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Abstract— This paper deals with the computation of polyhe-
dral positive invariant sets for polynomial dynamical systems.
A positive invariant set is a subset of the state-space such that
if the initial state of the system belongs to this set, then the
state of the system remains inside the set for all future time
instances. In this work, we present a procedure that constructs
an invariant set, iteratively, starting from an initial polyhedron
that forms a ‘“‘guess” at the invariant. At each iterative step,
our procedure attempts to prove that the given polyhedron is
a positive invariant by setting up a non-linear optimization
problem for each facet of the current polyhedron. This is
relaxed to a linear program through the use of the blossoming
principle for polynomials. If the current iterate fails to be
invariant, we attempt to use local sensitivity analysis using
the primal-dual solutions of the linear program to push its
faces outwards/inwards in a bid to make it invariant. Doing
so, however, keeps the face normals of the iterates fixed for all
steps. In this paper, we generalize the process to vary the normal
vectors as well as the offsets for the individual faces. Doing so,
makes the procedure completely general, but at the same time
increases its complexity. Nevertheless, we demonstrate that the
new approach allows our procedure to recover from a poor
choice of templates initially to yield better invariants.

I. INTRODUCTION

This paper presents an iterative algorithm for discovering
polyhedral positive invariant sets for polynomial dynamical
systems. A set P is a positive invariant iff for all z € P,
the trajectory initialized to x(0) = x satisfies z(t) € P
for all ¢ > 0. Positive invariants are useful in the analysis
of dynamical systems for proving properties. The problem
of finding the smallest positive invariant that contains a
given set (and/or excludes a set of unsafe states) is a useful
primitive in reachability analysis. Likewise, the problem of
finding the largest positive invariant containing an attractor
is useful in bounding the region of attraction.

However, finding positive invariants is often a hard prob-
lem for nonlinear systems. Existing approaches rely on
relaxations such as sum-of-squares programming to find a
polynomial p such that p > 0 is a positive invariant [PJPO7].
In this work, we find a polyhedron that is positive invari-
ant for a polynomial system by solving a series of linear
programming (LP) problems obtained by relaxing nonlinear
optimization problems. The relaxation uses the blossom prin-
ciple of writing a polynomial p as a multiaffine polynomial
over a larger set of variables. Our overall approach can be
seen as a gradient descent to discover the facets of a positive
invariant polyhedron Az < b. Starting from an initial guess,
each step checks using the LP relaxation, whether the current
iterate A;x < b; satisfies the positive invariance conditions.

Otherwise, we update our polyhedron (A; +U;)x < b; +«;
by finding directions U;, ;. A key insight is the use of
local sensitivity analysis to find fruitful directions U; and «;.
Our approach is implemented in MATLAB(tm). We evaluate
our approach on small but complex nonlinear systems to
demonstrate the use some inital guess ( not necessarily an
invariant), to iteratively derive a positive invariant.

A. Related Work

This paper generalizes the approach presented in [BG12a],
where an iterative approach to the computation of polyhedral
invariant sets for polynomial systems is proposed. In that
work, the orientation of the facets of the polyhedra remain
the same and the search for an invariant is done over
the position of these facets, i.e, U; is always set to 0.
This is not the case for the present work. Therefore, our
approach is less dependent on the initial polyhedron used.
Our approach generalizes the specific case considered by
Belta et al. [BHO6] where a characterization of rectangu-
lar invariants for multi-affine dynamical systems is given.
Other existing approaches for computing positive invariant
sets for polynomial systems usually seek algebraic/semi-
algebraic invariants. The associated polynomial constraint
solving problems are then solved using computational tools
from algebraic geometry [Sanl0] (Groebner basis), sum-
of-squares relaxations [PJPO7], or moments of occupation
measures [KHJ13]. Our approach limits the search to convex
polyhedral sets and is based on linear programming and thus
offers an alternative solution to the works mentioned above.
Finally, this paper restricts itself to the case of autonomous
systems, without controls and disturbances.Extensions for
robust control invariant sets can be obtained using the method
presented in our earlier work [BG12b].

