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Abstract. This paper discusses verification and optimization of complex sys-
tems with respect to a set of specifications under stochastic parameter variations.
We introduce a simulation-based statistically sound model inference approach
that considers systems whose responses depend on a few design parameters and
many stochastic parameters. The technique iteratively searches over the space of
design parameters by alternating between verification and optimization phases.
The verification phase uses statistical model checking to check if the model us-
ing the current design parameters satisfies the specifications. Failing this, we seek
new values of the design parameters for which statistical verification could poten-
tially succeed. This is achieved through repeated simulations for various values
of the design and stochastic parameters, and quantile regression to construct a
model that predicts the spread of the responses as a function of the design pa-
rameters. The resulting model is used to select a new set of values for the design
parameters. We evaluate this approach over several benchmark examples. In each
case, the performance is improved significantly compared to the nominal design.

1 Introduction

We address the problem of selecting design parameter values for complex systems that
are “robust” with respect to varying stochastic parameters. For instance, a control de-
signer often faces the problem of selecting gain values of a controller so that the design
is robust under stochastic disturbances and variations in the plant model parameters.
Elsewhere, the problem of designing “robust” analog circuits that can function correctly
under stochastic process variations is also well known. Thus, the problem of finding
appropriate design parameter values for a complex system whose output responses de-
pend on a few controllable (tunable) design parameters, and numerous uncontrollable
stochastic parameters with known probability distributions, is quite common. In this
work, we present an automatic search method that seeks to adjust the design parameters
so that the resulting system satisfies the specifications with a given probability bound.
We introduce an approach that combines simulation, quantile regression [12] and a
generalization procedure. The approach iterates between two phases: verification and
optimization. The verification phase determines whether the system is safe given the
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currently chosen design parameters. If not, we search for a new set of values for the
design parameters (design point) that can potentially yield a safe system. The new de-
sign point is chosen by constructing a relational model that captures the spread of the
responses as a function of the design parameters using simulations and quantile regres-
sion. This relational model is then constructed to search for new design points that po-
tentially satisfy the specifications with the given probability bound. Repeated iterations
of this process checks correctness over a sequence of design points, while iteratively
refining the relational model, converging to optimal values for the design parameters.

The relational model effectively marginalizes the effects of the stochastic param-
eters. It is constructed using quantile regression to fit through the upper and lower
quantiles of the responses as a function of the design parameters, followed by a gener-
alization procedure that relaxes the model into a statistical over-approximation of the
response. The procedure iterates until it successfully finds a design point that satisfies
the specifications, or stops when a new design point cannot be found. In the latter case,
we report that we cannot find a safe design point and suggest that the specifications may
be too stringent.

The main contribution of this paper is the introduction of a simulation-based sta-
tistically sound model inference approach that combines verification and optimization.
This problem is hard for formal verification techniques that reason symbolically about
the distribution of an output response. In recent years, statistical verification techniques
have received increasing attention [24, 19, 10, 22,27, 17, 13]. They are simulation-based,
requiring just the ability to simulate the model efficiently for various values of design
and stochastic parameters. Such a technique can be used to place “high confidence”
bounds on the probability that a response satisfies a given specification. Statistical
model checking (SMC) [24, 10] is a family of statistical verification techniques that
relies on sequential hypothesis testing [21, 11]. An SMC technique checks whether a
time-bounded LTL property is satisfied with a certain probability bound by deciding
between two mutually exclusive hypotheses through simulation.

SMC provides a “likely yes/no” answer for a system and its specifications. In con-
trast, we wish to find design points for which the system is likely to satisfy the specifi-
cations. A straightforward, but impractical, approach iterates through individual design
points, and runs SMC for each of them. Hence, it is desirable to build a model that
characterizes the relationship between design parameters and responses. For this pur-
pose, regression-based performance modeling techniques are natural candidates and
have been studied extensively [20, 15, 14, 3,26, 6]. They use simulation data to fit func-
tions that approximate the true response. However, since the outcome of a regression-
based approach is an approximation, rather than a sound model of the response func-
tion, few guarantees can be provided. Our previous work attempts to combine regres-
sion and hypothesis testing techniques to provide a statistically sound model inference
approach [25]. A statistically sound model provides an envelope of a response that is
guaranteed to contain the corresponding response with a high probability. Such a model
is useful when dealing with complex systems, in which case a formally sound model
cannot be obtained.

