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Abstract

This paper presents a counterexample-guided iterative algorithm to compute convex, piecewise linear (polyhedral) Lyapunov
functions for continuous-time piecewise linear systems. Polyhedral Lyapunov functions provide an alternative to commonly
used polynomial Lyapunov functions. Our approach first characterizes intrinsic properties of a polyhedral Lyapunov function
including its “eccentricity” and “robustness” to perturbations. We then derive an algorithm that either computes a polyhedral
Lyapunov function proving that the system is asymptotically stable, or concludes that no polyhedral Lyapunov function exists
whose eccentricity and robustness parameters satisfy some user-provided limits. Significantly, our approach places no a-priori
bound on the number of linear pieces that make up the desired polyhedral Lyapunov function. The algorithm alternates
between a learning step and a verification step, always maintaining a finite set of witness states. The learning step solves a
linear program to compute a candidate Lyapunov function compatible with a finite set of witness states. In the verification
step, our approach verifies whether the candidate Lyapunov function is a valid Lyapunov function for the system. If verification
fails, we obtain a new witness. We prove a theoretical bound on the maximum number of iterations needed by our algorithm.
We demonstrate the applicability of the algorithm on numerical examples.
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1 Introduction

We study the problem of synthesizing Lyapunov func-
tions for continuous-time, possibly uncertain, piecewise
linear systems. These systems appear naturally in a wide
range of applications (e.g., electrical circuits, mechani-
cal systems with impact) or as approximations of more
complex dynamical systems (Christophersen, 2007; Xu
and Xie, 2014). The existence of a Lyapunov function
guarantees global convergence of the system toward the
origin. However, finding such a Lyapunov function can
be very challenging (Blondel and Tsitsiklis, 1999).

In this paper, we focus on Lyapunov functions that are
convex and piecewise linear, also called polyhedral func-
tions. Polyhedral functions are interesting because they

⋆ This research was funded in part by the Belgian-American
Education Foundation (BAEF) and the US National Sci-
ence Foundatton (NSF) under award numbers 1836900 and
1932189.

Email addresses: guillaume.berger@colorado.edu
(Guillaume O. Berger),
sriram.sankaranarayanan@colorado.edu (Sriram
Sankaranarayanan).

can approximate convex, positively homogeneous func-
tions arbitrarily well. In fact, for a large class of hybrid
systems, including switched linear systems, there exist
converse results showing that if the system is asymptoti-
cally stable, then a polyhedral Lyapunov function exists
(Sun andGe, 2011). However, the computation of a poly-
hedral Lyapunov function with a given number of linear
pieces is known to be difficult, even for linear systems
(Blanchini and Miani, 2015). Furthermore, there are in
general no a-priori bounds on the number of pieces that
the function must have in order to be a Lyapunov func-
tion for a given class of systems (Ahmadi and Jungers,
2016).

In this paper, we present an iterative approach that
searches for polyhedral Lyapunov functions for piece-
wise linear systems. At each iteration, the number of lin-
ear pieces for the desired polyhedral Lyapunov function
is increased and the conditions that must be satisfied
by these linear pieces are checked in an efficient man-
ner (Section 6). The latter is achieved by providing a
convex approximation of the Lyapunov constraints, ob-
tained by enforcing the Lyapunov constraints only at a
finite set of points in the state space. By associating a
linear piece to each of these points, the computation of
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the polyhedral function can be formulated as a convex
optimization program. The process terminates success-
fully, yielding a polyhedral Lyapunov function, or fails
to find a Lyapunov function which lies within a class
described by a single parameter, called the eccentricity
(analogous to the eccentricity of an ellipsoid). Due to the
convex approximation of the Lyapunov constraints, fail-
ure does not necessarily imply that no polyhedral Lya-
punov function in this class exists for the system. How-
ever, one can conclude that the system does not admit
a polyhedral Lyapunov function in this class that satis-
fies a robustness property specified by two parameters,
called the time step and the contraction rate (Section
5). We further show that a failure also provides informa-
tion about the stability of the system when subject to
perturbations of the linear modes, and by adjusting the
parameters, we can reduce the conservativeness of the
approach to zero. The update of the parameters can be
made in an systematic way, thereby providing a semi-
complete algorithm for checking the existence of poly-
hedral Lyapunov functions for piecewise linear systems.

The finite set of points for which the Lyapunov con-
straints are enforced is obtained in a counterexample-
guided fashion. More precisely, at each step of the pro-
cess, a candidate polyhedral Lyapunov function is com-
puted based on the constraints given by the current set
of points. Then, the algorithm checks whether the can-
didate Lyapunov function is a valid Lyapunov function
for the system, and if not, outputs a point, called a coun-
terexample, at which the Lyapunov conditions are vio-
lated. This point is added to the set of points at which
the constraints are enforced, thereby preventing the can-
didate to be re-visited by our algorithm.

A desirable property of our approach is that the steps
described above are implemented by solving a series of
convex optimization problems whose sizes are bounded
by the dimension of the system and the number of coun-
terexamples so far. At the same time, we prove that the
number of iterations of the process is bounded and de-
rive upper bounds on it (Section 7). We evaluate our ap-
proach on a series of numerical examples ranging from
challenging instances that have been considered in other
works, and a family of piecewise linear systems known to
be stable and with dimension from 2 to 9 and number of
modes up to 8 (Section 8). We show that our approach
terminates faster than the conservative upper bounds
established by our theoretical analysis.

2 Comparison with other works

2.1 Polyhedral Lyapunov functions

Compared to Polański (2000); Johansson (2003); Lazar
and Doban (2011), our approach does not fix a priori
the domain of the linear pieces or the directions of the
vertices of the polyhedral Lyapunov function. One can

iteratively solve the problem with increasingly expres-
sive templates, but this might result in overly complex
templates if the update of the template is not based on
previous computations. Furthermore, unlike Ambrosino
et al. (2012); Kousoulidis and Forni (2021); Berger and
Sankaranarayanan (2022), our approach does not set a-
priori bounds on the number of linear pieces or vertices of
the Lyapunov function. Finding a polyhedral Lyapunov
function with fixed number of linear pieces or vertices
for linear systems amounts to solve a nonconvex opti-
mization problem. Ambrosino et al. (2012); Kousoulidis
and Forni (2021) propose convex tightenings or approx-
imate methods to make the computation tractable. One
drawback is that, in case of failure, this provides little
insight on the stability of the system, whereas our ap-
proach allows us to conclude that the system is not sta-
ble under small perturbations of the system with prede-
fined bounds. Note that most of the above approaches
are restricted to switched linear systems.

