
Robust Controller Synthesis of Switched Systems
Using Counterexample Guided Framework

Hadi Ravanbakhsh and Sriram Sankaranarayanan
University of Colorado, Boulder

firsname.lastname@colorado.edu

ABSTRACT
We investigate the problem of synthesizing robust controllers that
ensure that the closed loop satisfies an input reach-while-stay spec-
ification, wherein all trajectories starting from some initial set I ,
eventually reach a specified goal set G, while staying inside a safe
set S. Our plant model consists of a continuous-time switched
system controlled by an external switching signal and plant dis-
turbance inputs. The controller uses a state feedback law to control
the switching signal in order to ensure that the desired correctness
properties hold, regardless of the disturbance actions.

Our approach uses a proof certificate in the form of a robust
control Lyapunov-like function (RCLF) whose existence guaran-
tees the reach-while-stay specification. A counterexample guided
inductive synthesis (CEGIS) framework is used to find a RCLF
by solving a ∃∀∃∀ formula iteratively using quantifier free SMT
solvers. We compare our synthesis scheme against a common ap-
proach that fixes disturbances to nominal values and synthesizes the
controller, ignoring the disturbance. We demonstrate that the latter
approach fails to yield a robust controller over some benchmark
examples, whereas our approach does.

Finally, we consider the problem of translating the RCLF syn-
thesized by our approach into a control implementation. We out-
line the series of offline and real-time computation steps needed.
The synthesized controller is implemented and simulated using the
Matlab(tm)/Simulink(tm) model-based design framework, and il-
lustrated on some examples.

1. INTRODUCTION
The problem of correct-by-construction controller design seeks

a feedback control law that controls a given plant model to satisfy
a property specification. In this paper, we examine the problem
of designing controllers that robustly control a switched system,
which is subject to external disturbance inputs, lying inside a set
D and a controlled switching mode from a finite set Q. The prop-
erty specification is a reach-while-stay (RWS) property that states
that all traces of the resulting closed loop starting from a set I will
remain inside a safe set S until, eventually reach a goal set G.

The approach is to use a robust control Lyapunov-like function

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EMSOFT’16, October 01-07, 2016, Pittsburgh, PA, USA
c© 2016 ACM. ISBN 978-1-4503-4485-2/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2968478.2968485

(RCLF) V (x) defined over the plant states. For any state, we re-
quire that there be a switching mode q which can be chosen to
strictly decrease the value of V , as long as the controller remains in
the set S \G. Additionally, we require that the value of V be neg-
ative inside the initial set I and positive at the boundary of the safe
set S. These conditions together naturally guarantee the existence
of a controller that can switch between appropriate control modes
to satisfy the RWS property. Furthermore, we prove that such a
controller will naturally satisfy a minimum dwell time property un-
der the assumption that the sets I, S and G are all compact.

Next, we present an approach that will automatically discover an
RCLF. This is posed as a constraint feasibility problem wherein the
form of the function V is specified as a polynomial with unknown
coefficients c. However, we require the solution to a set of nonlin-
ear quantified constraints. It is well known that these constraints
are hard to solve even for small systems. We provide an extension
of a now well-known idea called counter-example guided inductive
synthesis (CEGIS) [25, 26]. CEGIS was originally proposed as a
program synthesis technique that can solve ∃∀ constraints to syn-
thesize values for missing constants in program sketches so that the
resulting program satisfies a set of assertions. Recently, we showed
the applicability of the CEGIS approach to control synthesis, but
in the absence of disturbance inputs [22]. In this paper, we extend
the approach to solve problems with disturbances. In theory, the
presence of disturbances requires us to consider an extra quantifier
alternation yielding ∃∀∃∀ constraints. As a result, it is computa-
tionally challenging to naively extend CEGIS approach designed
for ∃∀ constraints. We show that an extension that modifies the
structure of the witnesses in the CEGIS procedure, can be applied
to naturally handle this quantifier elimination.

We implement our approach using a combination of SMT solver
Z3 [7] and an off-the-shelf linear matrix inequality (LMI) solver to
synthesize RCLFs for benchmark examples. We compare our work
with a default approach that ignores disturbances by setting them to
a nominal fixed value. We show that the certificates thus obtained
are not robust to disturbances in many situations. In contrast, our
approach succeeds in finding a robust CLF.

Finally, we turn our attention to the problem of synthesizing the
controller implementation from the RCLF. This problem is not con-
sidered in [22], and is shown to be nontrivial, especially when the
worst case execution times of the various components need to be
taken into account to guarantee that the mode switches happen at
the appropriate time instants. We design a time triggered imple-
mentation and illustrate it on two benchmark examples.

1.1 Related Work
Fundamentally, there are two types of approaches to solving con-

trol synthesis problems. The first is based on a combination of ab-
straction to a finite game graph and solving this finite game using

fixed-point algorithms. One advantage of this approach is the abil-
ity to easily handle complex temporal specifications [16]. In this
technique, the system is usually abstracted using a simulation rela-
tion. The abstraction guarantees that a solution (switching strategy)
for the abstract system is also a solution for the original system. In
the next step, a solution for the abstract system is calculated using
fixed-point computation. Most of these techniques do not consider
disturbances because of computational difficulties in solving two
player games [17, 3, 21]. However, the uncertainties can be eas-
ily modeled in the abstraction and this, makes it easy to consider
disturbances as well [30, 16].

Another methodology is based on solving constraints. In the first
phase, the problem is reduced to finding a control certificate (e.g.
control Lyapunov function). A control certificate provides a control
strategy and a certificate, which guarantees the specification. Dim-
itrova and Majumdhar provide a proof system for ATL∗ properties
using a combination of control Lyapunov-like functions [8]. How-
ever, for the most part it has proven hard to manually generate such
certificates. As a result, the approach in this paper, focuses on a
smaller class of constraints while providing automated approaches
for the controller synthesis problem. As mentioned earlier, we di-
rectly extend our previous work [22] in two ways: (a) we handle
disturbance inputs and the attendant quantifier alternation involved,
and (b) we provide a solution to the control implementation synthe-
sis from the certificates.

In this paper, we use a control Lyapunov-like function (CLF) to
guarantee the specification. The idea of using CLFs was originally
proposed by Artstein [2] and Sontag [27] showed how to design
a controller from a given CLF. Later, the concept of robust CLFs
(RCLF) was introduced [24, 9]. Battilotti [4, 5] showed how one
can design robust controls using RCLFs. In most of these meth-
ods, the control input has a fixed form. This fixed form can be a
polynomial (in state variables) which yields a static feedback con-
troller[29, 12] or a control table [14].

The approach of Taly et al. synthesizes the missing parts of a
skeleton switching logic that allows the overall system to satisfy
some control objectives [28]. The similarities with our method in-
clude the use of constraint solvers to encode the presence of Lya-
punov and barrier functions to guarantee reachability and safety
properties. In this work, no such skeleton is specified and further-
more, we are able to deal with disturbances.