In the control community, similar problems have been considered, such as robust
convex optimization [2] and chance-constrained optimization [16]. A classic technique



to solve for these problems is known as the scenario approach [4], which provides so-
lutions that guaranteed to be optimal with a desired probability. The similarity between
the scenario approach and our approach lies in that both of them deal with uncertainties
in a system and provide statistical guarantees on the solutions. However, the scenario
approach assumes that the system dynamics are available in a closed form, while our
approach only relies on the ability to simulate the system.

To our knowledge, the idea of this paper, which combines quantile regression with
SMC is unique. Nevertheless, the use of SMC for tuning model parameters has re-
ceived some attention in the past. Jha et al. present the use of SMC to tune parameters
for closed loop controller models in order to satisfy a given set of temporal logic spec-
ifications [9]. Their approach uses Monte-Carlo sampling over the design parameter
values, wherein the number of simulation runs required to resolve the hypothesis test-
ing problem is used as the fitness function for each design parameter. A similar idea is
used by Palaniappan et al. to fit parameter values for biological models based on exper-
imental observations as well as model specifications [17]. In their work, SMC is used to
derive a fitness function that seeks to measure the fraction of the specifications satisfied
by a particular choice of model parameters. Our approach builds a more sophisticated
“global” model of how the properties depend on the design parameters using quantile
regression, and is expected to use fewer number of simulations.

While our approach considers controllable design parameters, a significant body
of work treats problems involving uncontrollable, non-deterministic parameters along
with stochastic parameters using SMC. We refer the reader to recent papers by Zuliani
et al. [8] and Ellen et al. [7] that use reinforcement learning techniques to verify the
correctness properties under the worst case values of non-deterministic parameters.

The paper is organized as follows. Section 2 presents an overview of the proposed
approach. Section 3 formulates the use of quantile regression. Section 4 discusses how
to manipulate the model from quantile regression to achieve statistical soundness. Sec-
tion 5 introduces a method to find new design points that are potentially safe. Section 6
shows applications of the proposed approach.

2  Overview

Consider a system with design parameters u € U and stochastic parameters x € X,
where U and X are the domains of the parameters. Assume that the design parameters
are controllable, i.e., we can choose values for them, and the stochastic parameters,
following a joint distribution F'(x), are uncontrollable. We also assume give nominal
design parameters u,,,. A response ¢ is defined by a function r(u, x) where r is com-
putable as a black-box, but has an complex analytic form. A specification of such a
system has the form ¢ € [a, b], with a, b € R. We wish to find a design parameter u that
satisfies the specification with probability at least 6 (a given probability threshold):

XNF;'(X) (r(u,x) € [a,b]) > b, (1)

First, we statistically verify whether the system with the nominal parameters u,,,, sat-
isfies (1). If the verification fails, we search for new design point u,,,, € U.
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(a) A two-mass-spring system. (b) Closed-loop control.
Fig. 1: A two-mass-spring system and the closed-loop system with a controller.

Example 1 (A Two-Mass-Spring System). A two-mass-spring system [23] is shown in
Figure 1a. It consists of two rigid bodies and a spring. The model is uncertain in which
my = 1.0 £ 20%, mo = 1.0 & 20% and k = 1.0 & 20% with appropriate units. We
apply force u to m, and measure y = x2, the position of ms. In Figure 1b, a controller
is used to track y with r, the reference position.

A lead compensator controls the plant. It has two tunable parameters, the pole p €
[—1200, —800] and the zero z € [—1.2,—0.8]. Nominally, p = —1000 and z = —1.
The goal is to design a controller so that the step response of the system satisfies: (1)
the settling time ¢ < 2.5 and (2) the overshoot r < 15% of the steady state value.

The key idea of the proposed approach is to fit a relational model for the response
r(u,x). Let T be the set of real-valued intervals. A relational model g maps design
parameters u € U to intervals g(u) € L. In effect, g(u) marginalizes the effects of the
stochastic parameters. Such a model attempts to over-approximate the spread of r(u, x)
over x ~ F(x). The key notion that we seek to satisfy is called statistical soundness.

Definition 1 (Statistical Soundness). Given a probability 6y € (0,1), a relational
model g : U — 1 is Oy-statistically sound if for all u € U

xJ;r(x) (r(u,x) € g(u)) > 6y . 2)

While constructing an accurate but fully sound relational model is often expensive, if
not impossible, a statistically sound model can be used instead with guarantees that are
probabilistic rather than absolute.

In Definition 1 there is a universal quantifier over u. Since the response function r
is assumed to be a black-box, finding a model that satisfies (2) is not possible. In the
proposed approach, we will restrict ourselves to show that (2) is true for some finite
subset of design points. Furthermore, checking if a model g(u) is statistically sound
at a given design point u requires detailed knowledge of the function r(u, x), which
is not available. To address this, we will use hypothesis testing techniques such as the
sequential Bayesian test to conclude statistical soundness with high confidence at a
given design point u.

