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Abstract— We investigate the problem of synthesizing switch-
ing controllers for stabilizing continuous-time plants. First,
we introduce a class of control Lyapunov functions (CLFs)
for switched systems along with a switching strategy that
yields a closed loop system with a guaranteed minimum dwell
time in each switching mode. However, the challenge lies in
automatically synthesizing appropriate CLFs. Assuming a given
fixed form for the CLF with unknown coefficients, we derive
quantified nonlinear constraints whose feasible solutions (if any)
correspond to CLFs for the original system.

However, solving quantified nonlinear constraints pose a
challenge to most LMI/BMI-based relaxations. Therefore, we
investigate a general approach called Counter-Example Guided
Inductive Synthesis (CEGIS), that has been widely used in
the emerging area of automatic program synthesis. We show
how a LMI-based relaxation can be formulated within the
CEGIS framework for synthesizing CLFs. We also evaluate our
approach on a number of interesting benchmarks, and compare
the performance of the new approach with our previous work
that uses off-the-shelf nonlinear constraint solvers instead of the
LMI relaxation. The results shows synthesizing CLFs by using
LMI solvers inside a CEGIS framework can be a computational
feasible approach to synthesizing CLFs.

I. INTRODUCTION

The goal of this article is to automatically synthesize
continuous-time switching controllers for guaranteed asymp-
totic stability of a switched polynomial dynamical system.
The plant is defined by a continuous-time switched system
with continuous state variables and finitely many control
modes. The controller can choose a control mode through
state-feedback in order to guarantee closed loop stability w.r.t
a specified equilibrium point.

The proposed solution is based on adapting Control Lya-
punov Functions (CLFs) to provide a switching strategy that
guarantees asymptotic stability. A CLF extends a regular
Lyapunov function to the controlled setting, where it requires
that for each state, there exists a control that causes an
instantaneous decrease in the value of the CLF. However,
CLFs for switched systems can be quite tricky: for a con-
troller to be realizable, the CLF must guarantee that the
switching signal does not always attempt to change modes
infinitely often inside a finite time horizon (zenoness). In
this paper, we first provide a sufficient condition on CLFs,
along with an associated switching strategy that ensures the
switching function respects a minimum dwell time for each
control mode. In other words, we guarantee a minimal time
τ > 0, such that once a control mode is chosen by the
controller at time t, it remains chosen during the interval

[t, t + τ ]. This requirement is essential for the controller to
be implementable.

However, the main challenge is to arrive at such CLFs
in the first place. To do so, we use a template CLF that is
simply a parametric form of the desired CLF with unknown
coefficients. We wish to solve for these coefficients to find
if a CLF with the given template exists. We find that
this process yields nonlinear feasibility problems that have
alternating ∃ and ∀ quantifiers. This is in direct contrast
with a standard optimization problems that simply involve
∃ quantifiers. The presence of nonlinear (semi-algebraic)
constraints is yet another complication.

To get around the quantification problem, we employ a
framework called CounterExample Guided Inductive Synthe-
sis (CEGIS) that was originally proposed to “complete” un-
known parameters inside partial programs (termed sketches)
so that the resulting programs satisfy some correctness
properties [19]. In this paper, we adapt CEGIS to the prob-
lem of controller synthesis to solve the resulting quantified
constraints.

Another challenge lies in dealing with nonlinear (semi-
algebraic) constraints. Our previous work used off-the-shelf
nonlinear constraint solvers like dReal [18]. However, the
resulting procedure is often expensive and fails to complete,
even for small systems. In this article, we examine a LMI-
based relaxation for the semi-algebraic constraints. We show
how the CEGIS-framework can be adapted to use LMI-
relaxation for synthesizing CLFs.

We provide an implementation of the CEGIS approach to
synthesizing CLFs using the SMT solver Z3 constraint-solver
for linear constraints [6] and the CVXOPT [1] solver for
LMI constraints. The evaluation suggests our approach can
synthesize switching controllers for a number of interesting
benchmarks and can solve larger problems in comparison
with our previous results. In summary, the contributions of
this paper are as follows:

1) We present a sufficient condition on CLFs along with a
switching strategy which guarantees asymptotic stability
as well as non-zeno behavior.

2) We adapt the CEGIS algorithm (used to discover CLFs)
to use LMI-relaxations, thus significantly improving its
performance.

3) We provide a detailed experimental evaluation on a set
of benchmarks.
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A. Related Work

“Correct-by-construction” approaches seek hybrid
(switching) controllers from mathematical plant models,
wherein the synthesis procedure also guarantees a set of
user-defined correctness properties for the closed loop. One
approach to the synthesis first constructs a finite abstraction
of the system along with a simulation relation between
the abstract system and the actual system. The simulation
relation guarantees that a controller that guarantees a
certain class of properties (eg., safety) on the abstract
system will also serve to control the original plant model.
Then the problem is solved for the abstract system using
discrete automata-based synthesis techniques [13], [11], [3].
The problem of zenoness is addressed in some of these
approaches (eg., [3]) by enforcing a minimum dwell time
between mode switches.