As mentioned earlier, this work extends the so-called counterex-
ample guided inductive synthesis (CEGIS) procedure. The CEGIS
procedure has been primarily used for parameter synthesis in pro-
gramming languages (e.g. [25, 1]) and hybrid systems [10, 31].
More recently, a similar procedure used for finding Lyapunov func-
tions by Kapinski et. al [15], and control Lyapunov functions [22]
solving ∃∀ formulae. In this work we use CEGIS procedure to
solve ∃∀∃∀ formulae when searching for RCLFs. We compare our
approach to the “default” strategy that synthesizes a controller by
nominally fixing a disturbance value and verifying the robustness
of the resulting controller.

2. BACKGROUND
In this section, we discuss the model used for the switched sys-

tem along with reach-while-stay objectives. We then discuss proof
rules for enforcing the specification in the absence of disturbances.

We use R to denote the real numbers. For a set X ⊆ Rn, we
denote its interior as int(X). For a function f(t), let f+(t) refer
to the right limit lims→t+ f(s). Let

.
f(t) be the right derivative of

f wrt t, i.e, lims→t+
f(s)−f(t)

s−t .

Plant

Sensor
Mode Selector

Controller

Figure 1: State-feedback switched system

2.1 System Model
The system model is a switched system consisting of a plant and

a controller. The plant has n continuous state variables written as
x ∈ X ⊆ Rn. The inputs to the plant are (i) the (controllable)
mode of the plant which belongs to finite set Q and (ii) the (un-
controllable) plant disturbance dP ∈ DP ⊂ Rn. The state of the
plant updates according to the dynamics for the current mode of the
system.

DEFINITION 1 (PLANT). A plant Ψ(X,Q,DP , f) is defined
over a state space X , finite set of modes Q, compact disturbance
space DP (0 ∈ DP ⊂ Rn) and (iv) a map from inputs and state
to vector field f : X ×Q×DP → Rn.

For simplicity, we write fq(x,dP) instead of f(x, q,dP). Also,
we assume that fq(x,dP) is a polynomial in x and dP .

The plant disturbance input signal is a function dP (.) : R+ →
D, mapping time t to the disturbance input dP (t) ∈ D. The con-
trol input signal q(.) : R+ → Q is a piecewise constant function
which maps time t to the control mode q(t). The state x(.) : R+ →
X is a function that satisfies

.
x(t) = fq(t)(x(t),d(t)) .

The controller is memoryless, and has two parts: (i) the sen-
sor which measures (estimates) the state of the plant x and (ii)
the mode selector. The sensor has inputs (a) the plant state x and
(b) the (uncontrollable) control disturbance dC , modeling the mea-
surement error. The sensor then provides x′ (measured state) as
output. The mode selector receives the measured state x′ and the
current mode. The mode for the next time instant is its output. A
schematic view of the closed loop system is shown in Figure 1.

DEFINITION 2 (CONTROLLER).The controller is defined over
a state space X , set of modes Q, compact control disturbance
space DC (0 ∈ DC ⊂ Rn), sensor function e : X × DC → X
which maps plant state and control disturbance to measured plant
state, and mode selector function switch : Q × X → Q which
decides the new control mode for the system, given measured state
and current mode. Formally, let κ(X,Q,DC , e, switch) denote a
controller.

Similar to plant disturbance, control disturbance is uncontrol-
lable and dC(.) : R+ → DC is any function describing the control
disturbance for all times.

REMARK 1. It is feasible to extend the control model to con-
sider (a) state estimation error wherein the state is estimated from

an output through a filter, (b) delays in computing the control mode
from a given state and (c) delays in a commanded state from taking
effect. For instance, (a) and (b) are handled using an appropriate
control disturbance and (c) through a plant disturbance input.

In a short form, the memoryless controller is a function and trace
of the mode satisfies condition below

q+(t) = switch(q(t), e(x(t),dC(t))) .

Notice that given x(0), q(0), dP (.) and dC(.), the traces of the
system is unique. The control synthesis problem is to design func-
tion switch s.t. the closed loop system satisfies the specification.

2.2 Control Synthesis Problem
A specification ϕ is described over the trace of state x(.). The

specification in this article is reach-while-stay w.r.t. compact re-
gions S(⊆ X), I(⊆ int(S), G(⊆ I) as safe, initial and goal sets,
respectively.

DEFINITION 3 (REACH-WHILE-STAY). RWS(S, I,G,x(.))
is a specification that guarantees a trace, starting from region I ,
reaches G, while staying in S. RWS(S, I,G,x(.)) is defined as

x(0) ∈ I =⇒ (∃T)

(
x(T) ∈ G

(∀0 ≤ t < T) x(t) ∈ S

)
.

DEFINITION 4 (SYNTHESIS PROBLEM). The problem of con-
troller synthesis is to find switch function such that a specification
RWS(S, I,G,x(.)) is guaranteed: Find switch s.t.

(∀x(0), q(0),dP (.),dC(.)) RWS(S, I,G,x(.)) . (1)

Figure 2 shows different regions for reach-while-stay along with
some traces which respect the specification.

2.3 Proof Rules
The specification RWS(S, I,G,x(.)) combines liveness and

safety aspects that require the trace to eventually reach G, while
staying within the set S. Proof rules involving Lyapunov-like func-
tions for RWS properties are well-known [8, 22]. We recall a proof
rule that does not involve disturbance inputs:

DEFINITION 5 (LYAPUNOV-LIKE FUNCTION). A Lyapunov-
like function (LF) forRWS(S, I,G,x(.)) is a polynomial function
V that 

x ∈ I =⇒ V (x) < 0

x ∈ ∂S =⇒ V (x) > 0

x ∈ S \G =⇒ ∇V.f(x) < −ε .
(2)

A Lyapunov-like function guarantees that RWS(S, I,G,x(.))
holds in absence of inputs. It enforces that the value of the function
is negative initially and is positive whenever the system reaches the
boundary of S. Furthermore, the derivative of V is negative inside
S \ G. Together, these premises guarantee that (a) G must be
eventually reached and (b) the boundary of S will never be reached
by a trace starting from I . In fact, the set {x | V (x) = 0}∩S forms
a barrier that ensures that the boundary of S is never reached. The
dashed line in Fig. 2 defines places in S s.t. V (x) = 0 and the
value of V decreases as time passes.

We will now define a Lyapunov-like function V in presence of
control inputs. The first two constraints in Eq. (2) will be the same
when the plant has a control input q.

S

I
G

Figure 2: Reach-while-stay Specification w.r.t safe set S, initial
set I and goal set G.

DEFINITION 6 (CONTROL LYAPUNOV-LIKE FUNCTION). A
control Lyapunov-like function (CLF) for RWS(S, I,G,x(.)) is a
polynomial function V that

x ∈ I =⇒ V (x) < 0

x ∈ ∂S =⇒ V (x) > 0

x ∈ S \G =⇒ (∃q ∈ Q)∇V.fq(x) < −ε .
(3)

Comparing with Def. 5, we notice that the only change occurs
in the last rule. Rather than requiring that ∇V.f is negative, we
now require that at each state x, a mode q is available to enforce
decrease of V (∇V.fq is negative).