Figure 2 shows the basic flow of the proposed approach. First, using quantile re-
gression, we compute a relational model g(u) = [g¢(u), g, (u)] with affine functions
ge and g, to approximate the response function 7(u,x) with u € U and x € X.
Quantile regression is carried out using randomly sampled design and stochastic pa-
rameters, and the corresponding values of the response. However, ¢ is not guaranteed
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Fig. 2: Basic working flow of the proposed approach.
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Fig. 3: Histogram of ¢ (in seconds) and r (percentage) in the two-mass-spring example.

to be statistically sound. Next, we check whether the nominal design point u,,,, satisfy
the specifications under stochastic parameter variations. This is achieved by a gener-
alization technique [25], which derives a relational model g(u) that is y-statistically
sound for u = u,,, with high confidence. Intuitively, the procedure fixes the design
parameters to W,,,, and samples the stochastic parameters sequentially. A tolerance in-
terval I : [¢,u] is computed so that a long enough sequence of the observed responses
fall in the interval [§¢(Wuom) + £, Gu(Wnom) + u]. This procedure is guaranteed to yield
g(u) = [ge(u) + £, G, (u) + u] that is statistically sound at u = u,,,,,, with high confi-
dence. For a specification ¢ € [a, b], if g(uuom) is contained in [a, b], we conclude that
with a high probability (which depends on 6) the system is safe at u,,,,. Otherwise, we
search for new design point that yields a safe system.

To carry out the search, the response r(u, x) is modeled by g(u). We then look for
a point u; € U that has the largest margin from violating the specifications. Since g
is statistically sound only at u,,,, generalization is applied again so that g becomes
statistically sound at {u,,,, u; }. Then we check whether the specifications hold. The
procedure continues until either the system is safe at some u; at the i*" iteration, or a
limit on the number of iterations is exceeded, in which case, a failure is returned.

Example 2. Let us continue with Example 1. First, we simulate the system with ran-
domly sampled design and stochastic parameters

p € [~1200,—800], z € [~1.2, —0.8], m; € [0.8,1.2], my € [0.8,1.2], k € [0.8,1.2).

We use quantile regression to fit a lower and an upper bound function for the responses
t and r. For instance, 1.157 4 0.03966p + 0.7071z is the lower bound of ¢, with p and
z normalized to [—1, 1]. Figure 3 shows the histograms of ¢ and r at w,,, and W,,.
Apparently, the system violates the specification r < 15% at W, (p = —1000 and
z = —1). After optimization, we have p = —1200 and z = —0.928. The histograms
show that both specifications are satisfied.



3 Quantile Regression

In this section, we present the basic notion of quantile regression. For a real-valued
random variable X with a distribution F'x (x) = Pr(X < x), the 7" quantile of X is
defined as Qx (7) = inf{x : Fx(z) > 7}. Informally, it is the smallest = such that
Pr(X > z)isatmost1 — 7.

Consider a complex system with design parameters u, stochastic parameters x and
aresponse ¢ = r(u,x). For a fixed u, r(u, x) can be regarded as a random variable, de-
noted as 7+,. The random variable 7, follows the distribution of r(u, x), which depends
on r and the distribution of x. A 7th quantile function g, (u) = Q7 (7) maps the design
parameters onto the 7th quantile of the random variable 7. In the proposed approach,
the goal of quantile regression is to approximate the quantile function g,(u) with an
affine function of the form g, (u;c) = ¢p + Zle ciu;, where ¢ = (cg,c1,...,cp) are
unknown coefficients and u; is the i*" design parameter. The coefficients ¢ are com-
puted by minimizing the residual between g, (u) and g, (u),

min llg- (1) — G- (u; )| - 3)
c=(cp,C1,..,Ck)

Since ¢, (u) is often not available, (3) is merely conceptually useful. We show a
general approach to solve for g, (u;c). For a given set of simulation data with m data
points, quantile regression relies on the following penalty function,

m m
pr(e) =Y Tei+ Y (r—1ei, )
=h =

where e; = r(u®, x() — g, (u?) are the residuals between the response function and
the approximation, evaluated at (u?, x(?)). Here u”) and x() refers to the i*" observa-
tions of the design and the stochastic parameters, respectively. For a fixed 7 (except for
0.5), (4) incurs an asymmetric penalty on the positive and the negative side of the resid-
ual e. For 7 > 0.5 (7 < 0.5), a positive (negative) residual incurs more penalty and thus
is minimized. The penalty function (4) leads to the following optimization problem.
minp, (r(u,x) - gr(usc)) . )
c=(c0,C1,-.-,Ck)
Since (4) is piecewise linear, it has a unique minimum.