The other class of approaches are based on Lyapunov
functions. Synthesizing Lyapunov functions is a well-studied
problem for polynomial systems. For instance, the conditions
on Lyapunov functions have been relaxed using Sum-of-
Squares (SOS) programming [14]. However, the problem
for synthesizing a CLF is known to be much harder. For
control-continuous feedback systems Artstein [2] introduced
necessary conditions on CLFs, and then showed that a static
feedback law can be extracted from the CLF once it is
discovered. However, synthesizing such a CLF is typically
formulated as a Bilinear Matrix Inequality (BMI) (e.g. [21]).
CLFs have been studied for switched systems, as well, but
mainly for switched linear systems. For a survey on these
results, we refer the reader to Lin et al. [10].

The problem of zeno behavior roughly corresponds to
chattering, that is common in approaches such as sliding
mode control [9], [5]. However, chattering is dealt with
in sliding mode control by providing a smooth feedback
control in a small zone surrounding the sliding surface that
allows trajectories to approach the sliding mode. It is not
entirely clear if the formal properties sought in this paper
are necessarily preserved by such a smoothing step.

Recently, we proposed a CLF-based approach to controller
synthesis [18] that guarantees a minimum dwell time prop-
erty for region-stabilization of switched systems using a
counterexample-guided synthesis approach similar (but not
identical) to the approach described in this paper. Region
stability notions first introduced by Podelski and Wagner,
reason about asymptotic convergence of trajectories to a set
around the equilibrium rather than the equilibrium itself [16].
In this article, we address asymptotic stability. Furthermore,
our previous work used a nonlinear constraint solver (dReal)
“out-of-the-box” [7]. Here, we provide substantial perfor-
mance improvements by formulating a LMI relaxation.

II. PRELIMINARIES

A. Notations

Let N, Z, R and R+ denote the sets of natural, integer, real
and non-negative real numbers, respectively. Let R[x] be set
of all polynomials involving variables in x. The 2-norm of a
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Fig. 1. Model of the closed loop system

vector x is written ‖x‖. The (full dimensional) ball centered
around x with radius r is denoted Br(x). Let xi is the ith

element of vector x and for a subset X ⊆ Rn, let Xi be it’s
projection onto the variable xi.

Given a polynomial p ∈ R[x], let Monos(p) be set of
all monomials in p (monomials with non-zero coefficient).
Let Deg(p) be the maximum degree of polynomial p, and
Vars(p) is the set of variables involved in p. For a function
f : R → Rn, f+(x) (f−(x)) denotes its right (resp. left)
limit at x. Also

.
f+(x) (

.
f−(x)) represents its right (resp.

left) derivative at x.

B. System Model

The system of interest consists of a plant model and
a continuous feedback switched controller. The plant has
a finite number of modes belonging to the set Q, and is
modeled with n continuous variables. These variables have
different dynamics, depending on the mode of the plant. The
controller chooses the mode for the plant, given the current
continuous state of the plant and it’s current mode. Fig. 1
shows a schematic view of the closed loop system.

Definition 1 (Plant): A plant is a triple Ψ(X,Q, f) de-
scribing the physical environment:

1) X ⊆ Rn is domain of continuous variables (n is the
number of continuous state variables).

2) Q is a finite set containing (control) modes.
3) f is a function, that maps each mode q ∈ Q to a

polynomial vector field fq ∈ R[x]n

Definition 2 (Controller): Given a plant Ψ(X,Q, f), a
controller is a function switch : Q × X → Q that maps
current continuous state variable x ∈ X and mode q ∈ Q to
next mode q̂.

A trace of such a system is given by functions x(.) :
R+ → X and q(.) : R+ → Q, which map time to
continuous state variables and the discrete mode of the plant,
respectively.

x(.) is a continuous function defined as

x(0) = x0 ,
.
x+(t) = fq(t)(x(t))

q(.) is a piecewise constant function with finite or count-
ably infinite set of times SwitchTimes(q) = {t | q−(t) 6=
q+(t)}. A trace (x(.) , q(.)) is time-divergent if for each
∆ > 0, the set [0,∆] ∩ SwitchTimes(q) is finite.



C. Problem Statement

The goal is to find a switch function that guarantees
asymptotic stability of the resulting closed loop around a
specified equilibrium x∗. Since we are considering poly-
nomial dynamical systems, w.l.o.g we assume x∗ = 0. In
addition to the main specification, we also require the closed-
loop system to maintain a minimum dwell time in each mode,
as explained earlier.

Given a connected and compact set P ⊆ X , the asymptotic
stability of the closed loop inside P implies it’s (local)
Lyapunov stability and the asymptotic convergence of all
trajectories starting in P to x∗ [12]. Notice that if x(T ) = 0,
then (∀t > T ) x(t) = 0 should also hold. Therefore, we
assume there is at least one mode q0 ∈ Q s.t. fq0(0) = 0.
Also, it is well known that a given set P may not be
asymptotically stablizable but a subset P ∗ ⊆ P may often
be stabilizable.