However, Defs. 5 and 6 both do not consider disturbance inputs.
The presence of disturbances (plant disturbance and control distur-
bance) adds one more level of difficulty to the problem, involving
a quantifier alternation. We now present strategies to synthesize in
the presence of disturbances.

3. HANDLING DISTURBANCES
In this section, we discuss the handling of disturbances for robust

implementation of controllers. For simplicity, let d be a vector
describing the joint plant disturbance dP and control disturbance
dC . I.e, d ∈ D : DP ×DC . Also, we use fDq (x,d) to represent
fq(e(x,d

C),dP), assuming e is a polynomial.
The idea is to find a control mode q such that the value of V de-

creases under all possible values of disturbances. We modify Def. 6
to incorporate disturbances for the property RWS(S, I,G,x(.)).

DEFINITION 7 (Robust CLF).A robust CLF (RCLF) is a poly-
nomial function V with the following properties:

x ∈ I =⇒ V (x) < 0

x ∈ ∂S =⇒ V (x) > 0

x ∈ S \G =⇒
(∃q ∈ Q) (∀d ∈ D)(∇V).fDq (x,d) < −ε ,

(4)

When compared to Eq. (3), the third condition for the RCLF
is more complicated because of extra (∀d) quantifier. We use the
counter-example guided synthesis (CEGIS) framework in Section 4
to handle this quantifier alternation.

Let us define a function condq(x) over a state x and mode q as

condq(x) = max
d∈D

(∇V).fDq (x,d) . (5)

From Eq. (4), we note that the goal of a controller is to find a mode
q that guarantees that condq(x) < −ε. For a given mode q and
state x the controller performs the following actions: (a) Evaluate

condq(x) and check if condq(x) < −εs for a switching threshold
value εs (0 < εs < ε) supplied by the user. (b) If this fails, the
controller finds a new mode q̂ ∈ Q such that condq̂(x) < −ε.
Otherwise, the mode remains q. The control function switch can
be defined succinctly as

switch(q,x) :=


q̂ if

 condq(x) ≥ −εs
∧ condq̂(x) < −ε
∧ x ∈ S \G


q otherwise .

(6)

Now, we show that having a RCLF (V) Eq. (6) gives a controller
that does not switch too fast. Assume that the sets S,G in the
specification and disturbances D are all compact sets. Let V and
fDq be bounded for each mode q. Let x(t) be a time trajectory of
the closed loop system with corresponding switching function q(t),
using the switching law in Eq. (6).

LEMMA 1. There exists a minimum dwell time δ > 0 such that
for any time T , if for all t ∈ [T, T + δ]

1. x(t) ∈ S \G
2. q(t) = q(T),

and condq(T)(x(T)) < −ε, then

(∀t ∈ [T, T + δ]) condq(t)(x(t)) ≤ −εs) .
PROOF. Let q = q(T). We are given that

condq(T)(x(T)) < −ε ,

and let τ > 0 be any time such that

(∀t ∈ [T, T + τ]) condq(x(t)) ≤ −εs ∧ q(t) = q .

Note that condq is a continuous and piecewise differentiable
function of x. As a result, there is a Lipschitz constant Aq such
that

|condq(x(T + τ))− condq(x(T))| ≤ Aq||x(T + τ)− x(T)|| .

Now, x(t) in the interval t ∈ [T, T + τ] is the solution of an ODE
dx
dt

= fDq (x,d(t)) and furthermore the state space is compact. As
a result, there exists a constant Bq such that

‖x(T + τ)− x(T)‖ ≤ Bqτ .

Combining, we have |condq(x(T + τ)) − condq(x(T))| ≤ Λqτ
wherein Λq = AqBq .

Let Λ = maxq∈Q Λq . Let us choose a δ such that

δ :
ε− εs

Λ
. (7)

The above arguments show that for all t ∈ [T, T + δ],

|condq(x(T + t))− condq(x(T))| ≤ Λqt ≤ Λδ ≤ ε− εs .

Therefore, using that condq(x(T)) < −ε, we obtain for all t ∈
[T, T + δ], condq(x(T + t) ≤ −εs.

As a direct corollary, we can establish the following lemma.

LEMMA 2. Let 0 ≤ t1 < t2 be any time interval such that the
trajectory x(t) ∈ S \G for t ∈ [t1, t2].

1. (∀t ∈ [t1, t2])∇V.fDq(t)(x(t),d(t)) ≤ −εs.
2. The controller respects min dwell time property.

PROOF. Assume that (∇V).fDq(τ)(x(τ),d(τ)) > −εs for some
time τ ∈ [t1, t2]. As a result,

condq(τ)(x(τ)) ≥ (∇V).fDq(τ)(x(τ),d(τ)) > −εs .

Let q(τ) = q. Let τ0 < τ be a switch time instant such that
∀t ∈ (τ0, τ], q(t) = q. By Eq. (6), we note that condq(x+(τ0)) <
−ε < −εs. Because condq is a continuous function, there must
be a time τ1 such that τ0 < τ1 < τ and condq(τ1) = −εs. We
note by assumption that x(τ1) ∈ S \G. As a result, by Eq. (6), we
note that q+(τ1) 6= q(τ1), or in other words, a mode switch must
happen at τ1 < τ . This contradicts our assumption that q(t) = q
for all t ∈ (τ0, τ] and hence,∇V.fDq (t)(x(t),d(t)) ≤ −εs for all
t ∈ [t1, t2].

By Lemma 1, there exists a δ > 0 defined purely in terms of
V , the dynamics at each mode and the set S such that whenever
condq(x(t)) < −ε, we have that condq(x(t + δ)) ≤ −εs. As a
result, we conclude that the time between two switches is at least
δ.

THEOREM 1. Given compact sets G, I and S (I ⊆ int(S))
and a polynomial RCLF (V) satisfying Equation (4), there is a
control strategy guaranteeing min dwell time property s.t. I =⇒
SUG.

PROOF. We show that there exists a set W s.t.
1. I =⇒ WUG.
2. I ⊆ int(W).
3. W ⊆ int(S).

W is defined as W : ({x|V (x) ≤ 0} ∩ S. By Equation (4),
W ⊆ int(S) and I ⊆ int(W). Having Equation (4), according
to Lemma 2, there exists a controller which respects the min dwell
time property. Also, the controller guarantees∇V.fDq(t)(x(t),d(t))
≤ −εs as long as x(t) ∈ S \ G. Therefore, if x(t) ∈ S \ G for
t ∈ [t1, t2] then V (x(t2)) < V (x(t1))− εs(t2 − t1).