Set-theoretic methods (e.g., Miani and Savorgnan, 2005;
Guglielmi and Protasov, 2013; Blanchini and Miani,
2015) aim to find an invariant set for (piecewise) linear
systems in discrete time by recursively computing the
image of an initial polyhedral set by the system until a
fixed point is reached. Like our approach, these methods
do not place a-priori bounds on the number of linear
pieces of the function. However, a clear complexity anal-
ysis remains elusive, mainly because of the difficulty of
bounding the complexity of the image of polyhedral sets
by piecewise linear systems. Guglielmi et al. (2017) ex-
tends Guglielmi and Protasov (2013) to continuous-time
switched linear systems by using a time discretization of
the system to provide lower bounds on the convergence
rate of the trajectories. We use a similar approach for
piecewise linear systems and show that the time dis-
cretization provides a lower bound on the convergence
rate of the trajectories under bounded perturbations of
the linear modes of the system (Section 5).

2.2 Piecewise polynomial Lyapunov functions

Quadratic Lyapunov functions provide a universal tem-
plate to study the stability of linear systems (Antsak-
lis and Michel, 2006). However, they are conservative
for switched or piecewise linear systems (Jungers, 2009).
This limitation can be alleviated by considering polyno-
mial functions of higher degree (Papachristodoulou and
Prajna, 2002) or piecewise quadratic functions (Hassibi
and Boyd, 1998; Johansson and Rantzer, 1998; Legat
et al., 2020). However, the computational complexity of
the polynomial Lyapunov functions grows rapidly with
increasing dimension of the system and degree of the
polynomial. On the other hand, for piecewise quadratic
functions we need to define the domain of the quadratic
pieces which may result in a lot of hyper-parameters.
Therefore, these techniques are generally restricted to
systems of low dimension, although these systems are
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not necessarily piecewise linear.

2.3 Data-based Lyapunov analysis

The idea of learning Lyapunov functions from data and
verifying the result has received a lot of attention from
the control community in recent years. As an early ex-
ample, Topcu et al. (2008) proposes to learn a candidate
Lyapunov function from sampled trajectories and verify
the result. Our approach falls more specifically into the
category of Counterexample-Guided Inductive Synthe-
sis (CeGIS), which consists in iteratively adding coun-
terexamples from a verification (aka. falsification) step.
CeGIS has been used in a wide range of contexts (e.g.,
Kapinski et al., 2014; Prabhakar and Soto, 2016; Chang
et al., 2019; Ravanbakhsh and Sankaranarayanan, 2019;
Poonawala, 2021; Ahmed et al., 2020; Abate et al., 2021;
Dai et al., 2021). Particularly relevant to our work,
Dai et al. (2021) searches for neural-network Lyapunov
functions with ReLU activation functions, using Mixed-
Integer Linear Programming for the falsification; and
Polański (2000); Poonawala (2021) search for polyhedral
Lyapunov functions, using Linear Programming for the
verification and updating the domain of the linear pieces
from the counterexamples. However, both approaches
lack guarantees of convergence or complexity. Our work
focuses on piecewise linear systems and polyhedral Lya-
punov functions. This allows us to avoid the use of SOS
relaxations in favor of Linear Programming that lend
themselves to precise and efficient solvers. Furthermore,
we introduce a “gap” (find a polyhedral Lyapunov func-
tion vs conclude that the system is not robustly stable)
in our formulation in order to provide formal guarantees
of termination. This approach was first introduced in
computer science, under the name of δ-completeness, to
provide practical solutions to problems that are known
to be undecidable or intractable (Gao et al., 2012).

In a recent work (Berger and Sankaranarayanan, 2022),
we provided a counterexample-guided method to com-
pute polyhedral Lyapunov functions with fixed number
of linear pieces. In the present work, we do not place a-
priori bounds on the number of linear pieces. This allows
us to associate a linear piece to each of the counterex-
amples, and thereby formulate the problem of candidate
learning as a convex optimization problem. This differs
from the approach in the previous work, in which we
have to solve a Mixed-Integer Program (addressed with
a counterexample-guided branch-and-bound approach).
Furthermore, the method presented here provides guar-
antees that if it fails then no polyhedral Lyapunov func-
tion satisfying user-specified limits on robustness exists
for the underlying system.

3 Notation

∥·∥ denotes a vector norm in Rd (e.g., the L1 norm), and
S = {x ∈ Rd : ∥x∥ =} is the associated unit sphere.
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Fig. 1. Piecewise linear dynamics and candidate polyhedral
Lyapunov function.

By extension, ∥·∥ also denotes the matrix norm induced
by ∥·∥ in Rd×d, defined by ∥A∥ = max {∥Ax∥ : x ∈ S}.
∥·∥∗ denotes the dual norm of ∥·∥, defined by ∥c∥∗ =
max {c⊤x : x ∈ S} (e.g., if ∥·∥ is the L1 norm, then ∥·∥∗
is the L∞ norm). B∗ = {c ∈ Rd : ∥c∥∗ ≤ 1} denotes the
unit ball associated to ∥·∥.

All proofs can be found in Appendix A.

4 Problem statement

4.1 Piecewise linear systems

We study piecewise linear dynamical systems in contin-
uous time:

Definition 1. A (continuous-time) piecewise linear dy-
namical systems is a system described by a finite set of
modes Q, wherein each mode q ∈ Q is associated with a
region Hq ⊆ Rd that is a closed polyhedral cone1, and a
transition matrix Aq ∈ Rd×d. The dynamics is given by
the differential inclusion

ξ′(t) ∈ F(ξ(t)),

wherein F(x) = {Aqx : q ∈ Q, x ∈ Hq}.

The regions Hq are assumed to form a cover of the state
space Rd. However, they may overlap arbitrarily (i.e.,
they are not required to have an intersection of measure
0); if they do not overlap, then the system is determin-
istic, otherwise, it is uncertain (i.e., trajectories starting
from a given point might not be unique).

Note that the set-valued function F in Definition 1 com-
pletely describes the dynamics of the system. Therefore,
in the following, we will refer to this system as System
F ; the parameters Q, and Hq and Aq for each q ∈ Q,
being implicit in the definition of F .

1 That is, Hq = {x ∈ Rd : Mqx ≥ 0} for some Mq ∈ Rmq×d

and mq ∈ N.
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Definition 2. An absolutely continuous function ξ :
R≥0 → Rd is a trajectory of System F if ξ′(t) ∈ F(ξ(t))
for almost all t ∈ R≥0. The system is asymptotically
stable if all trajectories converge toward the origin.

Example 3 (Running illustrative example). Consider
the piecewise linear system described by Q = {1, 2},
H1 = R2, H2 = R× R≤0,

A1 =

[
−0.2 1.0

−1.0 −0.2

]
and A2 =

[
0.01 1.0

−1.0 0.01

]
.

The vector field of the system is represented in Figure 1-
left. Note that this system is uncertain. Throughout the
paper, we will prove that this system is asymptotically
stable by computing a polyhedral Lyapunov function for
it.