Problem 1: Given a plant Ψ and region P ⊆ X , find a
switch function and a region P ∗ ⊆ P s.t. the closed loop
switched system is asymptotically stable w.r.t P ∗, while all
the traces are time-divergent.

III. CONTROLLER SYNTHESIS

Control Lyapunov functions (CLFs) have been used to sta-
bilize systems with control-continuous feedback [2]. Artstein
first showed once a CLF is obtained, how a corresponding
feedback law is extracted. First we formally define what is
a CLF and which class of CLF can be used for switched
controllers.

Definition 3: Given a plant Ψ and a region P ⊂ X , a
control Lyapunov function (CLF) for the plant w.r.t P is a
positive definite function V : X → R+ (V (0) = 0) s.t.
∀ x ∈ P \ {0}

V (x) > α(x) ∧ (min q∈Q
.
Vq(x)) < −αQ(x), (1)

where α and αQ are positive definite functions and
.
Vq =

(dVdx )T fq .
Henceforth, we restrict our attention to polynomial CLFs

V (x) ∈ R[x]. Given a polynomial CLF V and region P ,
we associate region P ∗ to V as P ∗ := P ∩ {x | V (x) <
β(P, V )}, where β(X,F ) := minx∈∂X F (x).

Also given a CLF V , the associated set of control functions
switch satisfy

switch(q,x) ∈ {q̂ |
.
Vq̂(x) < −αQ(x)}

In other words, the controller chooses a mode q̂ to enforce the
decrease of the CLF at all times. However, time-divergence
is not guaranteed with this class of functions, and therefore
asymptotic stability cannot be guaranteed. To guarantee time-
divergent behavior, we can impose a minimal dwell time
property. A trace satisfies minimum dwell time property for
a dwell time δ > 0 iff

(∀ t1, t2 ∈ SwitchTimes(q)) t1 6= t2 =⇒ |t1 − t2| > δ

How do we find functions switch s.t. all the resulting closed
loop behaviors satisfy this property?

A. Non-Zeno CLF

In this section, we define a large class of CLFs that can
be used to synthesize controllers with guaranteed minimum
dwell time. Before introducing this class of CLFs, we need
to define another condition.

Definition 4 (φ-boundedness): Given functions p, φ :
X → R, p is said to be φ-bounded iff for every bounded
region S ⊂ X there exists a constant ΛS s.t. (∀x ∈
S) p(x) ≤ ΛSφ(x).

Example 1: Consider φ(x, y) : x2 + y2. Any multivariate
polynomial p(x, y) whose lowest degree terms have degree
at least 2 is φ-bounded. Examples include x2 + 2x3 + 3xy,
xy, and x6− 3y3. On the other hand, the function p(x, y) =
x+y is not φ-bounded since no bound of the form p(x, y) ≤
ΛS(x2+y2) when S is taken to be a region containing (0, 0).
Similarly, the function 3 + x is not φ-bounded.

Definition 5 (Non-Zeno CLF): A CLF is said to be non-
zeno iff there exist constants εq > 0 and positive (definite)
functions φq : X → R s.t.

..
Vq(x) is φq-bounded, (2)
.
φq(x) is φq-bounded, and (3)

(∀x ∈ P \ {0}) (∃ q ∈ Q)
.
Vq(x) < −εqφq(x), (4)

where
..
Vq(x) = (

d
.
Vq
dx )T fq(x) and

.
φq(x) = (

φq(x)
dx )T fq(x).

Informally, the goal is to make sure not only
.
Vq is negative

definite, but also is smaller than a class of negative (definite)
functions. Now we explain how such property helps to
guarantee min-dwell time property.

Assume there exists a non-zeno CLF V and let a class of
functions switch associated to V be defined as

switch(q,x) :=


q̂

( .
Vq(x) ≥ η ∧ x ∈ P
∧

.
Vq̂(x) ≤ −εq̂φq̂(x)

)

q otherwise

(5)

wherein η := − εqφq(x)
λ for a chosen scale constant λ > 1.

In other words, rather than switch when the CLF
.
Vq(x) = 0,

we force the system to switch when
.
Vq(x) ≥ η. We also

force the system to switch to a mode q̂ for which
.
Vq̂(x) ≤

−εq̂φq̂(x). The definition of a non-zeno CLF guarantees that
such a mode q̂ will exist.

The key observation here is that the constraints on
..
Vq ,

.
Vq ,.

φq altogether guarantee that when the controller switches
at time t1, the controller need not switch again in interval
[t1, t1 + δ] for some fixed δ > 0 (i.e.

.
Vq(x(t)) < η for all

t ∈ [t1, t1 +δ] ). A bound for δ is given directly in the proof
of the following proposition.

Theorem 1: Given regions P , a plant Ψ and a non-zeno
CLF V (x), let P ∗ be the associated region for V w.r.t
P . Given x(0) ∈ P ∗, a switching function that admit the
description of Equation (5) results in a system which satisfies
the following properties.

1) all the traces of the system are time-divergent



2) P ∗ is a positive invariant.
3) system is asymptotically stable w.r.t P ∗

A proof is provided in the Appendix.