Now we show that I =⇒ WUG. Assuming otherwise for
the sake of contradiction, we conclude that either the trace must
remain in W forever or exit W without reaching G. Since W ⊆ S
is a compact set, the trace cannot remain in W \ G forever. Oth-
erwise, V must decrease forever but V is a continuous function
that is lower bounded inside W \ G. Therefore, the trace must
exit W without reaching G. By the continuity of the trajectory, it
must reach ∂W . Let T ≥ 0 be the first time instance s.t. x(T)
reaches ∂W (V (x(T)) = 0). Since V (x(0)) < 0 (x(0) ∈ I)
and (∀t ∈ [0, T]) ∇V.fDq(t)(x(t),d(t)) < −εs, we have that
V (x(T)) < V (x(0))− εsT < V (x(0)) < 0. But if x(T) ∈ ∂W ,
we have V (x(T)) = 0, deriving a contradiction.

Therefore, state trace cannot stay forever in W \ G and cannot
exit W before entering G. While x ∈ (W \ G), by the construc-
tion of the controller, we can conclude time diverges (because the
controller respects the min dwell time property). We conclude that
the RWS property holds.

4. COUNTEREXAMPLE GUIDED
SYNTHESIS

So far, the problem of controller synthesis is reduced to the prob-
lem of finding RCLF V that satisfies Eq. (4). In this article, we
restrict the search to polynomial RCLFs, which, in turn, leads to
incompleteness of our method. Nevertheless, polynomial CLFs
exists for many interesting problems [22]. Searching for a func-
tion V considers a parameterized function (a template) V (c,x) :∑
α cαx

α , where cα is a real-valued unknown coefficient and xα

is a monomial in x. The goal is to find parameters c∗ ∈ C s.t
V (c∗,x) satisfies Eq. (4). Formally, we seek to solve a quantified
problem:

(∃c ∈ C) (∀x ∈ X)(* Conditions from eq. (4) *) . (8)

In this article we use a counterexample guided inductive synthe-
sis (CEGIS) approach to solve our problem. The CEGIS approach

x1

x2

x3
x4

xn

c ∈ C x ∈ X

Witness xn+1

Candidate cn+1

Figure 3: Illustration of the CEGIS iteration, showing the space
of candidates, witnesses and the iterative synthesis process.

has been used widely in program synthesis for safety [25]. The key
idea is to solve ∃∀ formulae (such as in Eq. (8) above) by solving
simpler unquantified problems, iteratively.

We now explain the general structure of the CEGIS framework
for solving a constraint of the form

(∃c ∈ C)(∀x ∈ X) Ψ(c,x) .

Figure 3 illustrates the iterative process. At each iteration, we main-
tain two sets: (a) A subset Cn ⊆ C of the candidate space that is
implicitly maintained as the set of solutions to an assertion ψn[c]
and (b) A finite subset Xn : {x1, . . . ,xn} of witnesses, such that
xi ∈ X .

Initially, ψ0 represents the entire candidate space C, and X0 is
the empty set. At each iteration, we perform three steps:

1. Candidate Generation: We generate a candidate point cn ∈
Cn by solving the formula ψn and finding a satisfiable so-
lution for it. Failure to obtain such a solution means that
Cn = ∅ and we have thus run out of candidates.

2. Witness Generation: We check whether the candidate c =
cn represents a valid candidate by checking:

(∀ x ∈ X)Ψ(cn,x) .

More precisely, we check its negation ¬ Ψ(cn,x) as a for-
mula involving only x. If the negation is UNSAT, then we
conclude that the current candidate cn is a valid solution and
stop. Otherwise, we add a witness xn+1.

3. Refining Candidate Space: Finally, we compute a new for-
mula ψn+1 that incorporates the witness as

ψn+1 :

n+1∧
i=1

Ψ(c,xi) = ψn ∧Ψ(c,xn+1) .

In other words, ψn+1 forces future candidates c to be valid
for all witnesses including xn+1.

For a more detailed discussion of CEGIS, its decidability and
complexity please refer to [23, 22]. When the CEGIS terminates, it
either gives a solution c, or gives a set of witnesses Xn for which
no candidate exists. As such, CEGIS approach cannot be used for
the treatment of formula arising from Eq. (8), since it involves ad-
ditional quantifier alternations of the form (∃c) (∀x) (∃ q) (∀d).

4.1 CEGIS for RCLF
We will now extend the original CEGIS framework to handle

these further quantifier alternations. The idea is conceptually sim-
ple: we will extend the witnesses structure. Rather than witnesses
which are simply points xi ∈ X , we will now allow witnesses that
are of the form (xi, (Q 7→ D)), i.e, a combination of a state xi ∈

X and a map from each mode to a disturbance vector. Since Q is
finite, this map is explicitly stored as (xi, (q1,d1), . . . , (qm,dm)).

First, we note that the RCLF requirements yield formulae of the
form

(∃ c) (∀ x)Ψ(c,x) ,

but Ψ itself is a quantified formula with the following structure:

∧

x ∈ R1 =⇒

∨
q(∀ d) p1,q(c,x,d) < 0

x ∈ R2 =⇒
∨
q(∀ d) p2,q(c,x,d) < 0

...
x ∈ Rr =⇒

∨
q(∀ d) pr,q(c,x,d) < 0 .

(9)

A first solution consists of applying CEGIS for ∃∀ described pre-
viously. However, doing so yields quantified constraints for the
candidate and witness generation steps. Since our objective was to
avoid these quantified constraints in the first place, we modify the
witness structure.

Witness Structure: As mentioned earlier, a witness to the viola-
tion of a given RCLF candidate c ∈ C include a state x ∈ X at
which the violation happens along with for each mode qj that can
be selected for the mode, a disturbance witness dj ∈ D that will
violate the formula. With disturbances, each witness then has the
following structure:

yi :
(
xi, (q1,d

(i)
1), . . . , (qm,d

(i)
m)
)
. (10)

With this witness structure, the overall CEGIS procedure now ex-
tends naturally.

Candidate Generation: Let Yn : {y1, . . . ,yn} be the set of
witnesses at the nth iteration, starting from Y0 : ∅. The candidate
is generated by solving the formula:

ψn[c] : (c ∈ C) ∧
n∧
i=1

inst(Ψ,yi) , (11)

wherein inst(Ψ,yi) substitutes the witness from Eq. (10) for the
variables x, q, d in Eq. (9).

inst(Ψ,yi) :



∨m
k=1 p1,qk (c,xi,d

(i)
k) < 0∨m

k=1 p2,qk (c,xi,d
(i)
k) < 0

...∨m
k=1 pr,qk (c,xi,d

(i)
k) < 0 .

(12)

We now use an SMT solver to find if the unquantified formula ψn
from Eq. (11).