4.2 Polyhedral Lyapunov functions

We aim to study the stability of System F using Lya-
punov analysis. Let us recall that a continuous function
V : Rd → R≥0 is a Lyapunov function for System F if
(i) V (x) = 0⇔ x = 0, (ii) V is radially unbounded, and
(iii) for every trajectory ξ with ξ(0) ̸= 0, V decreases
along ξ, i.e., ∀ t > 0, V (ξ(t)) < V (ξ(0)). It is well known
that if System F admits a Lyapunov function, then it is
asymptotically stable (Khalil, 2002, Theorem 4.2).

In this paper, we look for positively homogeneous convex
functions, also called gauges, as Lyapunov functions.

Definition 4. A gauge is defined as the pointwise max-
imum of a (possibly infinite) compact set of linear func-
tions, i.e., V (x) = maxc∈V c⊤x, wherein V ⊆ Rd is a
compact set of coefficient vectors.

With a small abuse of notation, given a gauge V , we let
V be the compact set of its coefficient vectors (note that
V is not uniquely defined, but this will not be an issue
in this paper). We also let Vmax = maxc∈V ∥c∥∗, and for
all x ∈ Rd, we let V(x) = {c ∈ V : V (x) = c⊤x} be the
set of coefficient vectors that are maximal at x.

Definition 5. A gauge V for which V is finite is called
a polyhedral function.

A sufficient condition for a gauge to be a Lyapunov func-
tion for System F is as follows:

Proposition 6. A gauge V is a Lyapunov function for
System F if the following conditions hold:

(C1) ∀x ̸= 0, V (x) > 0.
(C2) ∀x ̸= 0, ∀ v ∈ F(x), ∀ c ∈ V(x), c⊤v < 0.

Although the conditions in Proposition 6 are not neces-
sary for a gauge V to be a Lyapunov function for System
F , they become necessary if we further require that V
remains a Lyapunov function for small perturbations of
System F , where perturbations of the regions Hq and
the matrices Aq are considered. This will be formalized
in the next section.

5 Properties of Lyapunov gauges

5.1 Eccentricity and robustness

We recast the conditions in Proposition 6 in a form that
makes explicit two features of Lyapunov gauges (LGs):
the eccentricity and the robustness to system perturba-
tions.

Proposition 7. A gauge V with Vmax > 0 satisfies the
conditions of Proposition 6 if and only if there are con-
stants ϵ ≥ 1 (called the eccentricity), τ > 0 (called the
time step) and γ ∈ (0, 1) (called the contraction rate)
such that the following conditions hold:

(D1) ∀x ∈ Rd, V (x) ≥ 1
ϵVmax∥x∥.

(D2) ∀x ∈ Rd, ∀ v ∈ F(x), V (x+ τv) ≤ γV (x).

Remark 8. The smallest value of ϵ satisfying (D1) is
equal to the ratio of the largest radius of the 1-level
set of V (max {∥x∥ : V (x) = 1}) by its smallest radius
(min {∥x∥ : V (x) = 1}), hence the name eccentricity.2

Combined together, the parameters (ϵ, τ, γ) give a mea-
sure of the robustness of V as a Lyapunov function with
respect to perturbations of the vector field F , as defined
below.

Definition 9 (Perturbed system). Given δ1, δ2 ≥ 0, a
(δ1, δ2)-perturbation of System F is a piecewise linear
system F ′ with set of modes Q′ = Q, regions H ′

q satis-
fying H ′

q ⊆ {x′ : ∥x′ − x∥ ≤ δ1∥x′∥, x ∈ Hq} for each
q ∈ Q, and matrices A′

q satisfying ∥A′
q − Aq∥ ≤ δ2 for

each q ∈ Q.

Let σ = max {∥Aq∥ : q ∈ Q}.

Theorem 10 (Sufficient condition for robust LG). Let
V be a gauge satisfying the conditions in Proposition 7.
Let δ1, δ2 ≥ 0 be such that (2 + τσ)δ1 + τδ2 < 1−γ

ϵ (1 −
δ1). Then, V is a Lyapunov function for any (δ1, δ2)-
perturbation of System F .

2 Notions similar to the eccentricity, but without a proper
name, have been used in the literature on quadratic Lya-
punov functions to refer to various ratios of the eigenvalues
of positive semidefinite matrices (e.g., Kenanian et al., 2019;
Berger et al., 2022).
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Theorem 11 (Necessary condition for robust LG). Let
δ1, δ2 > 0. Let V be a gauge. Assume that V is a Lyapunov
function for any (δ1, δ2)-perturbation of SystemF . Then,
(D2) in Proposition 7 holds with all τ ∈ (0, 1

σ ) and γ ∈
(0, 1) that satisfy τσ

1−τσ < δ1 and − log(1 − τσ) − τσ −
log(γ) ≤ τδ2.

Remark 12. Note that the relations between ϵ, τ , γ, δ1
and δ2 are independent of the dimension of the system
and the number of modes. Also, we observe that the pa-
rameters ϵ, τ and γ are invariant with respect to positive
scaling of V . That is, if V satisfies Proposition 7 with ϵ,
τ and γ, then so does the function 1

λV for any λ > 0.
Therefore, in the following, we restrict our attention to
gauges with Vmax ≤ 1, i.e., with V ⊆ B∗.

The relation between the parameters (τ, γ) and the ro-
bustness of the Lyapunov function with respect to per-
turbations of the system being established, we focus in
the following of the paper on finding Lyapunov gauges
for System F with robustness parameters (τ, γ).

5.2 Detection of non-robustness

Given a finite set of points X ⊆ Rd and parameters ϵ, τ
and γ, one can verify whether the conditions in Proposi-
tion 7 are satisfied at the points in X by some gauge V .
If this is not the case, then one concludes that the sys-
tem does not admit a Lyapunov gauge with eccentricity
ϵ and robustness parameters (τ, γ).

Proposition 13. Let X ⊆ Rd be a finite set of points.
Consider the problem of finding a set of coefficient vectors
VX = {cx : x ∈ X} ⊆ B∗ (one coefficient vector for each
point in X) such that ∀x ∈ X, ∀ v ∈ F(x), ∀ c ∈ VX ,
c⊤x x ≥ 1

ϵ ∥x∥, c
⊤(x+τv) ≤ γc⊤x x and ∥x+τv∥ ≤ γϵc⊤x x.

If the exists no such set of coefficient vectors, then one
concludes that the system does not satisfy the conditions
in Proposition 7 with ϵ, τ and γ for any gauge.

Remark 14. The problem in Proposition 13 can be for-
mulated as a convex optimization problem with decision
variables {cx : x ∈ X} ⊆ B∗ (in fact, all constraints are
linear, except possibly the constraints cx ∈ B∗, depend-
ing on ∥·∥). This optimization problem can be solved ef-
ficiently and accurately using for instance interior-point
algorithms (Boyd and Vandenberghe, 2004).