B. Implementation

Once a non-zeno CLF is found, the controller can be
implemented in many ways. We can implement an oper-
ational amplifier circuit that selects the appropriate mode
by computing φ(x) and

.
Vq(x) from the state feedback x.

Such a circuit will not need to know the minimum dwell
time: however, the minimum dwell time provides us with a
guideline on the maximum delay permissible.

Another approach is to find an under-approximation of
min-dwell time δ and use a discrete time controller that
change the modes every δ time units. Yet another software-
based solution is to use a model predictive control scheme:
the controller switches to a mode q at time ts given x(ts)
(
.
Vq(x(ts)) < −εqφq(x(ts))). Also, the controller predicts

the first time instance tf > ts s.t.
.
Vq(x(tf )) ≥ − εqφq(x(tf ))

λ .
Then the controller sets a wake up timer for time t = tf and
re-evaluates at that point. The minimum dwell time provides
a design guideline to the scheduler on the shortest possible
wake up time tf .

IV. DISCOVERING CONTROL LYAPUNOV FUNCTIONS

Thus far, the problem of controller synthesis has been
reduced to problem of finding a non-zeno CLF. First, a
template polynomial is chosen for function V . More pre-
cisely V (c,x) =

∑m
i=1 ci mi(x) is a polynomial with

fixed monomials mi(x) and unknown coefficients c ∈ Rm.
Second, appropriate values for εq and φq (for all q ∈ Q)
are chosen. In particular, finding positive (definite) functions
φq s.t. Equations (2) and (3) hold is not straightforward. We
consider a simple class of positive (definite) functions of the
form φq(x) =

∑n
i=1 x

2di,q
i , where di,q ∈ N. Then, we use

the following theorem to find proper values for di,q s.t.
.
φq

and
..
Vq are φq-bounded.

Theorem 2: Given a function φ(x) =
∑n
i=1 x

2di
i and a

function p : X → R p is φ-bounded if

(∀m ∈ Monos(p)) (∀i) 2di ≤ Deg(m) . (6)
A proof is provided in the Appendix. By this theorem, one
can find all possible functions φq s.t. Equations (2) and (3)
hold, because the process of finding these functions depends
only on the possible monomial terms in V , and not on their
coefficients.

Example 2 (Choosing φq for a System): Consider a
switched system with three continuous variables x, y and z
and two modes q1 and q2 with dynamics:

q1


.
x = −y
.
y = z
.
z = 1

q2


.
x = y2

.
y = −x3 − y3

.
z = −z

Assuming V ([x y z]T ) = c1x
2+c2y

2+c3z
2,

..
Vq1([x y z]T ) =

2c1(y2 − xz) + 2c2(z2 + y) + 2c3 and φq1([x y z]T ) =
y0 + x0 + z0 satisfies both Equations (2) and (3) and it is a

proper φq1 . For mode q2, one can choose many φq2 functions
as well. For example φq2([x y z]T ) = x4 + y4 + z2 is a
possible solution.

In addition to εq and φq , we fix a positive definite function
α(x). Furthermore, we assume c belongs to a bounded set
C0 ⊂ Rm (Often C0 : [−1, 1]m). Now, the problem is to find
unknown coefficients c s.t. V is a non-zeno CLF. In other
words, we want to solve problem below

(∃c ∈C0) (∀x ∈ P \ {0})(
V (x) > α(x) ∧

(∃ q ∈ Q)
.
Vq(x) < −εqφq(x)

)
(7)

Note that, if the formula above is feasible (satisfiable), then
the existential quantifier (∃c ∈ C0) yields us a solution c that
can be used to instantiate the CLF. First, we use an LMI-
based relaxation of the relevant polynomial problems. This is
done following the standard approach [8], [15]. Briefly, let
m represent a m×1 vector of monomials. A polynomial p(x)
can be written as 〈Q,mmt〉 where Q is a symmetric m×m
matrix and 〈A,B〉 denotes tr(A×B). Next, we relax mmt

by a matrix Z � 0 where rank(Z) = 1. The constraint x ∈ P
is rewritten as the constraint Z ∈ P̂ . Typically, P is given
as a interval constraint. Therefore P̂ is itself an interval over
matrices that represent the lower and upper bounds of each
monomial in mmt. Finally, the rank constraint is thrown out,
and often replaced by a “low-rank promoting” constraint or
objective.

Therefore, the constraints in (7) are rewritten to yield a
(mixed linear + LMI cone) constraint of the following form:

(∃c ∈ C0)(∀Z)(Z � 0 ∧ Z ∈ P̂ ∧ 〈G,Z〉 > 0)) ⇒(
〈F (c)−G,Z〉 > 0 ∧

(∃ q ∈ Q) 〈Fq(c)−GQ, Z〉 > 0

)
(8)

Here, 〈G,Z〉 (〈GQ, Z〉) is the relaxed version of α(x)

(αQ(x)) and F (c) =
∑k
j=0 cjFj represents a matrix whose

entries are linear in c, and similarly for Fq(c). As such the
form above is not easy to solve using existing methods: the
constraints are bilinear and contain disjunctions. To solve
this ∃ ∀ formula we employ CEGIS framework [18].
Overview of the CEGIS framework: At a high level,
CEGIS focuses on formulae of the form

(∃ x ∈ A) (∀ y ∈ B) ψ(x,y) .