The problem in (5) is solved as a linear program [12]. The penalty function in (4)
is encoded by adding auxiliary variables s = (s1,...,8,,) and t = (t1,...,t;). The
auxiliary variables s and t correspond to the cases that the response ¢ is greater and
less than the approximation g, respectively. With them, we write (5) as

min TS; + 1—7)t;
c=(cp,C1,-.,Ck) ; ;( )

subject to (6)
T (u(i),x(i)) —0r (u(i);c> =s5—1t;, 1=1,2,...,m,

$s>0,t>0.



To minimize the objective function, at most one of s; and ¢; should be non-zero. The
first constraint forces that either s or t equals to the residuals. The last two constraints
ensures s and t to be non-negative (notice the sign change in the second sum of the
objective function in (4) and (6)).

It is important to understand that the formulation in (6) only solves for 7 € (0, 1).
For 7 = 0 and 7 = 1, (6) fails to find the maximum lower bound and the minimum
upper bound. This is because in the two cases, (4) penalizes only one side of the resid-
uals and thus allows the approximation to behave arbitrarily on the opposite side. Such
a solution is meaningless in practice. For instance, for 7 = 0, the lower bound func-
tion of ¢ in Example 2 can be either 0 4+ Op + 0z or —100 + Op + 0z, with the same
objective value of 0. To obtain a meaningful lower (upper) bound approximation from
quantile regression, we set 7 close to 0 (1). Note that g, is not necessarily close to the
true lower (upper) bound. In the case that there are outliers in the simulation data, g
can be distant from the true bound. In contrast, g, tends to leave out the outliers and
only concerns with the normal data. Such a property is often desirable when dealing
with data from practical settings. In the following, we write g, and §,, to indicate the
estimated lower and the upper bound, respectively. By default, we assume that gy is
computed with 7 = 0.01 and g,, with 7 = 0.99.

4 Generalization and Verification

As mentioned in Section 2, g, and §,, form a relational model §(u) = [j¢(u), g, (u)].
Clearly, g is not necessarily statistically sound (see Definition 1) and thus does not
provide guarantees on the behavior of the underlying system. We now present a gener-
alization technique that converts § into a statistically sound model with high likelihood,
and statistically verifies whether specifications of the form ¢ € [a, b] are satisfied.

Generalization Recall that Definition 1 defines statistical soundness for all u € U.
Such a condition is too strong since our goal is to (1) learn whether the specifications
hold at u,,,, and if not, (2) find a new point u,,,, that satisfies them. Hence we are only
concerned with statistical soundness at these two design points.

Once the design parameters are fixed, ¢ becomes an interval. We derive a toler-
ance interval [¢,u] so that the interval [ge(u) + ¢, G, (u) + u] is a statistically sound
bound for the response ¢ under stochastic parameter variations. The procedure is based
on sequential Bayesian test which is briefly reviewed here.! Sequential Bayesian test
investigates statistical hypotheses through a sequence of observations and determine
which one should be accepted. It computes Bayes factor

B =

Pr(zl,...,zN\’Hl) o 1, /HlFSi
PI’(Zl,...,ZN‘HQ)’ ! 0, HQ}_SZ"

where H; and Hs are mutually exclusive hypotheses, each z; is a random variate of a
Bernoulli random variable Z, and ‘H F s is interpreted as s is in favor of . A large

! The interested readers are referred to Kass and Raftery [11] and Zhang et al. [25].



Data: Model §(u) = [ge, §u], Design Parameters u, Probability 6o, Threshold T’
Result: Tolerance Interval [£, u], Model g(u)
K=—log(T+1)/logfy —1;
£, u, count =0 ;
while count < K do
x = Sample the stochastic parameter space ;
¢ = Simulate the system at design parameters u and measure response ;
if ge(u) + £ < ¢ < Gu(u) + u then
count = count + 1 ;

‘ continue ;
else
count=0;
£,u = min(¢ — ge(u),£) , max(¢ — gu(u),u) ;

end
end
Return [£, u, [ge (u) + £, §u () + u] ;

Algorithm 1: Generalization that achieves statistical soundness at fixed u.

Bayes factor indicates that the observed data support 1 over Ho. Thus we specify a
threshold 7' such that we accept H; when B grows beyond 7', and accept Ho when it
falls below 1/T". Usually H; and Hz have the form Pr(¥) > 6y and Pr(¥) < 6y, where
6 is a specified probability and ¥ denotes the assertion

r(u,x) € [ge(u) + £, g, (u) + u], for fixed u and x ~ F(x), @)

The goal is to derive proper ¢ and « for given 6y and T" such that 7, is accepted.