If the problem in Proposition 13 has a feasible solution
VX , then the associated gauge VX will be called a can-
didate Lyapunov gauge for System F , in the sense that
it satisfies the sufficient conditions of Proposition 6 at
all points in X, but needs to be verified for other points
in Rd. Note that VX is a polyhedral function since VX is
finite. This procedure of detecting non-robustness and
computing a candidate polyhedral Lyapunov function,
followed by verifying the candidate, will form the basis
of a counterexample-guided iterative process to compute

polyhedral Lyapunov functions for piecewise linear sys-
tems, described in the next section.

Example 3 (Continued). Consider the system of Exam-
ple 3, whose vector field is represented in Figure 1-left,
and consider the setX consisting in the black dots in Fig-
ure 1-right. For τ = 0.25 and each x ∈ X and v ∈ F(x),
the points x+ τv are represented by blue dots in Figure
1-right. The yellow region represents the 1-sublevel set
of a candidate polyhedral Lyapunov function satisfying
the conditions of Proposition 13 with γ = 0.9: indeed,
we see that the blue dots are inside the γ-sublevel set of
V , represented by the orange curve.

6 Algorithm to compute polyhedral Lyapunov
functions

The algorithm takes as input three parameters: an ec-
centricity ϵ > 0, a time step τ > 0 and a contraction rate
γ > 0. The algorithm returns a polyhedral Lyapunov
function for the system, or concludes that no Lyapunov
gauge satisfying the conditions in Proposition 7 with ϵ,
τ and γ exists for the system.

The algorithm is an iterative process that maintains a fi-
nite set of points, called witnesses: X = {x1, . . . , xN} ⊆
Rd. The witness set is initialized to ∅. Each step iterates
between two algorithms in succession:

• Detecting non-robustness and finding a candidate
polyhedral Lyapunov function, as explained in Sub-
section 5.2.

• Verifying the candidate polyhedral Lyapunov func-
tion, i.e., verifying whether the conditions in Propo-
sition 6 are satisfied at all points. If the verification
succeeds, we have our desired polyhedral Lyapunov
function. Otherwise, we get a point (called a coun-
terexample) where the candidate fails to satisfy the
Lyapunov conditions.

Thus, at the end of each step, there are three possible
outcomes: (a) no Lyapunov gauge satisfying the condi-
tions in Proposition 7 with ϵ, τ and γ exists for the sys-
tem, and the algorithm stops (or update the parame-
ters); (b) the candidate polyhedral function verifies the
Lyapunov conditions, and the algorithm stops; or (c) a
new witness point is added toX. This process eventually
terminates, and we provide upper bounds on the total
number of iterations to termination.

In Subsection 5.2, we explained how to efficiently detect
non-robustness or compute a candidate polyhedral Lya-
punov function. In the next subsection, we explain how
to verify this candidate and compute a counterexample
if the verification fails.
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6.1 Verification and falsification

This step relies on the following proposition, whose proof
follows directly from Proposition 6.

Proposition 15. Let V be a polyhedral Lyapunov func-
tion such that ∀x ̸= 0, V (x) > 0. Consider the problem
of finding a mode q ∈ Q, a point x ∈ Hq \ {0} and a co-
efficient vector c ∈ V(x) such that c⊤Aqx ≥ 0. If there
exist no such mode, point and coefficient vector, then one
concludes that V is a Lyapunov function for the system.

The above can be addressed as follows: given q ∈ Q and
c ∈ V, consider the following optimization problem:

max c⊤Aqx

s.t. x ∈ Hq ∧ c⊤x = 1 ∧ (∀ c′ ∈ V) c′⊤x ≤ 1.
(1)

The problem in Proposition 15 has a solution if and only
if there is c and q for which (1) has an optimal solution
xc,q satisfying c⊤Aqxc,q ≥ 0. In this case, we choose as
counterexample the point xc,q for which c⊤Aqxc,q is the
largest among all c and q.

Remark 16. Solving (1) amounts to solve a linear pro-
grams with d variables and |V|+mq constraints (where
mq is the number of linear constraints describing Hq).
This can be done very efficiently and reliably using Lin-
ear Programming solvers.

It remains to explain how we ensure that the polyhedral
function V that is verified satisfies ∀x ̸= 0, V (x) > 0. To
do this, we fix η ∈ (0, ϵ), and let V◦ ⊆ 1

ϵB
∗ be a finite set

of coefficient vectors such that ∀x ∈ Rd, V◦(x) ≥ η∥x∥.
Then, given a candidate polyhedral Lyapunov function
VX , we let V be defined by V = VX ∪ V◦. This ensures
that ∀x ∈ Rd, V (x) ≥ V◦(x) ≥ η∥x∥.

Remark 17. Depending on the norm ∥·∥ and the ratio
η/ϵ, the cardinality of V◦ may vary;3 but in any case,
this set is fixed through all iterations of the algorithm.

Example 3 (Continued). Consider the system of Exam-
ple 3, whose vector field is represented in Figure 1-left,
and the candidate polyhedral Lyapunov function whose
1-sublevel set is represented in Figure 1-right. The red
dot in Figure 1-right is a counterexample found by solv-
ing (1): indeed, we see that the flow direction according
to mode 2 is toward the exterior of the sublevel set.

6.2 Overall algorithm

The overall algorithm is described in Algorithm 1. The
process starts with an empty set of witnesses. Then, it

3 When ∥·∥ is the L∞-norm, we can choose η = ϵ and V◦
with cardinality 2d.

Algorithm 1: Learning a polyhedral Lyapunov
function.
Data: System F , eccentricity ϵ > 0, time step

τ > 0 and contraction rate γ.
Result: Polyhedral Lyapunov function V , or fail.
Let X0 ← ∅
for k = 0, 1, . . . do

Compute a candidate polyhedral Lyapunov
function Vk by solving the problem in
Proposition 13 with X = Xk

if infeasible then return fail
Find a counterexample xk for the candidate Vk

by solving the problem in Proposition 15 with
V = Vk ∪ V◦.
if infeasible then return Vk

Let Xk+1 ← Xk ∪ {xk}

enters a loop, in which, at each iteration, the steps de-
scribed in Subsections 5.2 and 6.1 are performed sequen-
tially: (i) from the current set of witnesses, it tries to
find a candidate polyhedral Lyapunov function for the
system with given eccentricity and robustness parame-
ters. If this is not feasible, the algorithm stops and out-
puts fail; (ii) it checks whether the candidate function
provides a valid Lyapunov function for the system. If it
is the case, then the algorithm stops and outputs the
candidate function. Otherwise, it produces a counterex-
ample, which is added to the witness set. The algorithm
then proceeds with the next iteration of the loop.