The algorithm is iterative and at any iteration maintains a
finite set of witnesses B̂{i} = {b1, . . . ,bl}.

Initially B̂{0} is a some finite subset consisting of samples
from the set B. At each iteration, we consider the following
two steps:

1) Choose a candidate a{i} by solving the problem:

a{i} := find x ∈ A s.t.
∧

bj∈B̂{i}

ψ(x,bj) . (9)

Note that the inner ∀ quantifier is replaced by a finite
conjunction and we have y variables in ψ instantiated.
If the problem is feasible and a{i} ∈ A is obtained, we



move to the next step in the iteration. Otherwise, we
declare failure of the overall procedure.

2) Next, check the candidate a{i} by checking the formula:
(∀ y ∈ B)ψ(a{i},y), or equivalently if its negation is
feasible:

find y s.t.¬ψ(a{i},y) . (10)

If the formula above is infeasible, then we have found
the required answer a{i} for the original problem.
Otherwise, we find a b{i+1} such that ¬ψ(a{i},b{i+1})

succeeds. We now set B̂{i+1} := B̂{i} ∪ {b{i+1}}.
Note that adding b{i+1} ∈ B{i+1} ensures that a{i} is never
chosen again in any future iteration. It can also eliminate all
other previously unexamined values of a ∈ X that also fail
ψ(a,b{i+1}).
Applying CEGIS Procedure Given the disjunctive formula
from Eq. (8), which will be written as

(∃ c ∈ C0) (∀ Z)(Z � 0 ∧ Z ∈ P̂∧〈G,Z〉 > 0) ⇒ Ψ(c, Z) .

The CEGIS procedure works with a set B̂{i} :=

{Z{1}, . . . , Z{ki}}, wherein each Z ∈ B̂{i} satisfies the
constraints Z � 0, Z ∈ P̂ and 〈G,Z〉 > 0.

1) Find a value c{i} ∈ C0 that satisfies:

c{i} := find c s.t. Ψ(c, Z{1}) ∧ · · · Ψ(c, Z{ki}) .

Plugging in Z = Z{i}, . . . , Z{ki} yields a system of
disjunctive linear constraints over c. While solving
constraints is NP-hard, recent progress in SAT modulo-
theory (SMT) solvers has yielded efficient implemen-
tations such as Z3 can handle quite large instances of
disjunctive linear constraints [6].

2) If c{i} is found, we next check the feasibility of c{i} by
successively solving, separately, a series of mixed cone
constraints:

(1) 〈F (ci)−G,Z〉 ≤ 0, 〈G,Z〉 > 0, Z ∈ P̂, Z � 0

(2)

∧
q∈Q 〈Fq(ci)− gcq, Z〉 ≤ 0

〈G,Z〉 > 0, Z ∈ P̂, Z � 0

With c = c{i}, the bilinearity is now avoided. If
any of these constraints are feasible, we obtain a new
witness Z{i+1} that is added to B{i+1}. Otherwise,
the constraints are infeasible and we have found our
required c∗ = c{i}.

The process is iterated until we find parameters c = c∗ or
fail to find a candidate.

A. Extension to Control-Affine Systems

The CEGIS framework as mentioned can be used to
find non-zeno CLF for switched systems. However, it is
not restricted to this class of CLFs. In this section, we
discuss how such framework can be used to discover CLF for
control-affine systems as well. Assume we have a nonlinear
control-affine dynamical system as below

.
x = f(x) + g(x)u ,

where f(x) : R[x]n is a homogeneous polynomial vector
(f(0) = 0) , u : Rp is the input vector. Also u ∈ U and

U (3 0) is a closed bounded polyhedra. g(x) : R[x]n×p is
a polynomial matrix. From definition of CLF [2], we know
that V (V (0) = 0) is a CLF if

(∀x ∈ P \ {0})
V (x) > α(x)

min
u∈U

.
V (x,u) < −αQ(x)

Let Uv be set of vertices of polyhedron U . Each u∗ ∈ U
can be written as a convex combination of elements of Uv .
Also, because of linearity of u in

.
Vq(x,u), if

.
V (x,u∗) <

−αQ(x) for some u∗ ∈ U :

(∃λ) λu ≥ 0 ∧
∑
u∈Uv

λu = 1 ∧ u∗ =
∑
u∈Uv

λuu

=⇒
.
V (x,

(∑
u∈Uv

λuu

)
) < −αQ(x)

=⇒
∑
u∈Uv

λu
.
V (x,u) < −αQ(x)

=⇒ (∃u ∈ Uv)
.
V (x,u) < −αQ(x)

One can define a switched system with modes Q = {qu|u ∈
Uv} and dynamics for each mode qu as fqu = f(x)+g(x)u
and claim that V (V (0) = 0) is a CLF iff

(∀x ∈ P \ {0})
V (x) > α(x)

(∃q∈Q)
.
Vq(x) =

.
V (x,uq) < −αQ(x)

Then, CEGIS framework can be employed to find a CLF to
solve this problem, given α and αQ. Once a CLF is found,
we can also synthesize the appropriate controller as discussed
in Section III-B or known methods from control theory [20]
can be applied to find a feedback law.