Witness Generation: Once a candidate c = cn is generated by
solving ψn, we now evaluate if it is a true RCLF. This involves,
substituting cn for c in formula Ψ in Eq. (9) and checking if ¬Ψ is
satisfiable. Since Ψ itself is the conjunction of r > 0 conditions, its
negation is a disjunction and we can check each disjunct separately
for satisfiability. Each disjunct has the following form:

x ∈ Rj ∧
m∧
k=1

(∃ d ∈ D) pj,qk (cn,x,d) ≥ 0 .

We can remove the existential quantifier over d equivalently thr-
oughm = |Q| fresh set of variables d1, . . . ,dm. The new disjunct
is written:

x ∈ Rj ∧
m∧
k=1

pj,qk (cn,x,dk) ≥ 0 . (13)

If satisfiable, we obtain a witness (xn+1, (q1,d
(n+1)
1), . . . , (qm,

d
(n+1)
m)). Otherwise, we conclude that cn represents a valid RCLF.

4.2 Solving Constraints
Finally, we consider the constraints that are solved during the

process of CEGIS for generating RCLFs. We note that the template
V (c,x) is a linear function over c but in general a polynomial over
x. As a result, when x and d are instantiated, each candidate gener-
ation problem ψn is a formula that involves Boolean combination
of linear inequalities. Such a formula can be solved by efficient
linear arithmetic SMT solvers such as Z3 [7].

The difficulty arises in evaluating whether the witness genera-
tion formula obtained by instantiating c = cn is satisfiable. This
involves a conjunction of polynomial inequalities. As such SMT
solvers such as dReal [11] and Z3 [7] can support the solution of
these constraints. But the process is forbiddingly expensive, espe-
cially since it involves constraints over |x|+ |Q||d| variables.

In this regard, an idea previously proposed by authors can be
used to extend this approach to larger systems [22]. This idea ef-
fectively introduces fresh variables corresponding to monomials
zα : xα. Each polynomial p(x) is then written as a quadratic
form ztPz where z collects the fresh variables corresponding to
the monomials. Following this approach, we reduce Eq. (13) into
a system of linear matrix inequalities (LMI) that can be solved ef-
ficiently using LMI solvers. Since LMIs are convex optimization
problems, we can provide solutions to problems that have larger
state and disturbance spaces.

4.3 Evaluation
We implemented the CEGIS framework using Z3 SMT solver [7]

for candidate generation and Gloptipoly [13] as the LMI solver for
finding witnesses. Gloptipoly is configured to use Mosek [18] as
the SDP solver.

We compare the robust synthesis (RS) approach presented in this
paper with a simple Synthesize and Verify Robustness (SVR) ap-
proach that uses a nominal disturbance value (e.g., d = 0) and
checks whether the resulting controller is robust, as a last step.
Specifically, the disturbance free case uses Eq. (2) for synthesis.
In doing so, we also check whether adding a “margin” by increas-
ing the value of ε during controller synthesis necessarily makes the
resulting design more robust to disturbances. For comparison, sev-
eral examples are considered and all the experiments are carried
out on a laptop with 2.9 GHz Intel Core i7 processor and 16GB of
memory. The time limit is set to 5 hours.

The examples below use plant disturbances DP : [−rD, rD]n,
with varying values of rD . However, no control disturbances are
added. The safe set S is [−rS , rS]n. Likewise the goal set G and
initial set I are spheres of radius rG and rI , respectively around
specified center points. For all examples, we use template V (c,x)
= (
∑
i≤j ci,j xixj)− 1.

EXAMPLE 1. This problem instance is taken from [17] with
two variables and a control input u ∈ [−1, 1].[.

ω.
i

]
=

[
B
J

k
J

− k
L
−R
L

] [
ω
i

]
+

[
0
1
L

]
u+

[
dω
di

]
where B = 10−4, J = 25× 10−5, k = 0.05, L = 15× 10−4 and
R = 0.5. The desired operation point is [ω i] = [20 0] and region
of interest is defined by rS : [10, 30] × [−10, 10]. By a change of
basis, we set (20, 0) as the new origin. In the new coordinate, S,G
and I are defined by rS = 10, rG = 0.5 and rI = 4, respectively
with centers at the origin. There are two modes corresponding to
u ∈ {−1, 1}. We choose ε = 0.01.

Table 1: Results for Ex. 1 using RS method. Itr : # iterations,
Time : total time (seconds).

rD Itr Time Status
0.0 3 36.1 3

0.4 4 54.4 3

0.8 5 115.3 3

1.2 8 177.5 3

1.4 34 800.9 3

1.6 83 1500.0 3

1.7 184 4367.8 3

1.8 494 10565.4 6

Table 2: Results for Ex. 1 using SVR method. Itr : # iterations,
Time : total computation time (seconds).

ε rD Itr Time Status
0.2 0.1 3 32.4 3

0.3 0.2 5 40.7 3

0.3 0.3 5 46.6 6

0.4 0.0 536 5074.3 6

The results of the RS method are shown in Table 1. To evaluate
the effect of disturbances on the CEGIS procedure, we use differ-
ent disturbance sizes. As results suggests, bigger disturbances im-
pose harder restrictions on the RCLF and many more iterations are
needed, as the size of disturbance gets bigger.

On the other hand, using the SVR technique, first a CLF is found
with preferably higher values for ε. The most robust controller is
obtained using ε = 0.03 and it is verified that this controller can
handle disturbances for rD = 0.2 . The results are shown in Ta-
ble 2. These results suggest that RS method can provide provably
robust controllers where the SVR approaches fails to synthesize
controller for larger values of ε and fails to verify for larger dis-
turbance values.

EXAMPLE 2. We adopt this example from [20]. The plant con-
sists of two variables x1 and x2 and three modes with the following
dynamics [.

x1.
x2

]
=

[
−x2 − 1.5x1 − 0.5x3

1 + dx1
x1 + dx2

]
+Bq

Bq1 =

[
0

−x2
2 + 2

]
, Bq2 =

[
0
−x2

]
, Bq1 =

[
2
10

]
.

The goal is to reach a region around (−0.75, 1.75) (G : {(x1,
x2)|(x1 + 0.75)2 + (x2 − 1.75)2 ≤ 0.252}). First, we change the
bases and set (−0.75, 1.75) as the new origin. Other parameters
are rI = 1 and rS = 2.25.

For each method, we check for the biggest disturbance for which
the problem can be solved. Using RS method, we were able to solve
the problem when rD = 0.5 using ε = 0.01. For the SVR method,
the most robust controller (obtained by setting ε = 0.2) is verified
to decrease V when rD = 0.03. Detailed results are shown in
Table 3. Again, these results suggest RS method yields more proved
robust controllers.

EXAMPLE 3. The following example is taken from [6]. The sys-
tem has 3 continuous variables with 4 different modes as follows:

Table 3: Results for Ex. 2 using SVR method. Itr : # iterations,
Time : total computation time (seconds).