7 Analysis of the algorithm

7.1 Termination and complexity

The algorithm is sound in the sense that if it terminates
and outputs a polyhedral function, then this function
is a Lyapunov function for the system (Proposition 15);
otherwise, if it outputs fail, then the system does not
admit a Lyapunov gauge with eccentricity ϵ and robust-
ness parameters (τ, γ) (Proposition 13).

We show that the algorithm terminates and we bound
the number of steps to termination. The proof of ter-
mination exploits the gap between the constraints that
are enforced during the candidate generation phase and
the constraints that are checked during the verification
phase: namely, at the witness points, the constraints en-
forced during the generation phase are stricter (robust
Lyapunov constraints) than the constraints checked at
these points during the verification phase. This implies
that the produced counterexample cannot be part of the
current witness set, and furthermore, its distance to the
witness set, after normalization, is bounded from below
by a positive constant that depends on the system and
the parameters ϵ, τ and γ.

Definition 18. Let X ⊆ X ′ ⊆ Rd \ {0} and r ≥ 0. We
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say that X ′ is an r-inflation of X if ∀ q ∈ Q and ∀x′ ∈
X ′∩Hq, there is x ∈ X∩Hq such that

∥∥ x
∥x∥−

x′

∥x′∥
∥∥ < r.

Let r = 1−γ
(2+τσ)ϵ , where σ = max {∥Aq∥ : q ∈ Q}.

Proposition 19. LetX ⊆ Rd\{0}. Let VX be a solution
to the problem in Proposition 13 and V = VX ∪ V◦. Let
X ′ ⊆ Rd \ {0} be an r-inflation of X. Then, ∀x′ ∈ X ′,
∀ v′ ∈ F(x′) and ∀ c′ ∈ V(x′), c′⊤v′ < 0.

Corollary 20. Let Xk ⊆ Xk+1 be two consecutive wit-
ness sets generated during the execution of Algorithm 1.
Then, Xk+1 is not an r-inflation of Xk.

The proof is direct fromProposition 19 and the definition
of Xk+1 = Xk ∪ {xk}, wherein the counterexample xk

violates the condition of Proposition 15.

From Corollary 20, we derive the following upper bound
on the number of iterations of the algorithm. For every
s > 0, let Pack(s;S) denote the s-packing number of S,
i.e, the largest cardinality of a subset S ⊆ S such that
∀x ∈ S, ∀ y ∈ S, x ̸= y implies ∥x− y∥ ≥ s.

Theorem 21 (Termination). Algorithm 1 terminates in
at most |Q|Pack(r;S) steps.

The overall arithmetic complexity of Algorithm 1 is thus
in O(dα(|Q|Pack(r;S))α+2β+1), when using a convex
optimization solver whose complexity is in O(nαmβ)
with n the number of variables and m the number of
constraints.4 Note that Pack(r;S) grows as O(r1−d).5

This is an upper bound on the worst-case complexity; as
we will see in the next section, the algorithm performs
much more efficiently than this bound on several prac-
tical examples.

7.2 Choice of the parameters

The choice of the eccentricity ϵ can be driven by safety
considerations: e.g., one may want to ensure that if the
system starts in a state of norm 1, then the trajecto-
ries do not diverge to a state of norm larger than ϵ be-
fore converging toward the origin. The choice of the ro-
bustness parameters (τ, γ) are driven by robustness con-
siderations with respect to system perturbations: e.g.,
if one believe that the system is stable under (δ1, δ2)-
perturbations, this provides lower bounds on the value
of (τ, γ) according to Proposition 11.

If the value of (δ1, δ2) is unknown, one can use the fol-
lowing strategy to update (τ, γ) starting from some ini-
tial guess (τ0, γ0): (τℓ+1, γℓ+1) = (τℓ/

√
α, 1−(1−γℓ)/α),

4 For Linear Programs, α = 2 and β = 1.5 using interior-
point methods (Ben-Tal and Nemirovski, 2001, p. 422).
5 For the L∞-norm, Pack(r; S) ≤ (2r−1 + 1)d−12d.

where α > 1. One can check that, with this strategy,
(τℓ, γℓ) will eventually satisfy the conditions in Propo-
sition 11, provided δ1, δ2 > 0. Per Proposition 21, the
number of iterations of the algorithm increases by a fac-
tor αd−1 at each update of (τℓ, γℓ). If ϵ is not fixed a
priori neither, one can update it as ϵℓ+1 = αϵℓ, thereby
increasing the number of iterations of the algorithm by a
factor α2(d−1) at each update of (ϵℓ, τℓ, γℓ). Finally, note
that, after an update of the parameters, we do not need
to reset the witness set; however, it is not clear whether
reusing the previous witness set results in a significant
speed-up of the algorithm.

8 Numerical experiments

We use the L∞-norm for ∥·∥. The problems in Proposi-
tions 13 and 15 can then be formulated as Linear Pro-
grams. All computations were made on a laptop with
processor Intel Core i7-7600u and 16GB RAM running
Windows. We used GurobiTM 10.0, under academic li-
cense, as linear optimization solver.

8.1 Example 3 (finished)

Consider the system of Example 3.We want to show that
the system is asymptotically stable and that the trajec-
tories starting with norm ρ ≥ 0 never reach a state with
norm larger than 3ρ. Therefore, we fix ϵ = 3. Then, to
find parameters (τ, γ) that allows us to prove stability of
the system, we use the strategy described in Subsection
7.2 with (τ0, γ0) = (1, 1) and α = 4. After two updates
of the parameters, i.e., with τ2 = 1/4 and γ2 = 1, Al-
gorithm 1 finds a polyhedral Lyapunov function for the
system in 32 steps (the steps are illustrated in Figure 2).

In the process of updating (τ, γ), we also learn that the
system does not admit a polyhedral Lyapunov function
with parameters (ϵ, τ, γ) = (3, 1/2, 1) (otherwise, the al-
gorithm would have found a polyhedral Lyapunov func-
tion after one update of the parameters). Per Proposition
11, this implies that there exists a (δ1, δ2)-perturbation
of the system, with δ1 < 1.5 and δ2 < 0.633 for which
there is a trajectory starting with norm 1 that reaches a
state with norm larger than 3.

8.2 Benchmark: 2D uncertain linear system

This system, introduced by Zelentsovsky (1994), is de-
scribed by F(x) = {Apx : p ∈ {0, α}} where

Ap :

[
0 1

−2 −1

]
+ p

[
0 0

−1 0

]
.