V. EVALUATION

In this section, we demonstrate the effectiveness of the
LMI-based CEGIS framework on some benchmark nonlinear
problems. Our implementation consists of a python script
which interacts with two other parts: (a) The Z3 SMT solver
used for finding CLF candidates by solving linear arithmetic
formulae over the reals [6], and (b) The CVXOPT [1] solver
which is used to solve mixed cone constraints. While Z3 is
an “exact arithmetic” solver, CVXOPT relies on numerical
calculations that are susceptible to error.

The inputs for our implementation are: (i) continuous
variables, (ii) ODEs for each control mode, (iii) region P
(assumed to be a box), (iv) a template for the CLF and
(v) εq for each mode. The vertices of region P are used as
initial witness points X0, and we also fixed α(x) =

∑n
i=1 x

2
i

and chose φq(x) =
∑n
i=1 x

2
i for all modes in all problems.

We use a generic quadratic form for the CLF (i.e. all the
monomials with degree 2), unless otherwise mentioned.

We collected a set of 21 benchmarks to evaluate the
proposed approach. The instances of these benchmarks are
taken from the literature including control-affine feedback
systems and switched systems. A full description of the



TABLE I
RESULTS OF RUNNING OUR IMPLEMENTATION ON THE SWITCHED SYSTEMS BENCHMARK SUITE

Problem Previous Results New Results
ID n α Spec itr z3 T SMT T Tot. T Stat itr z3 T SDP T Tot. T Stat
1 2 0.01 ||x||2 AS 1 0.0 0.8 0.8 3 18 3.9 1.7 5.9 3
2 2 0.01 RS 3 0.0 3.4 3.6 3 30 0.5 2.0 2.8 6
3 2 0.0001 RS 6 0.1 1.6 2.0 3 10 0.1 0.8 1.0 3
4 2 0.1 RS 6 0.1 3.6 4.0 3 12 0.2 1.5 2.1 3

5 3 0.1 ||x||2 AS 13 2.2 352 355.2 3 4 0.1 0.7 1.3 3

6 3 0.1 ||x||2 AS TO 6 1 0.0 0.2 0.7 3
7 3 0.05 RS 8 4.4 80.8 86.2 3 1 0.0 0.3 0.7 3
8 3 1.0 RS 36 48.1 57.3 108.4 3 13 0.4 1.7 2.5 3
9 3 0.001 RS 1 0.0 2.1 2.2 3 1 0.0 0.1 0.5 3

10 4 0.001 RS TO 6 1 0.0 0.4 2.0 3
11 4 0.001 RS 1 0.0 14.9 14.9 3 1 0.0 0.3 1.5 3
12 5 0.001 RS 1 0.0 596.5 596.5 3 1 0.0 0.3 3.7 3
13 6 0.001 RS 2 0.5 2994.0 2995.6 3 1 0.4 0.5 9.2 3
14 9 0.001 RS TO 6 2 0.0 0.3 202.3 3

Legend: n: # state variables, , AS: Asymptotic Stability, RS: Region Stability, itr : # iterations, Tot. T: total computation time, Z3 T: time taken by Z3,
SMT T: time taken by the SMT solver for finding counter-examples , SDP T: time taken by CVXOPT, , TO: timed out, NA: not applicable, 3: Success,

6: Failed. All timings are in seconds.

TABLE II
RESULTS OF RUNNING OUR IMPLEMENTATION ON THE CONTROL-AFFINE

SYSTEMS BENCHMARK SUITE

Problem Results
ID n εq itr z3 T SDP T Tot. T Stat
15 2 0.1 34 2.7 2.3 5.2 3
16 2 0.0 1 0.0 0.1 0.3 3
17 2 0.05 38 1.7 4.1 6.2 3
18 2 0.0 20 0.4 1.9 2.6 3
19 3 1.0 1 0.0 1.0 3.0 3

20∗ 4 0.0 46 164.4 30.3 202.2 3
21 6 0.0 TO 6

Legend: See Legend of Table I.
∗ After failure with a quadratic template, a template with 9 monomial

selected carefully according to the dynamics (V (x, y, z, w) =
c1x2 + c2y2 + c3z2 + c4w2 + c5yz + c6xz + c7xz3 + c8z4 + c9z6)

benchmarks is available in the extension version of this
paper [17].

In first phase of the evaluation, we considered a set of
switched system problems with multiple control modes. For
some of these problems, the origin is not an equilibrium for
any of the modes: therefore, stabilization is not possible with
finite dwell time. Therefore, we considered the problem of
stabilizing to a small neighborhood of the origin. To do so,
the CLF conditions are relaxed to eliminate the small region
around the equilibrium [18]. The rest of our framework
applies directly. The results are shown in Table I.