Algorithm 1 shows the generalization procedure to derive a tolerance interval to
achieve statistical soundness at fixed design parameters. The inputs are the model §(u) =
[Ge(u), gu(u)], fixed design parameters u, a probability 6, which indicates the desired
probability that (7) should happen, and a Bayes factor threshold 7'. The algorithm first
computes a sequence length K with the specified 6, and T'. Intuitively, it is the mini-
mum number of consecutive supportive observations required to accept #; for the given
6o and T'. Then the tolerance interval [¢, u], as well as a count variable, is initialized to
0. The count variable records the number of consecutive supportive observations. Next,
we sample the stochastic parameters x according to the distribution F'(x) and simu-
late the system to obtain the response ¢. The observation supports 7, if (7) holds. In
this case, the variable count is incremented, terminating when it reaches K. Otherwise,
count is reset to 0, and ¢ and u are updated to satisfy (7).

One may have noticed that Algorithm 1 did not employ the comparison between
the Bayes factor B and its threshold 7. Instead, it derives a sequence length K and lets
a count variable grows towards K. In fact, there is a natural correspondence between
count and B, as well as K and T (see Zhang et al. [25] for details). An important
observation is that count is only incremented when we find a supportive observation.
Therefore, for fixed 6y and 7', that count reaches K is equivalent to that the Bayes factor
B grows to at least 7.

Theorem 1. Algorithm I terminates and when it terminates, we have B > T.



Verification Algorithm 1 yields a tolerance interval [¢, ] and a model
g(u) = [ge(u) + £, gu(a) + ul ®)

that is 0 statistically sound at the fixed design parameters. It means that for a fixed u,
we have a high level of confidence to claim that the response ¢ has a probability of at
least 0 to lie in the interval (8). It has been shown that the level of confidence is linked
to the Bayes factor threshold 7" such that the type /I error is bounded by ﬁ [10,
27]. Hence with large 6y and T, the interval (8) is almost an over-approximation of
the response ¢ under stochastic parameter variations. To verify whether specifications
¢ € [a,b] hold at some u, we simply check whether (8) is contained in [a, ]. If yes,
we conclude that with a confidence level of at least 1 — ﬁ, the system is safe with a
probability of at least 6, at u. Otherwise, we continue to search for new design point.

5 Optimization

To find a new design point, we introduce an iterative procedure. At the i*" iteration, we

try to find a candidate u,(é)w that is safe with respect to the model in (8). We may fail if

either the specifications are too stringent or our approximation is too excessive. In these
cases, we stop and report that for u € U and x € X, we cannot find a design point

which satisfies all the specifications. Suppose uffe)w is found. Since (8) is not guaranteed

to be statistically sound at u,(fe)w, we apply generalization so that (8) becomes statistically

sound at uS,QV, and check whether the system is safe there. If yes, u,(fgv is the final design
point. Otherwise, we try again with the updated model in (8). After the i*" iteration,
uf,?w is included in the set of points at which (8) is statistically sound.

It is easy to pick up a candidate point from (8) that satisfies the specifications. How-
ever, an arbitrary choice can easily lead to a failed attempt in verification. As a conse-
quence, more iterations and thus more simulations would be required. Therefore, the
candidate should be the one that is most likely to satisfy the specifications. Our solution
is to search for the point that has the largest margin from violating the specifications
using the following linear program:

maGXU(b = Gu(Wiew) — 1) + (ge(Wpew) + £ — @)

subject to )
a S g[(unew) +£ S gu(unew) +u S b.

In the case of multiple specifications, (9) consists of multiple constraints, each corre-
sponding to a specification. Also, the objective function of becomes the sum of the
margin for each specification. Clearly, (9) is infeasible if and only if we cannot find any
candidate.

6 Experimental Evaluation

We present four applications: (1) a motor with a rigid arm controlled by a PI controller,
(2) aring oscillator circuit modeled at the transistor-level, (3) an insulin pump that con-
trols the blood glucose level of diabetic patients, and (4) an aircraft flight control model.
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Fig.4: A motor with a rigid arm controlled by a PI controller is shown in (a). Figure
(b), (c) and (d) shows the histograms of ¢1, ¢5 and ¢s3.

All models have stochastic parameter variations. We use our approach to search for a
design point that maximizes the empirical probability of satisfying the given specifi-
cations. The experiments are performed on a AMD Athlon II quad-core 2.8 GHz CPU
with 4 G RAM. The proposed approach is implemented in Python-2.7.