Zelentsovsky (1994) shows that the system with α =
3.82 admits a quadratic Lyapunov function. Blanchini
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Fig. 2. Steps of the construction of a polyhedral Lyapunov
function for the system of Example 3, with ϵ = 3, τ = 1/4
and γ = 1. At each step k = 1, . . . , 32, a polyhedral function
Vk (yellow region), satisfying the conditions of Proposition
13 at the witness set Xk (black dots), is computed. Then,
the algorithm checks whether it can find a counterexample
xk (red dots). After 32 steps, the process has computed a
polyhedral Lyapunov function for the system (last plot).

and Miani (1996) provides a polyhedral Lyapunov func-
tion for the system with α = 6. Xie et al. (1997) provides
a piecewise quadratic function for the system with α =
6.2. Chesi et al. (2009) provides a polynomial Lyapunov
function of degree 20 for the system with α = 6.8649.
Ambrosino et al. (2012) provides a polyhedral Lyapunov
function with 9694 vertices for the system with α = 6.87.

Using Algorithm 1, we computed a polyhedral Lyapunov
function for the systemwithα = 6. For that, we fixed ϵ =
50 and updated the parameters (τ, γ) using the strategy
described in Subsection 7.2 with (τ0, γ0) = (1, 1) and
α = 4. This led to the feasible parameters τ6 = 1/64
and γ6 = 1. The computation took about 4 minutes (224
iterations), and found a polyhedral Lyapunov functions
with 228 linear pieces (see Figure 3a).

Finally, we also applied our algorithm on the system
with α = 6.87. The computation reached the time-out
limit, set to 4 hours, without finding a polyhedral Lya-
punov. Nevertheless, we found that the system does not
admit a polyhedral Lyapunov function with parameters
(ϵ, τ, γ) = (50, 1/64, 1). From this, we can deduce infor-
mation about the stability of the system under pertur-
bations of the matrices by using Theorem 11.

Remark 22. Let us mention that the algorithms in the
above papers focus on uncertain linear systems, while

our algorithm also tackles piecewise linear systems. An-
other difference, e.g., with Ambrosino et al. (2012), is
that the hyper-parameters in our algorithm are directly
related to meaningful properties of the system, namely
the existence of a Lyapunov gauge robust to system per-
turbations.

8.3 Controlled mass–spring system

We consider a mass–spring system whose dynamics is
described by ẍ = −20x+u. We control this system with
a PID controller defined by u(t) = −Kiy(t)−Kpx(t)−
Kdẋ(t), wherein y(t) =

∫ t

0
x(s) ds, Ki = 440, Kp = 240

and Kd = 32. The force that is applied on the mass
can only be nonnegative. To counterbalance the accu-
mulation of the error when the input is negative, we add
an anti-windup mechanism to the system. The block-
diagram of the resulting system is depicted in Figure 3c.
The dynamics of the system is described by the follow-
ing piecewise linear system:

ẏ = x, ẍ+Kdẋ+ (20 +Kp)x+Kiy = 0, (2)

if Kdẋ+Kpx+Kiy ≤ 0;

ẏ = −10y + x, ẍ+ 20x = 0, (3)

if Kdẋ+Kpx+Kiy ≥ 0.

Remark 23. Since (3) is not stable, the system does
not admit a Lyapunov function symmetric around the
origin (including any polynomial Lyapunov function).

Using Algorithm 1, we computed a polyhedral Lyapunov
function for this system.We used the parameters ϵ = 50,
τ = 1/32 and γ = 1 (obtained by using the strategy de-
scribed in Subsection 7.2). The computation took 15 sec-
onds (130 iterations) and found a polyhedral Lyapunov
function with 136 linear pieces (see Figure 3b).

8.4 Performance evaluation

We evaluate the performance of the process, in terms
of computation time and complexity of the outputted
Lyapunov function, as a function of the dimension of the
system and the stability margin of the linear modes.

Therefore, for d ∈ {4, 5, . . . , 9}, we let U ∈ Rd×d be a
randomly generated orthogonal matrix and define

Π = U11⊤U⊤, 1 = [1, . . . , 1]⊤∈ Rd.

Then, for each η ∈ {0.5, 0.05} and m ∈ {1, 2, 4}, we
define a system with 2m modes as follows. For each
i ∈ {1, . . . ,m}, we generate a random vector a ∈ S and
define the mode q = 2i− 1 by Hq = {x ∈ Rd : a⊤x ≥ 0}
and Aq = Π − (d + 1)I, and define the mode q = 2i by
Hq = {x ∈ Rd : a⊤x ≤ 0} and Aq = Π − (d + η)I. We
fixed ϵ = 10, τ = 1/8 and γ = 1. We used Algorithm 1 to
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(a) Polyhedral Lyapunov
function for the system in
Subsection 8.2

(b) Polyhedral Lyapunov
function for the system in
Subsection 8.3

1
s2+20

x
max{0, f}

u
+

f

1
s

Ki

s Kd

+

−10 if f < 0;

0 otherwise

Kp

(c) Block-diagram of the mass–spring system in Subsection
8.3 actuated by a ReLU-saturated PID controller. When the
actuation force is saturated, an anti-windup mechanism (in
blue) counterbalances the accumulation of the error.

Fig. 3.

Fig. 4. Average computation time and number of iterations
over 10 samples with randomly generated systems, as de-
scribed in Subsection 8.4. The vertical bars represent the
standard deviation over the 10 samples.

compute a polyhedral Lyapunov function for the system
with these parameters. For each value of (d,m, η), we
generated 10 different systems and measured the com-
putation time and number of iterations of the algorithm.
The results are reported in Figure 4.

9 Extensions and future work

The approach can be readily extended to discrete-time
piecewise linear systems. The differences are that a time
step parameter τ would not be needed anymore and the
verification part (Proposition 15) would account for the
conditions of being a Lyapunov function for discrete-
time systems. Extension to hybrid linear systems is also
possible but the conditions that we impose on the func-
tion to be a Lyapunov function might be conservative
(e.g., if the discrete transitions include the identity map,
do we impose a strict decrease of the Lyapunov function
with respect to this map?). One way to tackle this is to
add dwell-time assumptions on the system; this is an ap-
proach that we will consider in future work, along with
extensions to multiple Lyapunov functions.

In future work, we also plan to extend the approach to
piecewise affine systems and problems of safety verifica-
tion, using invariant polytopes. The following two dif-
ferences with the current approach are to be addressed:
first, we can no longer assume that the counterexamples
are on the unit sphere; second, the property of decrease
is replaced by a property of invariance, in which only the
points on the boundary of the polytope must be pushed
toward the interior of the polytope.
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ods in control. Birkhäuser, Cham, 2nd edition, 2015.
doi: 10.1007/978-3-319-17933-9.

Vincent D Blondel and John N Tsitsiklis. Complexity
of stability and controllability of elementary hybrid
systems. Automatica, 35(3):479–489, 1999. doi: 10.
1016/S0005-1098(98)00175-7.