Next, we considered a set of problems with control-affine
feedback systems. For these systems we solve the problem
by finding a CLF (not necessarily non-zeno) and for all the
problems we chose αQ(x) =

∑n
i=1 x

2
i . If such CLF does not

exists, then we try to find a CLF with εq = 0. The results
are shown in Table II.

In summary, from the given 14 problem instances in
Table I, we find that the LMI relaxation introduced here,
fails to solve one problem instance due to the LMI relaxation.

One solution to address the loss in precision is to decompose
the state space for getting more precise abstraction of the
state space. On the other hand, the proposed technique can
solve three previously unsolved instances that are among the
larger ones in our benchmarks. The timings for our LMI-
based approach are nearly an order of magnitude faster than
our earlier approach, especially for larger examples.

As results suggest, the problem of finding a CLF can
be solved in few iterations. Finding witnesses using LMI-
relaxation are significantly faster compared to the previous
approach using non-linear solvers (Z3 or dReal [7]). As
currently, problems with as many as 9 variables are solvable.
However, the framework fails to terminate for the problem
with 6 variables, due to high complexity of finding a CLF
candidate. The problem of finding a CLF candidate using
linear real arithmetic is the bottleneck of the computations
in our new framework, whereas the nonlinear solver is the
bottleneck for the older framework. The size of the related
problem depends on the size of the template and the number
of witness points. Therefore, one challenging problem is to
carefully choose a small template (as in System 21) in order
to manage the complexity of these problems.

VI. CONCLUSION

In this work we introduced a class of CLFs, namely non-
zeno CLFs which guarantee the existence of a switching
strategy for asymptotic stability of switched system. We
also proposed a LMI-based CEGIS framework for finding
CLFs for switched systems as well as control-affine sys-
tems and we evaluated the proposed approach on a set of
benchmark from the literature. The main shortcoming of
this framework comes from hardness of solving formulae in
linear arithmetics and as SMT solvers improve, we hope this
approach can solve bigger problems. Going forward, we are
investigating extension of this framework for finding control
barrier certificates to solve safety problems.
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APPENDIX

Proof of Theorem 1 Given regions P , a plant Ψ and a
non-zeno CLF V (x), let P ∗ be the associated region for V
w.r.t P . Given x(0) ∈ P ∗, a switching function that admit

the description of Equation (5) results in a system which
satisfies the following properties.

1) P ∗ is a positive invariant.
2) all the traces of the system are time-divergent
3) system is asymptotically stable w.r.t P ∗

Proof: We first prove that P ∗ is a positive invariant.
Recall that P is a compact set containing 0 and let ∂P denote
it’s boundary. Also, recall that β(P, V ) := minx∈∂P V (x).

Consider a class of switch functions defined below.

switch(q,x) :=


q̂

( .
Vq(x) ≥ − εqφq(x)

λ ∧.
Vq̂(x) ≤ −εq̂φq̂(x) ∧ x ∈ P

)

q otherwise

We note that switch(q,x) is defined over all x ∈ P and q ∈
Q by construction of the CLF V . Assume x(0) ∈ P ∗ and q ∈
Q such that

.
Vq(x(0)) ≤ −εqφq(x). We obtain V (x(0)) <

β(P, V ). Also, the switch function ensures that as long as
x(t) ∈ P ,

.
Vq(t)(x(t)) ≤ − εq(t)φq(t)(x(t))

λ < 0. Therefore

V (x(tb)) = V (x(0)) +

∫ tb

0

.
Vq(t)(x(t)) dt ≤ V (x(0))

Since V (x(0)) < β(P, V ), we have V (x(t)) < β(P, V ).
Therefore, by definition x(t) ∈ P ∗.

Next, we show there exists a min dwell time between two
switching times. Assume there is a switch time t1 s.t. x(t1) ∈
P ∗ and mode switches to q. Thus,

.
Vq(x(t+1 )) ≤ −εqφq(x(t+1 )) (11)

Let t2 be the next time instance when the controller switches
to mode q̂. By definition of the controller we can conclude

.
Vq(x(t−2 )) = −εqφq(x(t−2 ))

λ
(12)

It is sufficient to show δ = t2 − t1 has a lower bound and it
can not be arbitrarily small.