II. PRELIMINARIES

This section presents the preliminary notions that underlie
our work, including the blossoming principle. All the results
in this section are quite standard, and are therefore stated
without proofs. Let R,, = ij [ak,bi] be a rectangle of
R™ and let V,, = H’Zi?{ak, bi} be its set of vertices.

A. Multivariate polynomials

A multivariate polynomial p : R™ — R is of the form

E pkl,_“,knxlfl ...af  wherein
(k1,....kn)EA

p(x1,...,2p) :



A=10,...,60:} x---x{0,...,9,} where 61,...,0, are
the degrees of p in the respective variables z1,...,z, and
{Pky,..k,, € R, (k1,...,k,) € A} denotes its coefficient
set. Alternatively, given multi-indices I = (iy,...,i,) € N"
and § = (01,...,0,) € N, the polynomial p of degree §
can be written as follows:

plz) =Y pra’ with p; € R, VI <,
<6

where 2/ = z{* ... 2i» and I < § is the order relation given

by i; < 90; forall j € {1,...,n}.
B. Multi-affine functions

Multi-affine functions form a particular class of multi-
variate polynomials. Essentially, a multi-affine function is
a function which is affine in each of its variables when the
other variables are regarded as constant:

Definition 1: A multi-affine function p : R® — R is a
multivariate polynomial in the variables zi,...,x, where
the degree of p in each of the variable is at most 1. For
x=(x1,...,Tpn),

pl@)= > puogaf.al
(lsesln) €{0, 137

,,,,, 1, € R for all (I4,...,1,) € {0,1}™.

Belta and Habets prove [BHO06] that a multi-affine function
is uniquely determined by its values at the vertices of a
rectangle.

Lemma 1: For all x € R, p(x) is a convex combination
of the values at the set of vertices V/,.
We easily deduce that: min p(z) = min p(v).

TzER, veV,

C. Blossoming principle

The blossoming principle provides a technique to prove
bounds on multivariate polynomials over a compact set. The
basic idea is to rewrite a polynomial as a multi-affine func-
tion and use well known bounds on multi-affine functions
(see [Sei93] and references therein).

Let p : R®™ — R be an arbitrary multivariate polyno-
mial of degree § : (d1,...,d,) over variables x1,..., %y,
respectively. We convert p(z) to a multi-affine function
q(z1,...,2n), wherein each variable z; corresponds to mul-
tiple variables z; 1,...,2; 4, in the blossom.

Definition 2 (Blossom): The blossom or polar form of the
polynomial p : R® — R is the function g5 : RO+ — R
given for z = (211, .. - Zn,5,) by

a5(2) = Z

(1, ln)EA

.,Z1751,...,2n,1,..

i=n

Diy,dn, H By, s5.(Zi1, -1 %i6;)
=1
with

1
Bl,r(Zh--er):ﬁ Z Zoy - 2oy -
UV o100 3C{1,.0m}
As an example, the blossom of the polynomial p(z) =
3z1 + 223 + 2323 of degree § = (2,3) is

3
5(z11 +21,2) + 2221222223
1
+§2’1,121,2(2’2,122,2 + 29,1223 + 22,2%2,3).

a(2) =

: /
Given z = (21,1,--+,21,615+-+»%n,1y---12n,5,) and 2’ =
/ / / / YA
(Z1000 52080 <o Zn1s---r2n5, ), We say z = 2/ iff,
for all £ = 1,...,n, there exists a permutation 7 such
_ / / s
that (2,15 2k,6,) = Tk(2h 15 - - -5 215, )- 1t IS €asy to see

that = is an equivalence relation. The following proposition
characterizes blossoms (equivalent to Definition 2):

Proposition 1: qs : R+ _ R is a blossom of the
polynomial p : R™ — R if and only if:

1) g5 is a multi-affine function;

2) g¢s is a symmetric function of its arguments:

Vz 22 q5(2) = gs(2);
3) gs satisfies the diagonal property:

qs(z1, - . o zn) =p(21, .oy 2Zn)-

Having converted p(z) to its blossom form g¢s(z), we
employ the known bounds for a multi-affine polynomial
over a rectangle (see Lemma 1). Given 2 € R, =
[a1,b1] X -+ X [an, by], we define the associated rectangle
in the blossom as R, = ii?[ak,bk]‘sk with vertices
V., = Hllzz?{ak,bk}‘sk. Then, it is easy to show that
Jnin p(z) > iy, as(v)-

n

3 Rly ey Rmyy ..

The number of vertices |V,/| in a blossom is exponential
both in the degree and the number of variables in the polyno-
mial p, making the application of Lemma 1 computationally
expensive. We alleviate the exponential dependency on the
number of variables by considering vertices equivalent under
the permutation equivalence relation =.

Let V,,' = (V/// =) be the set of equivalence classes of the
relation 2 on the set V.. It is easy to prove that \Vn/\ = (01+
1)x+-+x(8,+1). From the second property in Proposition 1,

it follows that min p(x) > min ¢5(7).
TER, TeV,,
Example 1: To illustrate this, let us consider a bivariate

polynomial p : [0,1] x [2,3] — R with §; = 1 and d = 2.
Then R, = [0,1] x [2,3]?, V4 will contain 2% = 8 vertices
and ?2’ will contain 2 X 3 = 6 vertices shown below:

{(0,2,2),(1,2,2),(0,2,3),(1,2,3),(0,3,3), (1,3,3)}.

Here, the bar over a tuple represents its equivalence class
under the = relation.

Thus, the blossoming principle can prove bounds for a
multivariate polynomial p(z) over a given rectangular set. We
will now apply this principle to generate positive invariants.

III. POLYHEDRAL INVARIANCE VERIFICATION
BASED ON BLOSSOM ABSTRACTION

In this section, we first consider the problem of proving
positive invariance of a polyhedral set under polynomial
dynamics. This naturally leads to a non-linear optimization
problem, and the problem of showing that its solution is
non-negative. We will attack this problem using a linear pro-
gramming formulation that yields guaranteed lower bounds
on the solution of the non-linear problem. We will consider
the following dynamical system S:

#(t) = f(x(t)), x(t) € R" (1)



where f : R™ — R" is a polynomial vector field written
as a vector: (f1,...,f,)T where each f; : R" — R is a
polynomial. Let 0y j,...,0,,; be the respective degrees of
the variables z1,...,z, for the polynomial f;, and §; =

9;; for all i € {1,...,n}. The first step is to
J€{l,...,n} )
consider a “blossom form” of this system over a larger set

of variables z, but with multi-affine dynamics in z.

A. Blossom Form of Dynamical System

For convenience, we “normalize” the degrees of all the
polynomials f; in the vector field to 0 : (d1,...,0,) in the
variables 1, ..., x, respectively, by adding terms with zero
coefficients wherever necessary. For all i = 1,...,n, let f; ;
be the blossom for f; regarded as a polynomial of degree ¢
and let f5 = (f1,5,..., fn,s). Our abstract dynamical system
S’ will be of the form:

() = g5 (2(1)), 2(t) € RO Hon (2)

where the abstraction vector field gs ROt +0n

RO 40 is given by: q; j.5(2) = fis(2) foralli=1...,n
and all j = 1,...,9; where we will denote by default
Z = (21,151 21,605+ 2n1s -+, %n,5,)- We also need to
define the vector space H given by :

H : {Z € R61+m+6"‘2’j71 == Zj,éla.j =1,... ,n}.