ε rD Itr Time Status
0.1 0.01 3 30.4 3

0.2 0.03 15 87.6 3

0.2 0.04 15 87.8 6

0.3 0.0 35 290.9 6

 .
x.
y.
z

 = Aq

 x
y
z

+Bq +

 dx
dy
dz

 ,
Aq1 =

 4.15 −1.06 −6.7
5.74 4.78 −4.68
26.38 −6.38 −8.29

 , Bq1 =

 1
−4
1

 ,
Aq2 =

 −3.2 −7.6 −2
0.9 1.2 −1
1 6 5

 , Bq2 =

 4
−2
−1

 ,
Aq3 =

 5.75 −16.48 −2.41
9.51 −9.49 19.55
16.19 4.64 14.05

 , Bq3 =

 −2
1
−1

 ,
Aq4 =

 −12.38 18.42 0.54
−11.9 3.24 −16.32
−26.5 −8.64 −16.6

 , Bq4 =

 −1
2
1

 .
The problem is instantiated for the following parameters; rG =

0.1, rI = 0.5, rS = 1.0. Again, the goal is to find the most robust
controller. The RS method can find a RCLF with disturbance rD =
0.1 when ε = 0.01 is used. The SVR method failed to synthesize
a controller for ε = 0.3 and using ε = 0.2, it failed to verify
the controller for rD = 0.009. The controller could guarantee
robustness for rD = 0.008.

EXAMPLE 4. This benchmark, which includes 5 problem in-
stances, is adopted from [19, 22]. The goal is to keep different
rooms of an apartment warm, using few number of active heaters.
The reader can refer to the mentioned articles for details descrip-
tion of these systems. While these examples do not have distur-
bances, we incorporate disturbances of the form .

x = fq(x) + d,
where fq are the original vector fields described in these refer-
ences. We use these problem instances to demonstrate the scala-
bility. The results for both methods are shown in Table 4. These re-
sults demonstrate our method is scalable to larger problems while
dealing with robustness. Notice that both methods fail for the last
problem instance as the verification of such big problem even using
LMI relaxation is expensive.

5. CONTROLLER SYNTHESIS
Thus far, we have discussed the RCLF certificates and their syn-

thesis using the CEGIS procedure. We present the control imple-
mentation in this section. Given a RCLF, the controller is designed
according to the feedback law from Eq. (6). Also, according to
Lemma 2, we define a minimum dwell time δ between two mode
changes triggered by the feedback law above. We consider a peri-
odic (time-triggered) scheme in this section and analyze conditions
on the period τ of the feedback law.

MODE
OPTIMIZER

ESTIMATE
condq

MODE
SELECTOR

condq ≥ −ε

changeMode(q̂)

condq < −ε

〈
qj1 , . . . , qjm

〉

Figure 4: Flow diagram for the controller design showing the
various blocks that execute.

Figure 4 demonstrates the overall flow for the periodic task of
calculating the feedback from Eq. (6). The first step is the ESTI-
MATION of condq(x) on the measured state x. If condq(x) < −ε,
the controller simply waits one period without changing the control
mode. Otherwise, a MODE SELECTOR component is invoked that
analyzes a sequence of possible modes to determine a new mode q̂.
The command to change to this mode is then issued. An optional
MODE OPTIMIZER can compute a prioritized sequence of modes
as a function of the current state and mode of the plant.

The scheme involves a series of offline computations to deter-
mine the key parameters of the controller. Once these computations
are performed, the controller performs a series of online computa-
tions for each cycle. We start with the online computations needed
and discuss the constraints on the periodicity of the feedback law
computation.
Rapid Estimation of condq: Note that condq(x) is defined in
Eq. (5) and recalled below:

condq(x) = max
d∈D

(∇V).fDq (x,d)︸ ︷︷ ︸
gq(x,d)

.

Since V is computed offline, we may also compute the expression
∇V (x), and fDq (x,d) for each mode q ∈ Q. The measured value
of x is used and we are required to now compute maxd∈D gq(x,d).
This is an instance of a polynomial minimization problem and is
very hard to solve precisely in real time. One solution is to com-
pute the feedback function offline [9, 5]. We provide another so-
lution: rather than precisely compute condq , we will estimate an
over approximation. As an offline step, we wish to choose a nom-
inal disturbance value d∗ and approximate (∇V) · fDq (x,d) '
(∇V) · fDq (x,d∗) + d̂, where d̂ ∈ D̂ measures the maximum ap-
proximation error possible. Doing so abstracts the plant model and
it is possible to run the CEGIS procedure and synthesize an RCLF
for this simpler abstract model.

Formally, the error D̂ ensures that

(∀ x ∈ S \G) (∀ d ∈ D) (∃d̂ ∈ D̂)

∇V.fDq (x,d) = (∇V (x)).(fDq (x,d∗) + d̂) .
(14)

This can be computed/checked offline for a given V and d∗.
Now we redefine ĉondq(x) as

ĉondq(x) : (∇V).fDq (x,d∗) + max
d̂∈D̂

(∇V).d̂ .

The maximization simply involves that of a linear combination of

Table 4: Results for Ex. 4. n : # state variables, m: # modes, Time : total time (seconds), OM: Out of Memory
Problem RS SVR
n m rD ε Itr Time Status rD ε Itr Time Status

3 4
0.04 0.0001 1 25.1 3 0.005 0.02 4 65.6 3

0.006 0.02 4 54.8 6
0.0 0.03 4 49.0 6

4 5
0.02 0.0001 1 155.6 3 0.001 0.01 4 237.0 3

0.002 0.01 4 159.5 6
0.0 0.02 6 71.9 6

5 6
0.001 0.0001 1 1500.3 3 0.0002 0.002 4 2243.5 3

0.0003 0.002 4 872.5 6
0.0 0.003 3 89.7 6

6 4
0.01 0.0001 1 9224.3 3 0.001 0.01 4 11559.4 3

0.002 0.01 4 4237.4 6
0.0 0.02 4 333.5 6

9 4 0.01 0.0001 - - OM 0.001 0.01 - - OM

d̂ over a box D̂. This is computed online by either selecting the
lower bound or upper bound according to the sign of (∇V (x))i.

LEMMA 3. For each state x ∈ S, ĉondq(x) ≥ condq(x).

The approximation error can be reduced arbitrarily (if needed) by
subdividing S into multiple regions and choosing a different nomi-
nal point d∗ for each region.
Mode Selection: Mode selection considers each possible mode
qi ∈ Q in turn, optionally according to a prioritized list selected by
the optimizer. For each mode it calculates ĉondqi(x) and selects
the first mode for which ĉondqi(x) < −ε.
Task Schedule: We now analyze the task schedule. Our analysis
assumes that the worst case execution times for various components
are known. In particular, let we and wms be the worst case times
for the ESTIMATION and MODE SELECTION, respectively. We will
assume for simplicity that (a) the states x are measured/estimated
in parallel to provide a new update each time the feedback task
is invoked, and (b) the command for changing mode takes effect
within at most wc time after the command is issued.

