤ 3600s .

Notice that −Dmin is used as the response in place of Dmin .

As in the previous example, we randomly choose 200
points in the parameter space to learn how hard it is to pick
up suitable parameter values by pure chance. Out of the 200
points, 12 of them result in delay values lying between 0 and
1 hour. Once again, this problem is not likely to be solved by
a pure guessing strategy.

Figure III shows the results of synthesizing the parameter
values. The nominal parameter values of this model have
been estimated with respect to experimental data [3]. As
shown by the columns under “Nominal”, these values clearly
do not support cell death through a fast, direct pathway.
Parameter values estimated from our approach result in delay
values between 0 and 1 hour, and thus find the parameters
corresponding to the behavior of interest. Notice that although
results from the case of 500 simulations are quite different
than those from the other two cases, all of them satisfy the
Bayesian sequential hypothesis testing procedure used to check
the chance constraints. For this benchmark, the approach by
Zhang et al. [9] is not able to find solutions.

VI. CONCLUSION

In summary, this paper introduces a simulation-based
technique for parameter synthesis of black-box systems un-
der stochastic variations. The parameter synthesis problem
is treated as chance-constrained optimization, in which a
response function of interest is expected to satisfy given
requirements with a desired probability. The overall idea of
the proposed approach is to construct a piecewise linear
approximation of a certain quantile of the response function.
A global optimization scheme searches for optimal tunable
parameter values on this approximation. Experiments in this
paper demonstrate that our approach is able to find parameter
values that result in satisfactory performance, and scales well
with the dimension of systems.
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