The advantage of the abstraction is that the abstract system
(S’) is multi-affine and we have the following lemma:

Lemma 2: The dynamical systems S and S’ are equivalent
on the vector space H. If x, z are trajectories of S and S’
such that 2;(0) = 2; ;(0) forall i =1,...,n, j=1,...,0;,
and z(0) € H then z;(t) = z; ;(¢) for all ¢t > 0.

Proof: Tt is easy to show that H is an invariant of S’
Therefore, z(0) € H implies that z(t) € H for all ¢. Next,
using the diagonal property of the polar form we show that
the systems (1) and (2) are equivalent if we restrict ourselves
to the set H. [ ]

B. Polyhedral Invariant Sets

Let us fix a rectangle I,, and a bounded polytope P C R,,
with a set of m facets {Fj| k € K = {1,...,m}} where

Fp,={zeR" ap-x =10y, and a;-x < b;, Vi € K\ {k}},

it follows from the standard characterization of invariant sets
(see e.g. [Aub91]) that P is invariant for the dynamical
system (1) if

Vke K, Vx € Fy, a,- f(z) <0 3)

where aj is the normal vector to Fj pointing outside P.
As pointed out in [ATS09] and by application of Tarski’s
Theorem [Tar48], this a decidable problem. However, the
complexity of the decision procedure gives little hope for
practical application. Let us remark that (3) can be reformu-
lated as follows:

Vk € K, min —ay, - f(x) > 0. 4
rE€FYy

This consists in showing that the minimal values of the
multivariate polynomials —ay, - f on the bounded polytopes
Fy, are positive. Using the equivalence with the blossom
form, this verification is equivalent to :

Vke K, min —aj}-qs(z) >0, (3)
z€F] N H
wherein a] = (%, ., %, L, ) and Fy = {2 €

RO+ +0n| gl -z = by, and a2 < b, Vi € K\ {k}}.
Hence, if we are able to compute non-negative certified lower
bounds of these minimal values, it is sufficient to prove that
the polytope P is invariant for the dynamical system (1).
Therefore, the verification of polyhedral invariants for poly-
nomial dynamical systems can be handled by solving a set
of problems of optimization of multi-affine functions on
bounded polytopes. More precisely, we have to deal with
the following problem:

minimize —a}, - ¢5(2)

over z €R,/,

subject to  a;’ -z < b;, i € K\ {k}, (6)
ak/ CR= bk;

Zp,l = Zp,l+1, P € [1771]7 le [176}7 - ]‘]

The principal result of [BG12a] is a linear relaxation estab-
lished by writing the Lagrangian of the previous problem and
by using both blossom properties and the convexity property
of multi-affine functions given by Lemma 1:

Theorem 1: The optimal value of problem (6) is greater
than the optimal value d;* of:

max ¢
teR, Ae R™ peR™/
S.t. A >0, 1el,
t < —aj-qs5(0)
+ > N(d-v—1b) kJGE
i€ K\{k} veV)

+u(a),- T — by)
. @)

where V! = (V,)/ =) is the quotient set of V, by the
equivalence relation =2.
If dy* are positive for all k € K then we can deduce that our
polytope P is invariant under S. We have then a sufficient
condition for polyhedral invariant verification for polynomial
dynamical systems.

We have presented the use of the blossom to check poly-
hedral invariants. Presently, we will now combine our ideas
in an iterative scheme to generate polyhedral invariants.

IV. ITERATIVE APPROACH FOR THE
COMPUTATION OF POLYHEDRAL INVARIANTS

Having presented a scheme to check polyhedral invariance
for polynomial dynamical systems, we will now present an
iterative technique that attempts to generate such invariants.
The j** iteration considers a candidate polyhedron P;. Our
approach will use the following steps: (a) Check if P; is
invariant by computing the bounds dj given by the set of
linear programs (7), each LP representing a face. If the
obtained values of dj are all positive, we conclude that



P; is a positive invariant set. (b) Otherwise, we modify
the polyhedron P; using sensitivity analysis. Specifically,
for each face a;x < b; in P;, we consider perturbations
(a; +u;) - & < b; + o for perturbations u; and «;. We now
consider the perturbation of the bound p* and d* from the
problems (6) and (7).