EST. EST. MODE SEL. changeMode

τ
≤ δ

In the worst case, we require that the time period τ be large
enough so that the ESTIMATION, MODE SELECTION and change-
Mode all run in a single period. I.e, τ > we + wms + wc. Also,
we require that if the event condq(x) ≥ −ε happens just after a
feedback computation has commenced, then in the worst case, the
time taken to notice the change and react to it be shorter than the
min dwell time δ. I.e, τ + we + wc + wms ≤ δ. Combining, we
obtain the constraints

we + wms + wc < τ ≤ δ − we − wc − wms . (15)

Note that under situations where the controller does not switch,
there is idle time. This time could presumably be used to run op-
tional computations such as that of the optimizer, which selects an
appropriate sequence of prioritized modes.

Finally, our design requires the computation of feedback law pe-
riodically at each time τ . It is, in fact, possible to defer the compu-
tation of the feedback law based on the current state x. From the

proof of Lemma 1, we derive a bound

|condq(x(T + t))− condq(x(T))| ≤ Λqt ,

wherein Λq is computed offline as a function of the safe set S and
the RCLF V . Suppose, we have an estimate for condq(x(T)) at
time T and it is less than−ε, we can in fact conservatively estimate
a future time T + t at which condq(x(T + t)) ≥ −εs as t =
εs+ĉondq(x(T))

Λq
. In practice, it may be the case that t � τ , which

allows us to avoid unnecessary recomputation of the feedback law.
Offline Computations: We now summarize the offline calcula-
tions that will be needed to design a controller. First and foremost,
a template for V is chosen. Then the modules in Figure 4 are syn-
thesized and a WCET estimation is used to predict their WCETs
statically, yielding wms, we and wc. This allows us to design the
period τ . Only then, the control disturbance is calculated to model
delays caused by WCETs. Then, we require an estimation of D̂
for a disturbance estimate around a nominal point, that allows us to
write∇V · fDq (x,d) for each mode as∇V · fDq (x,d∗) + d̂. This
model is input to a RCLF synthesis tool to generate coefficients of
V . After acquiring V , offline computations are needed to compute
the minimum dwell time δ and check Equations (14) and (15).

5.1 Two Case Studies
Inverted Pendulum For the first case study, a classical inverted
pendulum example is considered. The system of interest has two
state variables θ and ω with the following dynamics[.

θ.
ω

]
=

[
ω

4.9 sin(θ)− 4ω + 2 cos(θ)u

]
,

where u is the control input belong to set U : [−30, 30]. The
region of interest is S : {[θ ω]T |θ2 ≤ 1.52, ω2 ≤ 42}. The goal
is to reach region G : {[θ, ω]T |θ2 + ω2 ≤ 0.22}, starting from
region I : {[θ, ω]T |θ2 + ω2 ≤ 0.52}. Trigonometric functions are
approximated by degree 4 polynomials. and the plant disturbance
d ∈ DP : [−0.02, 0.02]2. The modified dynamics are given by[.

θ.
ω

]
=

 ω(
4.9(θ − 0.1667θ3)− 4ω

+2(1− ω2 + 0.0417ω4)u

) +

[
dPx
dPy

]
.

The setU is discretized to the set U : {−30, 30} to yield a switch
system. Notice that the control implementation can always choose
a larger set of modes. For example, control can allow all u s.t.

Figure 5: Simulation of the Closed Loop System for Inverted
Pendulum. States, Lyapunov function and control input are
shown for each trace with different colors.

|u| ∈ {0, 0.5, 1, 2, 3, 6, 30}. Also, the measurement error is set
to 0.0001. Let the worst case execution times are wms = we =
0.5µs and wc is ignored wc = 0. This yields τ = 1µs. Then,
all the uncertainties in controller are modeled by e = x + dC

with the control disturbance space DC : [−2 × 10−4, 2 × 10−4]2

(measurement error and time delay as result of computation time).
Next, set D̂ is estimated as D̂ : [−0.1, 0.1]2. We use ε = 0.02 and
we find a RCLF (V) using CEGIS procedure (within 5 iterations):

V (θ, ω) = 3.3163338 θ2 + 1.7209759 θω + 1.0273113 ω2 .

Calculated δ is 2µs using (εs = 0.002). We also have Equa-
tions (14) and (15) checked. We implemented the plant and con-
troller in Matlab(tm) using the Simulink(tm) design environment.
Some traces of the system are shown in Fig. 5 for three different ini-
tial states (using three different color) with some uniformly random
control disturbances. Fig. 5 shows values of states, RCLF V and
control input through the time. Each simulation is stopped when G
is reached. As shown in the figure, the minimum switch time in the
simulation is 0.005 which is far bigger than the calculated δ.

Room Heating The second case study is the first problem instance
from Example 4. The goal is to control the temperature of three
rooms (T1, T2 and T3) and keep them around 21. There are four
different modes. Either the heater is off or the heater is on in at
most one of the rooms. The dynamics are described below

.
T1.
T2.
T3

 =

 −0.105T1 + 0.05T2 + 0.05T3 + 0.05
0.05T1 − 0.105T2 + 0.05T3 + 0.05
0.05T1 + 0.05T2 − 0.105T3 + 0.05

+Bq,

Bq0 =

 0
0
0

 , Bq1 =

 0.5− 0.01T1

0
0


Bq2 =

 0
0.5− 0.01T2

0

 , Bq3 =

 0
0

0.5− 0.01T3

 .

Figure 6: Simulation of the Closed Loop System for Heater Ex-
ample. Temperatures are shown for each trace with different
colors.

In this example, the worst case execution times arewwd = we =
0.004 and wc = 0.005. We assume e has form x+dC and control
disturbance is in [−0.01, 0.01]3 models both measurement error
and delay cause by execution time. Also, we assume the plant has
disturbance [−0.01, 0.01]3, meaning that temperature of each room
can change by disturbance, at rate 1◦C per 100 seconds. To use the
estimated disturbance model, we choose D̂ : [−0.04, 0.04]3. The
RCLF (which is calculated in Example 4 by ε = 0.001) is used
and δ is set to be 0.02. Next, it is confirmed that D̂ and δ are big
enough by checking Equations (14) and (15).

The optimizer uses a MPC paradigm for prioritizing modes for
selection according to their costs. The cost function considers (a)
switch cost, (b) operation cost and (c) terminal cost. Switch cost is
1 if a switch is needed and operation cost for mode q is 1 if a heater
is on for mode q. Also, terminal cost for mode q and optimized time

T ∗q is
V (xq(T∗

q))

T∗
q

, where xq(.) shows trace of x under dynamics of
mode q.

The plant and controller are implemented in Simulink(tm) design
environment. Some traces for different initial states are shown in
Fig. 6. Ti is temperature for room i and simulations are stopped,
once set G is reached.