From Equation (2) and (3) and boundedness of P there
are constants Λ1 and Λ2 s.t. for all x ∈ P

..
Vq(x) ≤ Λ1φq(x) (13)
.
φq(x) ≤ Λ2φq(x) (14)

From Equation (14), we get

(∀t ∈ [t1, t2])

φq(x(t)) = φq(x(t1)) +

∫ t

t1

.
φq(x(τ))dτ

≤ φq(x(t1)) +

∫ t

t1

Λ2φq(x(τ))dτ

and therefore

φq(x(t)) ≤ eΛ2δφq(x(t1)) (15)



A lower bound on
.
Vq(x(t−2 )) by Equation (12)

.
Vq(x(t−2 )) = −εqφq(x(t−2 ))

λ
Equation (15)

=⇒ ≥ −e
Λ2δεqφq(x(t1))

λ
(16)

Also

(∀t ∈ (t1, t2))

.
Vq(x(t)) =

.
Vq(x(t+1 )) +

∫ t

t1

..
Vq(x(τ))dτ

Equation (13)
=⇒ ≤

.
Vq(x(t1)) + Λ1

∫ t

t1

φq(x(τ))dτ

Equation (15)
=⇒ ≤

.
Vq(x(t1)) + Λ1

∫ t

t1

eΛ2δφq(x(t1))dτ

and therefore an upper bound on
.
Vq(x(t2)) is

.
Vq(x(t2)) ≤

.
Vq(x(t1)) + Λ1e

Λ2δφq(x(t1))δ
Equation (11)

=⇒ ≤ −εqφq(x(t1)) + Λ1e
Λ2δφq(x(t1))δ (17)

From Equations (16), (17)

−e
Λ2δεqφq(x(t1))

λ
≤

.
Vq(x(t2))

≤ −εqφq(x(t1)) + Λ1e
Λ2δφq(x(t1))δ

and finally assuming x(t1) 6= 0, we have φ(x(t1)) > 0:

−e
Λ2δεq
λ

≤ −εq + Λ1e
Λ2δδ

=⇒ εq ≤
λΛ1e

Λ2δδ

(λ− eΛ2δ)
= h(δ) (18)

Notice that
1) 0 ≤ eΛ2δ < λ ⇐⇒ h(δ) > 0. Since λ is a chosen

parameter, it can always be chosen sufficiently large to
ensure this inequality.

2) h is a monotone function of δ in domain 0 ≤ eΛ2δ < λ
by showing that dh

dδ is positive.
3) h(0) = 0 and lim

δ→ log(λ)
Λ2

h(δ) = +∞.

h−1 : R+ → R+ is defined and h−1(εq) ≤ δ. Therefore,
h−1(εq) is a lower bound on δ, and all traces of the system
are time-divergent.

In the next step of the proof, we want to show the system
is asymptotically stable. Since P ∗ is a compact set, (∀t >
0) x(t) ∈ P ∗ and time diverges, by Bolzano-Weierstrass
Theorem [4], x(t) converges to some x∗ ∈ P ∗. Assume
x∗ 6= 0 and therefore minq(εqφq(x

∗)) = R > 0. By
continuity of φq and divergence of time, one can find ε > 0
s.t.

(∃T > 0) (∀t ≥ T ) x(t) ∈ Bε(x∗) ⊆ P ∗

(∀q ∈ Q) (∀x ∈ Bε(x∗)) εqφq(x) ≥ R

2

Also V is bounded in Bε(x∗) and decreases through time.
Formally,

(∀t ≥ T )
.
Vq(t)(x(t)) ≤ −

εq(t)φq(t)(x(t))

λ
≤ − R

2λ

As a result

V (x(T + t)) = V (x(T )) +

∫ T+t

T

.
Vq(τ)(x(τ))dτ

≤ V (x(T ))− R

2λ
t

which means eventually V becomes negative as time goes
to infinity and that is a contradiction. Therefore x∗ = 0 and
the system is asymptotically stable.
Proof of Theorem 2 Given a function φ(x) =

∑n
i=1 x

2di
i

and a function p : X → R p is φ-bounded if

(∀m ∈ Monos(p)) (∀i) 2di ≤ Deg(m) .

Proof: Assume Equation (6) holds and S is a bounded
region. We want to show there exists a Λ s.t. (∀x ∈
S) p(x) ≤ Λφ(x).

For a monomial m ∈ Monos(p) and i s.t. xi ∈ Vars(m),
let R(i,m) be the following region

R(i,m) = {x ∈ [−1, 1]n|(∀j xj ∈ Vars(m)) |xi| ≥ |xj |}

Notice that [−1, 1]n =
⋃
iR(i,m). Also

(∀x ∈ R(i,m)) m(x) ≤ |xi|Deg(m) ≤ x2di
i ≤ φ(x)

and therefore

(∀m ∈ Monos(p)) (∀x ∈ [−1, 1]n) m(x) ≤ φ(x)

Since S is bounded, there is a constant Λ0 s.t. S ⊆
[−Λ0,Λ0]n. Then

(∀m ∈ Monos(p)) (∀x ∈ [−Λ0,Λ0]n) m(x) ≤ Λ
Deg(p)
0 φ(x)

Now let p(x) =
∑
i ci mi(x) where mi(x) ∈ Monos(p)

and ci is its coefficient in p. Therefore ∀x ∈ S

p(x) =
∑
i

ci mi(x)

≤
∑
i

|ci| Λ
Deg(m)
0 φ(x)

= Λ
Deg(m)
0 (

∑
i

|ci|)φ(x)

Thus there exists a Λ = Λ
Deg(m)
0 (

∑
i |ci|) s.t.

(∀x ∈ S) p(x) ≤ Λφ(x)
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