Stephen Boyd and Lieven Vandenberghe. Convex op-
timization. Cambridge University Press, Cambridge,
UK, 2004. doi: 10.1017/CBO9780511804441.

Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural
Lyapunov control. InNIPS’19: Proceedings of the 33rd
International Conference on Neural Information Pro-
cessing Systems, pages 3245–3254. ACM, 2019. doi:
10.5555/3454287.3454579.

Graziano Chesi, Andrea Garulli, Alberto Tesi, and An-
tonio Vicino. Homogeneous polynomial forms for ro-
bustness analysis of uncertain systems, volume 390
of Lecture Notes in Control and Information Sci-
ences. Springer, London, 2009. doi: 10.1007/
978-1-84882-781-3.

Frank J Christophersen. Piecewise affine systems. InOp-
timal control of constrained piecewise affine systems,
volume 359 of Lecture Notes in Control and Informa-
tion Sciences, pages 39–42. Springer, Berlin, 2007. doi:
10.1007/978-3-540-72701-9 4.

Hongkai Dai, Benoit Landry, Lujie Yang, Marco Pavone,
and Russ Tedrake. Lyapunov-stable neural-network
control. In Proceedings of Robotics: Science and Sys-
tems, Virtual, 2021. doi: 10.15607/RSS.2021.XVII.
063.

Sicun Gao, Jeremy Avigad, and Edmund M Clarke.
δ-complete decision procedures for satisfiability over
the reals. In Bernhard Gramlich, Dale Miller, and
Uli Sattler, editors, 6th International Joint Confer-
ence on Automated Reasoning, IJCAR 2012, vol-
ume 7364 of Lecture Notes in Computer Science,
pages 286–300, Berlin, 2012. Springer. doi: 10.1007/
978-3-642-31365-3 23.

Gene H Golub and Charles F Van Loan. Matrix compu-
tations. The Johns Hopkins University Press, Balti-
more, MD, 4th edition, 2013.

Nicola Guglielmi and Vladimir Protasov. Exact compu-
tation of joint spectral characteristics of linear opera-
tors. Foundations of Computational Mathematics, 13
(1):37–97, 2013. doi: 10.1007/s10208-012-9121-0.

Nicola Guglielmi, Linda Laglia, and Vladimir Pro-
tasov. Polytope Lyapunov functions for stable and
for stabilizable LSS. Foundations of Computational
Mathematics, 17(2):567–623, 2017. doi: 10.1007/
s10208-015-9301-9.

Arash Hassibi and Stephen Boyd. Quadratic stabiliza-
tion and control of piecewise-linear systems. In Pro-
ceedings of the 1998 American Control Conference.
ACC (IEEE Cat. No. 98CH36207), pages 3659–3664.
IEEE, 1998. doi: 10.1109/ACC.1998.703296.

Mikael Johansson. Piecewise linear control systems: a
computational approach, volume 284 of Lecture Notes
in Control and Information Sciences. Springer, Berlin,
2003. doi: 10.1007/3-540-36801-9.

Mikael Johansson and Anders Rantzer. Computation
of piecewise quadratic Lyapunov functions for hybrid
systems. IEEE Transactions on Automatic Control,
43(4):555–559, 1998. doi: 10.1109/9.664157.
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A Proofs

PROOF of Proposition 6 (C1) implies that V (x) =
0 ⇔ x = 0. Furthermore, since V is positively homoge-
neous, it follows that V is radially unbounded. Now, let
ξ be a trajectory with ξ(0) ̸= 0. We show the following:

Main result: There is α > 0 such that ∀x ̸= 0, ∀ v ∈
F(x), ∀ c ∈ V, c⊤x ≥ V (x)− α∥x∥ implies c⊤v < 0.

Proof of the main result. For a proof by contradiction,
assume that it is not the case. Then, there is a sequence
{(xk, ck, qk)}∞k=0 ⊆ S×V ×Q such that ∀ k ∈ N, c⊤k x ≥
V (xk)− 2−k, xk ∈ Hqk and c⊤k Aqkxk ≥ 0. By compact-
ness of S × V and finiteness of Q, and taking a subse-
quence if necessary, there is (x, c, q) ∈ S×V×Q such that
(xk, ck)→ (x, c) and ∀ k ∈ N, qk = q. Since Hq is closed,
it holds that x = limk xk ∈ Hq. By continuity, it holds
that c⊤x− V (x) = limk c

⊤
k xk − V (xk) ≥ 0, so c ∈ V(x).

Finally, it holds that c⊤Aqx = limk c
⊤
k Aqxk ≥ 0. This

is a contradiction with (C2), concluding the proof of the
main result.

Let α > 0 be as in the main result above. By using the
continuity of ξ, let T > 0 be such that ∀ t ∈ [0, T ], (i)
ξ(t) ̸= 0 (this is in fact true for all t ≥ 0 but we do
not need to prove this), and (ii) ∀ c ∈ V(ξ(T )), c⊤ξ(t) ≥
V (ξ(t)) − α∥ξ(t)∥. We show that V (ξ(T )) < V (ξ(0)).
Therefore, fix c ∈ V(ξ(T )). Then, by the assumption on
T and from the main result, it follows that ∀ t ∈ [0, T ],
∀ v ∈ F(ξ(t)), c⊤v < 0. Hence, by definition of ξ being a

trajectory,
∫ T

0
c⊤ξ′(t) dt < 0, so that c⊤ξ(T ) < c⊤ξ(0).

Since c⊤ξ(T ) = V (ξ(T )) and c⊤ξ(0) ≤ V (ξ(0)), we get
that V (ξ(T )) < V (ξ(0)). Note that T > 0 can be chosen
independently of ξ(0). Hence, the same argument can be
applied for a trajectory starting at ξ(T ). We conclude
that ∀ t > 0, V (ξ(t)) < V (ξ(0)).

PROOF of Proposition 7 For the “if” direction, it
is straightforward to see that (D1)–(D2) implies (C1)–
(C2) in Proposition 6.

To prove the “only if” direction, assume that V satisfies
(C1)–(C2) in Proposition 6. Note that V is continuous
since V is bounded.

First, we show that there is ϵ ≥ 1 such that (D1) holds.
By (C1) and V being continuous, there is ϵ ≥ 1 such that
∀x ∈ S, V (x) ≥ Vmax

ϵ . Since V is positively homogeneous

of degree 1, it follows that ∀x ∈ Rd, V (x) ≥ Vmax

ϵ ∥x∥.