A. Gradient Descent

The overall goal of our analysis is to find matrices
A1y ..y, b1, ..., by, written collectively as A, b, such that
/\keK arx < b is a positive invariant of the system (1). Our
approach can be viewed as a gradient ascent technique.

Consider the functional F(A,b) given by the optimal
value d* obtained by solving problem (7) for given A,b.
Our approach seeks to maximize this functional iteratively,
stopping if we obtain A,b that yield a positive d*. We
proceed as follows:

1) Start with Ay, by, our initial guess.
2) At each step, find “ascent directions” U, o such that
F(A+U,b+ «) strictly improves the value of F.

Since F is defined as the result of an optimization
problem, finding the ascent direction is performed using
sensitivity analysis.

B. Sensitivity analysis

An interesting feature of Lagrangian duality is that it
enables sensitivity analysis (see e.g. [BV04]). Consider the
following variation of problem (6):

minimize p(z)
over r € R, )
subject to  (a; +w;) - x <b;+«;, €I,
(Cj-‘rw]')-l‘:dj—l—ﬁj, JEJ,
where a; € R, u; € R™ foralli € I and 8; € R, v; € R" for

all j € J. This problem coincides with the original problem
(6), when the vectors o = (a;)ier, B = (8;);es and the
matrices U = (u;)icr, W = (wj);es are equal to zero.
Therefore, if (6) is feasible then (8) is feasible, as well. Let
p* and p* (U, W, o, B) denote the optimal values of problems
(6) and (8), respectively. Let d* and d*(U, W, «, 8) be the
lower bounds of p* and p*(u, v, «, 3) obtained by application
of Theorem 1. The following result shows how the solution
of (7) allows us to compute a lower bound of d* (U, W, a, )
and thus of p*(U, W, a, B).

Theorem 2: Let d* and (t*, \*, u*) be the optimal value
and an optimal solution of the linear program (7). Then, for
all o € R™ |, U € R™*™ and for all § € R™/, W €
R™7*"guch that (8) is feasible we have:

p*(U7 W,O{,ﬁ) Z d*(U,VV,(X,B) Z d* -

+Z)‘* ) +Z“J

el jedJ

A*.O{—M*.ﬁ

, forallm e V.

Proof: By applying Theorem 1 to the perturbed prob-
lem (6), d*(U, W, «, 8) is the optimal value of

maximize ¢

over teR, Ae R™, peR™,
subject to A; >0, i € I,
t<gqs(v +Z)\ [al +u}] -0 —b; — ;)
el
+3 (s +wi] T —dj— By), TV

jed
)
The fact that p*(U, W, «, 8) > d*(U,W,a, ) is a conse-
quence of Theorem 1. Let (¢*, A*, u*) be an optimal solution
of the problem (7), let us show that (t* — \* - o — p*- 5+
Z A5 (uf - 0) + Z wi(wj - 0), \*, ") is feasible for (9) for
icl jed
all 7 € V7. Tt is clear that A; >0, for all ¢ € I. Also, for all
veV,

+ > N ([d) + ] T — b — i)

el
+Y (e +uf] T —dj — By)
jeJ
= @) + Y N0 T—bi) + Y pi(c;-v—dy)
el jeJ
— B> N (D) Y (D),
i€l jeJ
> =N a—p B+ > N (u) D)+ Y (w) D).
il jeJ
Then, (* — A\ - a — p* - BN + Y A(u
el
Zu] ), 1*) is feasible for (9) for all ¥ € V. It

follows that d*(U, Wa,ﬂ) >t =\

Z)" +Z“J

i€l
to the expected 1nequa11ty since d* = t*. [ ]