6.1 Motor with PI Controller

Figure 4a shows a DC motor with an attached rigid arm controller by a PI controller.
We control the input voltage v of the motor which determines the angle « of the rigid
arm. The goal is to set « to a reference v, thus holding the arm at a constant angle.
The design parameters are the proportional gain K, and the integral gain K;. There are
5 stochastic parameters, such as the resistance and the inductance in the motor model.

The step response a(t) should satisfy the following specifications. Over ¢ € [0, 2],
a(t) < 1.5. The specification is ¢; > 0 where

(1) ¢ = min(1.5 — a(t)), t €[0,2];

Over t € [2,T] where T is the total simulation time, a(t) € [0.8,1.2]. The specifica-
tions are ¢ > 0 and ¢3 > 0 where

(2) ¢2 = min(a(t) — 0.8), (3) ¢3 =min(1.2 —a(?)), t € [2,T].

The nominal design point w,,, is K, = —2.5 and K; = —1. Our goal is to verify
whether the specifications hold at u,,, and if not, find a new design point u,,,, from
K, € [-3,—2] and K; € [-1.2,—0.8] to satisfy the specifications.



Table 1: Results for the motor example (fy = 0.95 and T" = 100).

Spec MC-1000 Proposed Approach

P om [ Woew | Twom | Simz| Tr |Tters|Simw | Tw 1T0] Inew

1 [93.1%|100%|[—0.08, 0.19] 307 [0.06,0.22]
2 [95.8%|100%|[~0.13,0.17] 247 [0.06,0.22]
3 195.5%)|100%|[—0.13,0.16]| 200 |19 1| 308 [1485/ 18115 06 0.17]
all 92.1%|100% - - -

The system is designed in Matlab®with Simulink®. Table 1 shows the results of
this example. The column “MC-1000" shows the yields of each specification at u,,,
and u,,,, estimated through 1000 Monte-Carlo simulations. Simp and T are the num-
ber of simulations and time spent, respectively, for quantile regression; Simyy, Ty rep-
resent the same for generalization and Simo, T for optimization. “Iters” is the number
of iterations of our search. Finally, I,,,,, and I, are the statistically sound performance
bounds at u,,,,, and u,,,,.

First, notice that the the system fails to satisfy all the three specifications at u,,,,
as shown by the Monte-Carlo simulations. The proposed approach makes the same
conclusion by showing that the performance bounds I,,,, are not contained in the spec-
ifications. The bounds are derived from a relational model g that is statistically sound
at W,,,;. Next, we pick up a new design point u,,, from the model g according to the
linear program (9), and check whether it satisfies the specifications. In fact it does, as
shown by the performance bounds I,,,,. Having yields of 100%, the conclusion is also
confirmed by the Monte-Carlo simulations at u,,,,. The new design parameters for this
application is K, = —2 and K; = —0.8. To obtain this result, 500 simulations are spent
in quantile regression and 398 simulations in generalization.?

Figure 4b, 4c and 4d present the histograms of the responses ¢1, @2 and ¢3 at u,,,
and u,,,,. We choose 0y = 0.95 and 7" = 100 in generalization. This means that the
probability that the intervals under I,,,,, and I, are the true performance bounds is at
least 95%. Given that, we have at least 100% — %H x 100% ~ 99% confidence that
u,,., satisfies the specifications. Yield estimation from the Monte-Carlo simulations is
a strong support to our conclusion.

6.2 Ring Oscillator

Figure 5 shows a ring oscillator. It is is designed to oscillate at a frequency f of 2.1 GHz
with a power consumption w of 5 mW. However, a real circuit suffers from process vari-
ations, such as the doping concentration and oxide layer thickness, resulting in deviation
from the ideal performance. The performance specifications are

(1) f € [2.0,2.2]GHz, (2) w < 5.5mW.

We choose 12 design parameters. They are the channel widths and lengths of each
transistor. Also, 54 stochastic parameters are considered, arising from process variations
in the transistor parameters. The goal is to verify whether the two specifications can be

2 Simulation data are reusable with respect to different specifications.



Table 2: Results for the 3-stage ring oscillator (g = 0.95 and 7' = 100).