6. CONCLUSIONS
In this paper, robust controller synthesis using RCLFs is con-

sidered. RCLFs guarantee that there is a switching strategy even
in presence of disturbances. We provided a CEGIS framework to
generate RCLFs automatically. We demonstrated that using RCLF
to synthesis controller gives provably more robust controllers com-
pare to cases when only some parameters are tuned for increasing
robustness. Next, we showed that under certain disturbance mod-
els, the controller can implement the switching strategy efficiently.

For future work, we wish to investigate problem of synthesizing
output feedback controllers and focus on a larger class of temporal
properties.

7. ACKNOWLEDGMENTS
This work was supported by the US National Science Founda-

tion (NSF) under CNS-0953941 and CCF-1527075. All opinions
expressed are those of the authors and not necessarily of the NSF.

8. REFERENCES
[1] R. Alur, R. Bodik, G. Juniwal, M. M. Martin,

M. Raghothaman, S. Seshia, R. Singh, A. Solar-Lezama,
E. Torlak, A. Udupa, et al. Syntax-guided synthesis. In
Formal Methods in Computer-Aided Design (FMCAD),
2013, pages 1–8. IEEE, 2013.

[2] Z. Artstein. Stabilization with relaxed controls. Nonlinear
Analysis: Theory, Methods & Applications,
7(11):1163–1173, 1983.

[3] E. Aydin Gol, M. Lazar, and C. Belta. Language-guided
controller synthesis for discrete-time linear systems. In
Proceedings of the 15th ACM international conference on
Hybrid Systems: Computation and Control, pages 95–104.
ACM, 2012.

[4] S. Battilotti. Universal controllers for robust control
problems. Mathematics of Control, Signals and Systems,
10(2):188–202, 1997.

[5] S. Battilotti. Robust stabilization of nonlinear systems with
pointwise norm-bounded uncertainties: A control lyapunov
function approach. IEEE transactions on automatic control,
44(1):3–17, 1999.

[6] P. Bolzern and W. Spinelli. Quadratic stabilization of a
switched affine system about a nonequilibrium point. In
American Control Conference, 2004. Proceedings of the
2004, volume 5, pages 3890–3895. IEEE, 2004.

[7] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS, volume 4963 of LNCS, pages 337–340. Springer,
2008.

[8] R. Dimitrova and R. Majumdar. Deductive control synthesis
for alternating-time logics. In Embedded Software
(EMSOFT), 2014 International Conference on, pages 1–10.
IEEE, 2014.

[9] R. A. Freeman and P. Kokotovic. Inverse optimality in robust
stabilization. SIAM journal on control and optimization,
34(4):1365–1391, 1996.

[10] G. Frehse, S. K. Jha, and B. H. Krogh. A
counterexample-guided approach to parameter synthesis for
linear hybrid automata. In Hybrid Systems: Computation and
Control, pages 187–200. Springer, 2008.

[11] S. Gao, S. Kong, and E. M. Clarke. dreal: An SMT solver for
nonlinear theories over the reals. In Intl. Conference on
Automated Deduction (CADE), pages 208–214, 2013.

[12] L. E. Ghaoui and V. Balakrishnan. Synthesis of
fixed-structure controllers via numerical optimization. In
Decision and Control, 1994., Proceedings of the 33rd IEEE
Conference on, volume 3, pages 2678–2683. IEEE, 1994.

[13] D. Henrion, J.-B. Lasserre, and J. Löfberg. Gloptipoly 3:
moments, optimization and semidefinite programming.
Optimization Methods & Software, 24(4-5):761–779, 2009.

[14] Z. Huang, Y. Wang, S. Mitra, G. E. Dullerud, and
S. Chaudhuri. Controller synthesis with inductive proofs for
piecewise linear systems: an smt-based algorithm. arXiv
preprint arXiv:1509.04623, 2015.

[15] J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, and
N. Aréchiga. Simulation-guided lyapunov analysis for hybrid
dynamical systems. In Proceedings of the 17th international

conference on Hybrid systems: computation and control,
pages 133–142. ACM, 2014.

[16] J. Liu, N. Ozay, U. Topcu, and R. M. Murray. Synthesis of
reactive switching protocols from temporal logic
specifications. Automatic Control, IEEE Transactions on,
58(7):1771–1785, 2013.

[17] M. Mazo Jr, A. Davitian, and P. Tabuada. Pessoa: A tool for
embedded controller synthesis. In Computer Aided
Verification, pages 566–569. Springer, 2010.

[18] A. Mosek. The mosek optimization software. Online at
http://www.mosek.com, 54, 2010.

[19] S. Mouelhi, A. Girard, and G. Gössler. Cosyma: a tool for
controller synthesis using multi-scale abstractions. In
Proceedings of the 16th international conference on Hybrid
systems: computation and control, pages 83–88. ACM, 2013.

[20] P. Nilsson and N. Ozay. Incremental synthesis of switching
protocols via abstraction refinement. In Decision and Control
(CDC), 2014 IEEE 53rd Annual Conference on. IEEE, 2014.

[21] N. Ozay, J. Liu, P. Prabhakar, and R. M. Murray. Computing
augmented finite transition systems to synthesize switching
protocols for polynomial switched systems. In American
Control Conference (ACC), 2013, pages 6237–6244. IEEE,
2013.

[22] H. Ravanbakhsh and S. Sankaranarayanan. Counter-example
guided synthesis of control lyapunov functions for switched
systems. In Decision and Control (CDC), 2015 IEEE 54rd
Annual Conference on. IEEE, 2015.

[23] H. Ravanbakhsh and S. Sankaranarayanan. Counterexample
guided synthesis of switched controllers for reach-while-stay
properties. arXiv preprint arXiv:1505.01180, 2015.

[24] M. A. Rotea and P. P. Khargonekar. Stabilization of uncertain
systems with norm bounded uncertainty-a control lyapunov
function approach. SIAM Journal on Control and
Optimization, 27(6):1462–1476, 1989.

[25] A. Solar-Lezama. Program synthesis by sketching. ProQuest,
2008. PhD thesis (University of California, Berkeley).

[26] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and
V. Saraswat. Combinatorial sketching for finite programs. In
ACM Sigplan Notices, volume 41, pages 404–415. ACM,
2006.

[27] E. D. Sontag. A ‘universal‘ construction of artstein’s theorem
on nonlinear stabilization. Systems & control letters,
13(2):117–123, 1989.

[28] A. Taly and A. Tiwari. Switching logic synthesis for
reachability. In Proceedings of the tenth ACM international
conference on Embedded software, pages 19–28. ACM,
2010.

[29] W. Tan and A. Packard. Searching for control lyapunov
functions using sums of squares programming. sibi, 1:1,
2004.

[30] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M.
Murray. Tulip: a software toolbox for receding horizon
temporal logic planning. In Proceedings of the 14th
international conference on Hybrid systems: computation
and control, pages 313–314. ACM, 2011.

[31] B. Yordanov and C. Belta. Parameter synthesis for piecewise
affine systems from temporal logic specifications. In Hybrid
Systems: Computation and Control, pages 542–555.
Springer, 2008.