C. THE ITERATIVE APPROACH

In this section, we are going to show how one constructs
a polyhedral invariant for a given polynomial dynamical
system (.5). The idea is to start from a given polyhedron,
and use the previous sensitivity result to modify its matrix
direction and its vector position in order to make it invariant.
In fact, since the result given by Theorem 2 is linear on
the perturbation variables, we will be able to construct a
linear program trying to find suitable perturbations ensuring
invariance of the perturbed polyhedra.
For this aim, let U € R *"™ (direction perturbation) and
a € R™¥, (position perturbation), and let Py, be the
polytope given by

Pyo={xeR" (ar+ug) = < by +ax, Vk € K}.

o=t B+
) for all 7 € V', which leads

For U = o = 0, we recover the polytope P. We would like
to find o and U such that Py, is an invariant for (1). To
establish the linear program, we should impose additional
constraints on Py, in order to avoid degenerate cases:



e Pyo CR.

e Py is not empty.

o Py is “relatively close” to P.
The first and the second constraints can be ensured by
imposing bounds on the vector b+a: b < b+a < b. Here b is
chosen to be a small but positive vector to trivially guarantee
non-emptiness of Py ; by ensuring that 0e Py, ;. However,
the choice of b to guarantee that Py, € R is not clear. If
U were fixed then, one could compute components of b by
solving max (ay, +ug)x s.t. * € R to compute by,. However,
Uy, is not fixed here. Therefore, rather than enforce Py, C R
in the search for U, a, we will allow our update procedure to
generate a candidate U, « and then test a posteriori, whether
our optimal choice respects the condition Py, C R.

The third condition is ensured by imposing bounds —e,, <
a < ey, —cy < U < gy where ¢, € R™% and ¢y €
R™KX™ are respectively parameter vector and matrix that
can be tuned.

Now, denoting for k£ € K, dZ(U7 «) the optimal values
of the relaxation of the perturbed problem for the polytope
Py, the sensitivity analysis given in Theorem 2 gives us

Vk € K, di(U,a) > di = N, - a+ Y N, (i)(uf - D).
i=1

where dj; and (t}, \}) are the optimal values and solutions of
problems (7) for polytope P and k € K (where the equality
constraint multiplier is the given by the k component of A}
which will be denoted A} (k)). Then, for P, to be an invariant
polytope for the dynamicnal system (1), it is sufficient that for

all k € K, dj,—X\p-a+ > Aj(i)(uj - ) > 0. In order to find

i=1
a suitable matrix perturbation U and a suitable perturbation
vector «, we can solve the following problem:

min (dz— ;;~a+_z;x;;<i><u;-v>>

maximize
over a e R™5 U e RT&X" 5V,
subject to  o; <oy <oy, 1 € K

U, 5 < g, 5 < Wj,j, 1€ K, j€ {17. .. ,n}.
where o; = max(—e;,b; — b;) , @; = min(e;, b; — b;) and
U; j, Us,; are respectively the j-th component of the i-th row
of —ey and €. This problem can be recast as the following
linear program:

maximize ¢
over teR, a e Rmx, U ¢ RMEX",
subject to  t <dj — A" -«

D IPHOIC

o <o <oy, 1 €K,
upj <ui <y, 1€ K,j€e {1,...,’[1}.
(10)
If (t*,a*,U*) is infeasible, we note that our algorithm
fails to find a descent direction and must be restarted (by
changing the bounds or the initial guess). Otherwise, let

), veV,

(t*,a*,U*) be a solution of this linear program. If the
optimal value of this problem is positive, then it is sufficient
to prove that Py« - is an invariant for the dynamical
system (1). If the optimal value is strictly negative, then
we compute dj(U*, a*) by solving problems (7) for the
polytope Py- o+ for all k € K. If all dj(U*,a*) are non-
negative, then Py- o~ is invariant. If the verification fails as
well, then we use sensitivity analysis to modify P« .~ in
order to find an invariant. This gives an iterative approach
for synthesis of polytopic invariants of polynomial dynamical
systems.