Spec MC-1000 Proposed Approach
P Wnom | Unew Lom Simgr| Tr |Iters|Simw | Tw |To Liew
1 [95.8%98.9%|(2.05,2.23]GHz 309 [2.04,2.19]GHz

2 160.1%| 100% | [5.18,5.85|mW | 500 [307s| 1 | 332 |233s|1s|[4.75,5.41]mW
all {60.0%(98.9% - - -

300 ! 300
200 200
200 200
100
100 100 100
2 21 22 23 2 2.1 2.2 52 54 56 58 47 49 51 53 55
(a) f at wuom (left) and w,, (right). (b) w at W, (left) and w,ey (right).

Fig. 6: Histograms of f (left, GHz) and w (right, mW) at in the ring oscillator.

satisfied under the nominal design point and if not, choose new values for the width and
length of each transistor.
We use LTSpice® [1], a freely available

SPICE simulator, to simulate the circuit. The re- M2 a M6
sults are shown in Table 2. The columns have the ﬁ ﬁ Vout

same meanings as in Table 1. The circuit at the
nominal widths and lengths has a poor perfor-
mance in the power consumption w, which has
a yield of only 60.1%. The upper bound of I,
violates the specification (2) excessively. Our ap-
proach finds a new design point that has perfor-
mance bounds that satisfies both specifications, which is confirmed by the Monte-Carlo
simulations. The yield is boosted from 60% to almost 100%. Figure 6 shows the his-
tograms of the two responses, f and w, at W, and u,,,,. Obviously, we have a signifi-
cant performance improvement.

M5

Fig.5: A 3-stage ring oscillator.

6.3 Insulin Pump

We study a previously published model of an insulin pump used by type-1 diabetic
patients [18,5]. Our model incorporates a physiological model of the human insulin-
glucose response from Dalla-Man et al. [5], models of sensor errors and a typical pump
usage by type-1 diabetic patients [18]. A type-1 diabetic patient uses their insulin pump
with at least three “design parameters” that include (a) the basal rate (basal) that repre-
sents the rate at which background insulin is delivered, (b) the insulin-to-carbohydrates
ratio (icRatio) that controls how much bolus insulin is to be administered to the patient
for each gram of carbohydrate to be consumed, and (c) a correction factor (COr) to cor-
rect blood glucose levels that are higher than normal. Clinically, these values are tuned
manually by a physician upon close observation of the patient’s blood glucose levels,
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(a) A model of an insulin pump. (b) Gmin at Wpom (left) and W, (right).

Fig. 7: A model of an insulin pump (left) and the histograms of min(g(t)), the minimum
glucose level during simulation (right).

meal and sleep patterns over time. Our study attempts to automate this choice assuming
that personalized models are available for patients.

The stochastic parameters include the time of the meal, the amount of carbohy-
drates in each meal, sensor noise and the discrepancies between the planned and actual
meals [18]. Overall, the model has 3 design parameters and 10 stochastic parameters.
We used virtual patient parameters published for 30 patients by Dalla Man et al. [5]. Our
study here focuses on a single model patient. The total simulation time is 1400 min.

There are many important correctness properties. Ideally, the human blood glu-
cose level should be between 70 mg/dl and 180 mg/dl. A level lower than 70 mg/dl
is called hypoglycemia, and a level higher than 180 mg/dl is called hyperglycemia. In
practice, hypoglycemia is usually much more critical than hyperglycemia since it can
cause seizures, unconsciousness and even death. Therefore, our goal is to control the
blood glucose level higher than 70 mg/dl at all time time and reduce the time that the
patient stays in hyperglycemia as much as possible.

The above description yields the following specifications. The blood glucose level
g(t) should be between 70 mg/dl and 240 mg/dl over ¢ € [0,T] where T is the total
simulation time.

(1) min(g(t)) > 70mg/dl, (2) max(g(t)) < 240 mg/dl;

The maximum period pj, for hyperglycemia is at most 240 min, and the total time in
hyperglycemia is at most 20% of the total simulation time.

(3) pr < 240min, (4) rp, < 20%.

Table 3 shows the results of applying our approach to the data for model that pertains
to a single patient, whose insulin pump is tuned to a nominal design point basal = 0.3,
icRatio = 0.06 and cor = 0.06. Observe that the pump works well except that it
has a 3.8% chance of dangerous hypoglycemia. Our approach lowers this chance to
0.4%, a significant lowering of a risk. Another observation comes from the number
of iterations. Unlike the other examples, our approach takes 3 iterations to find a new
design point. It indicates that the system has a relatively small margin from violating the
specifications, as shown by I,,.,,. The new design point basal = 0.225, icRatio = 0.080
and cor = 0.049. Histograms of min(g(t)) at W, and u,,,, are shown in Figure 7b.



Table 3: Results for the insulin pump example (8yp = 0.95 and 7" = 100). The units of
Lom and I,,,,, for specification (1) and (2) are mg/dl.