It remains to show that there are constants τ > 0 and
γ ∈ (0, 1) such that (D2) holds. For a proof by contradic-
tion, assume that it is not the case. Then, there is a se-
quence {(xk, ck, qk)}∞k=0 ⊆ S×V ×Q such that ∀ k ∈ N,
xk ∈ Hqk and c⊤k (xk+2−kAqkxk) ≥ (1−4−k)V (xk). By
compactness of S × V and finiteness of Q, and taking a
subsequence if necessary, there is (x, c, q) ∈ S × V × Q
such that (xk, ck) → (x, c) and ∀ k ∈ N, qk = q. Since
Hq is closed, it holds that x = limk xk ∈ Hq. By conti-
nuity, it holds that c⊤x− V (x) = limk c

⊤
k xk − V (xk) ≥

limk −4−kV (xk) − c⊤k 2
−kAqxk = 0, so c ∈ V(x). Fur-

thermore, ∀ k ∈ N, c⊤k Aqxk ≥ −2−kV (xk), since c
⊤
k xk ≤

V (xk). Hence, by continuity, c⊤Aqx = limk c
⊤
k Aqxk ≥

limk −2−kV (xk) = 0. This is a contradiction with (C2),
since c ∈ V(x), concluding the proof.
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PROOF of Theorem 10 Let F ′ be a (δ1, δ2)-pertur-
bation. Fix q ∈ Q, x′ ∈ H ′

q ∩ S and c ∈ V(x′). Let
x ∈ Hq be such that ∥x′ − x∥ ≤ δ1. Denote v′ = A′

qx
′

and v = Aqv. It holds that ∥v′ − v∥≤ ∥Aq(x
′ − x)∥ +

∥(A′
q − Aq)x

′∥ ≤ σδ1 + δ2. Also, |c⊤(x′ − x)| ≤ Vmaxδ1
and |V (x′) − V (x)| ≤ Vmaxδ1. Finally, ∥x∥ ≥ 1 − δ1.
Thus, c⊤τv′ = c⊤(x′ + τv′) − V (x′) ≤ c⊤(x + τv) −
V (x) + Vmax(2δ1 + τσδ1 + τδ2) < c⊤(x+ τv)− V (x) +
1−γ
ϵ (1 − δ1)Vmax ≤ 0, where the before-last inequality

comes from the assumption on (δ1, δ2) and the last in-
equality from (D1)–(D2). Thus, (C2) in Proposition 6 is
satisfied for x′, q and c. Since x′, q and c were arbitrary,
this concludes the proof.

Lemma24. LetB ∈ Rd×d be such that ∥B−I∥ ≤ α < 1.

Then, (i) log(B) =
∑∞

k=1(−1)k+1 (B−I)k

k is well defined

and satisfies elog(B) = B; (ii) ∀ t ∈ [0, 1], ∥et log(B)−I∥ ≤
α

1−α ; and (iii) ∥log(B)−B + I∥ ≤ − log(1− α)− α.

PROOF. (i) See Golub and Van Loan (2013, p. 541).

(ii) From eA − I =
∑∞

k=1
Ak

k! , we get that ∥eA − I∥ ≤
e∥A∥−1. Similarly, we get that ∥log(B)∥ ≤ − log(1−α).
Thus, ∥et log(B) − I∥ ≤ et∥log(B)∥ − 1 ≤ e∥log(B)∥ − 1 ≤
1

1−α − 1. (iii) Similar to (ii).

PROOF of Theorem 11 Let (τ, γ) be as in the the-
orem. Fix q ∈ Q and x ∈ Hq ∩ S. Denote A = Aq and
α = ∥τA∥ ≤ τσ. Let A′ = 1

τ log(I + τA) which exists
since α < 1 (Lemma 24i and assumption on τ) and sat-
isfies ∥A′ − A∥ ≤ 1

τ (− log(1 − α) − α) (Lemma 24iii).

Let R(x) = {etA′
x : t ∈ [0, τ ]}. By Lemma 24ii, it holds

that ∀ y ∈ R(x), ∥y − x∥ ≤ α
1−α . Hence, there exists a

(δ1, δ2)-perturbation F ′ of F for which R(x) ⊆ H ′
q and

A′
q = A′ + − log(γ)

τ I. Since V is a Lyapunov function for

the perturbed system, it holds that V ( 1γ e
τA′

x) < V (x),

that is, V (x+ τAx) < γV (x), concluding the proof.

PROOF of Proposition 13 Let V satisfy the condi-
tions in Proposition 7. Without loss of generality, as-
sume that Vmax = 1. Hence, V ⊆ B∗. For each x ∈ X, let
cx ∈ V be such that c⊤x = V (x). Then, by (D1)–(D2), it
holds that ∀x ∈ X, c⊤x x ≥ 1

ϵ ∥x∥ and V (x+τv) ≤ γc⊤x x.

Since VX ⊆ V and 1
ϵ ∥x+τv∥ ≤ V (x+τv), it follows that

∀x ∈ X, ∀ v ∈ F(x), ∀ c ∈ VX , c⊤(x + τv) ≤ γc⊤x (x)
and ∥x+ τv∥ ≤ γϵc⊤x x.

PROOF of Proposition 19 Let q ∈ Q and x′ ∈ X ′ ∩
Hq. Let x ∈ X ∩Hq be such that ∥x̂− x̂′∥ < r, wherein

x̂ = x
∥x∥ and x̂′ = x′

∥x′∥ . Let c ∈ V(x
′). Let v = Aqx̂ and

v′ = Aqx̂
′. We show that c⊤v′ < 0. Note that ∥v−v′∥ =

∥Aq(x̂−x̂′)∥ ≤ σr, |c⊤(x̂−x̂′)| ≤ r and |V (x̂)−V (x̂′)| ≤
r. Hence, c⊤τ x̂′ = c⊤(x̂′ + τ x̂′)− V (x̂′) ≤ c⊤(x̂+ τv)−
V (x)+ 2r+ τσr < c⊤(x̂+ τv)−V (x)+ 1−γ

ϵ ≤ 0, where
the before-last inequality comes from the assumption on
r and the last inequality from the assumption on X and
V◦ ⊆ 1

ϵB
∗. Since x′, q and cwere arbitrary, this concludes

the proof.

PROOF of Theorem 21 Assume that Algorithm 1
produces at leastK+1 counterexamples x0, . . . , xK . For
each k ∈ {0, . . . ,K}, let qk ∈ Q be such that xk ∈ Hqk

and minx∈Xk∩Hqk

∥∥ x
∥x∥ −

xk

∥xk∥
∥∥ ≥ r (by Corollary 20,

such a qk always exists). For each q ∈ Q, let XK ↓ q =
{xk : qk = q}. By the pigeonhole principle, there is q ∈ Q
such that |XK ↓q| ≥ (K + 1)/|Q|. Fix such a q. It holds
that for all x, y ∈ XK ↓ q, if x ̸= y then ∥x − y∥ ≥ r.
Thus, |XK ↓ q| is upper bounded by Pack(r;S). This
proves that K + 1 ≤ |Q|Pack(r;S).
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