Remark 1: Let us remark that the polytope Py« o+ com-
puted by solving (10) may have empty facets. This results,
for the empty facet F},, in an unbounded value dj (U*, o*) =
+o00. In order to avoid such situations, it may be useful to
replace o by &* such that P;; + has no empty facet and
Py o+ = Py« g5+ . Once again, this can be checked by solving
a set of linear programs.

V. NUMERICAL RESULTS

We have implemented our approach in Matlab. In this
section, we present some numerical results and compare
results obtained with those from our previous work [BG12a].
All computations terminate within 10 seconds on a standard
MACbook pro laptop.

1) Comparison experiments: We applied our approach to
the FitzHugh-Nagumo system [Fit61] modeling the electrical
activity of a neuron:

7
iy =x; — 23 /3 — 20+ <, @2 =0.08(z1 +0.7—0.8z3).

8
This system is known to have a limit cycle. Using our

Fig. 1. Polyhedral invariants with and without matrix perturbations.

approach, we synthesized an invariant polytope containing
the limit cycle. Working in the rectangle [—2.5,2.5] x
[—1.5,3.5], we found invariants polytope with 8 facets with
uniformly distributed orientations (octagon). In Figure 1,
we compare the invariant we found (represented with solid
line) with the case where no matrix perturbation is applied
(represented with dotted line). We can see that we obtain a
bigger polyhedral invariant when the number of iteration is



the same (8 iterations in that case). We now consider the
Phytoplankton growth model [BGO02]:

1%

% i 2x§.
This system has a stable equilibrium. Using our approach, we
synthesized an invariant polytope containing the equilibrium.
Working in the rectangle [0, 3] x [—0.1,2] x [0, 0.6] and using
as candidate a a regular octagon with mg = 18 facets. Our
previous approach needs 11 iterations to find the invariant
polytope (¢; = 0.1 for all % 1,...,18) depicted in the
upper part of the figure. By adding direction freedom (the
matrix perturbation bound ¢y, is taken such that all its values
are equal to ¢ = 0.2), we only need 6 iteration to find the
invariant (see the down part of Figure 2).

. . . T
1:1:171717 7,132:(256371)1‘2, Tr3 =

03

02

Fig. 2. Polytopic invariant in the left obtained after 11 iterations (previous

approach) and the one in the left obtained after 6 iterations by adding
direction freedom.

a) Dealing with Local Minima: Consider the well
known Van Der Pol (VDP) reversed time oscillator [VV28]:

1 = —X9, Zg=—x2(l— x?) — .

This system is known to have a stable limit cycle. Since
we reverse the time, the equilibrium become stable. If our
working rectangle is [—1,1]% (not inside the limit cycle):
starting with an octagon inside this rectangle, the approach
will fail to find an invariant due to a local minimum. This
means that we reach a iterate that does not have an ascent
direction but also fails to be an invariant. To solve this
problem, whenever a local minimum is reached, we replace
our working rectangle by the bounding box of the reached
polyhedra. By doing so, we allow our sensitivity result to find

an ascent direction at the price of finding a smaller invariant
(see Figure 3).

VI. CONCLUSIONS

In this paper, an approach allowing the computation of
polyhedral invariants for polynomial systems is proposed.
Thanks to the additional degrees of freedom on the template
direction and the use of bounding boxes, the given methods
can be efficient in practice and the choice of the polyhedral
guess could be made arbitrarily in many cases. A direct
extension of this work will be to find the proper way to
use bounding boxes (in order to get more precision) without
getting smaller invariants. Also, one should get a smart way
to find appropriate bounds that can ensure fast convergence
without causing degeneracy. Finally, an important future
work will be the extension of the approach to deal with more
general non linear dynamical systems.

s
4
S

RO RN
RO RS

BN S
NN =

Fig. 3. The local minimum problem for the time reversed VDP.
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