Spec MC-1000 Proposed Approach
Woom | Wnew Loom Simg| Tr |Iters|Simw | Tw |To Lew
1 196.2%99.6%| [68.12,95.28] 567 [70.0,102.1]
2 |100% |100% | [186.6,219.3] 549 [189.2,227.0]
3 |100% | 100% |[41.44,209.8]min| 500 [624s| 3 | 423 |701s|4s |[48.6,213.3]min
4 1100% | 100% | [6.0%,18.8%] 420 [6.2%, 20.0%]
all |96.2%99.6% - -

Wind Gust g (1o, o, Bo)
N\ L Aircraft Model (1, 5) f
\+ ") Deflection Generator
(u, w, q,v,p,T)
State Feedback

Integral Action

Fig. 8: An aircraft flight control model.

6.4 Aircraft Flight Control System

Figure 8 shows a model of the flight control system in an aircraft. This model is avail-
able in Matlab® R2014a Robust Control Toolbox . The aircraft is modeled as a 6th-
order state-space system. The state variables include the velocity on X, y and z-body
axis (u, v, w), the pitch rate g, the roll rate p and the yaw rate r. These variables to-
gether with three responses, the flight-path bank angle u, the angle of attack « and the
sideslip angle (3, are available to the controller. The controller, which consists of a state
feedback control and an integral control, is designed to generate the deflections of the
elevators, the ailerons and the rudder so that a good tracking performance is maintained
on the responses with respect to the reference 119, g and Sy.

The controller has two gain matrices, K, and K;, that maps the controller inputs to
deflections. K, is a 3 x 6 state-feedback matrix, and K; is a 3 X 3 matrix for integrating
the three tracking errors. In all, we have 27 design parameters. The stochastic param-
eters arise from uncertainties in the state matrix and the input matrices along with the
stochastic wind disturbance. In all, we have 73 stochastic parameters. The following
specifications concern the step response of p(t), «(t) and 3(t). First, the settling time
of each trajectory should be smaller than 7.5s.

(1)t, <75s, (2)t, <7.5s, (3)tg <T7.5s;
Also, the overshoot should be less than 20% of the steady state value.
4)r, < 20%, (5) ro <20%, (6) rg <20%.

Table 4 presents the results of applying our approach. Observe that the specification
(2) and (5) are not satisfies at u,,,, confirmed by both the Monte-Carlo simulations and



Table 4: Results for the aircraft flight control example (6y = 0.95 and 7" = 100).

Spec MC-1000 Proposed Approach
Woom | Wnew Liom Simp| Tr |lIters|Simw | Tw |To Lhew

1 [100% |100% | [1.40,6.47]s 326 [1.98,6.42]s
2 |76.7%|99.9%| [5.00,7.79]s 332 [5.86,7.48]s
3 |100% | 100% | [3.82,6.23]s 479 [3.80,6.34]s
4 1100% | 100% |[3.8%,9.5%]| 500 [307s| 1 | 399 |341s|2s| [0,11.7%]
5 |82.5%|99.5%| [0,26%] 402 [0,19.5%]
6 |100% |100% |[5.3%,9.4%)] 507 [7.7%,12.7%)]
all [74.1%(99.5% - - -

400 600 200 300
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100 I ‘
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(a) ta at Wuon (left) and Wy, (right). (b) ro at Wyom (left) and e, (right).

Fig.9: Histograms of ¢, (left, in seconds) and r, (right, as percentage) in the aircraft
flight control model.

the performance bounds I,,,,,. We use 500 simulations in quantile regression and 507
in generalization, and find a new design point in one iteration. The new point leads to
better performance on ¢, and 7, and thus a boost of the overall yield from 74.1% to
99.5%. Figure 9 shows the histograms of ¢, and r, at u,,, and ., which clearly
shows the performance improvement.

Now let us compare I,,, with I,.,,. Note that except for ¢, and r,, in specification
(2) and (5), all the other responses have larger performance bounds at u,,, but still
satisfy the specifications. It indicates that the proposed approach trades off the perfor-
mance of the other responses so that (2) and (5) can be satisfied.

7 Conclusion

In this paper, we have introduced a statistically sound model inference approach for the
verification and optimization of complex systems. First, using quantile regression, a re-
lational model is computed to approximate the marginalized response function. Then a
generalization procedure is employed to relax the model so that it becomes statistically
sound at the nominal design point. The resulting model is used to verify the specifica-
tions. If fail, the model is then used to search for a new design point. We show several
interesting examples that through the application of our approach, the yield of these
systems are improved significantly.
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