
Sparse Statistical Model Inference for Analog Circuits
under Process Variations

Yan Zhang, Sriram Sankaranarayanan and Fabio Somenzi
ECEE, University of Colorado, Boulder, CO, USA

{yan.zhang, srirams, fabio}@colorado.edu

Abstract— In this paper, we address the problem of per-

formance modeling for transistor-level circuits under process

variations. A sparse regression technique is introduced to

characterize the relationship between the process parameters

and the output responses. This approach relies on repeated

simulations to find polynomial approximations of response

surfaces. It employs a heuristic to construct sparse polyno-

mial expansions and a stepwise regression algorithm based on

LASSO to find low degree polynomial approximations. The

proposed technique is able to handle many tens of process

parameters with a small number of simulations when com-

pared to an earlier approach using ordinary least squares. We

present our approach in the context of statistical model infer-

ence (SMI), a recently proposed statistical verification frame-

work for transistor-level circuits. Our experimental evaluation

compares percentage yields predicted by our approach with

Monte-Carlo simulations and SMI using ordinary least squares

on benchmarks with up to 30 process parameters. The sparse-

SMI approach is shown to require significantly fewer simula-

tions, achieving orders of magnitude improvement in the run

times with small differences in the resulting yield estimates.

I. Introduction

Nano-CMOS technologies are widely used in modern
VLSI design. While the move to nano-regime brings ben-
efits to designers, many challenges emerge [1]. Among
these challenges, one of the most critical issues is to design
robust circuits under increasingly large process variations.

Statistical performance modeling is a common ap-
proach to understanding the effects of process variations.
It has been studied extensively in the past to characterize
the performance of circuits in terms of process param-
eters [2–6]. However, these techniques can only address
problems in older technologies, wherein process variations
were not a dominant issue and could be modeled by a few
“inter-die” parameters using linear models. In nanoscale
era, the process parameters have to be treated in a per-
transistor fashion. For instance, the gate oxide thickness
has to be considered separately for each transistor [1].
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Furthermore, the variations are becoming larger and re-
quire nonlinear modeling techniques [7]. These challenges
call for an approach that is able to efficiently construct
nonlinear approximations in the face of many tens or hun-
dreds of process parameters.

Due to the design challenges in nano-regime, perfor-
mance modeling has received renewed attention. Li et
al. [8] proposed a PROBE approach based on reduced
rank regression. Their technique enables the use of
quadratic models for nonlinear response surfaces model-
ing. A similar idea was proposed by Feng et al. [9] to
handle the problem of interconnect modeling. One draw-
back of these two techniques is that they are limited to
quadratic models, and thus cannot characterize higher-
order response surfaces accurately. Singhee et al. [10]
proposed a nonlinear regression approach based on latent
variable regression and neural networks. For many prac-
tical circuits, they showed promising results. However,
due to the complicated structure of neural networks, the
resulting models can be prone to over-fitting. Further-
more, neural network models are hard to interpret. Li [11]
used matching pursuit to find the “best” projection of
the response surface onto an orthogonal polynomial ba-
sis. Although in principle, their technique can handle
higher-order response surfaces, the experimental results
are limited to quadratic models.

In this paper, we present a sparse regression technique
to discover a polynomial approximation of an output re-
sponse as a function of input process parameters. Such
an approximation is used inside a statistical framework
to construct a mathematical model that explains how the
process variations affect the output response. Our ap-
proach collects data by sampling process parameters and
simulating the circuit to find the output responses. Us-
ing the simulation data, we construct a low-degree and
sparse polynomial in a stepwise fashion. The proposed
technique consists of a heuristic that discovers relevant
terms in the polynomial approximation, and a sparse re-
gression algorithm based on LASSO to construct the ac-
tual approximation [12]. The heuristic efficiently discards
terms that contribute the least to the output response.
Then the regression algorithm computes the coefficients
for the remaining terms under L1 regularization. This
technique is used inside statistical model inference (SMI ),
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Fig. 1. A buck converter with L and C as process parameters.

a recently proposed statistical verification framework for
transistor-level circuits [13]. SMI addresses the problem
of estimating a safe region of the parameter space that
guarantees a given design specification of a circuit, and
examines specifications of the form φ(p) ∈ [�, u] where φ
is a performance metric, p a vector of process parameters,
and � and u are real-valued performance limit. We show
that the proposed algorithm improves the scalability of
SMI to handle circuits with many process parameters.
The rest of this paper is organized as follows. First,

we provide an overview of SMI with a running example.
Then we introduce the sparse regression algorithm in Sec-
tion III. Finally, we demonstrate our technique by show-
ing the verification of a ring oscillator and an operational
amplifier under a large number of process variations.

II. Overview of SMI

In this section, we review the statistical verification
framework SMI with a running example [13]. Consider a
circuit with process parameters p from a parameter space
P with a joint distribution F . Let φ = f(p) be a output
response of interest. SMI handles design specifications
of the form: φ ∈ [�, u], where � and u are the tolerance
limits of φ, and shows in the statistical sense whether a
specification is satisfied under process variations.

Example II.1 (Buck Converter). Figure 1 shows a sim-
ple buck converter. Assume that L and C are indepen-
dent, uniform random variables: 1 L ∈ [1.8, 2.2]μH and
C ∈ [9, 11]μF. We verify that Δv ≤ 30mV, where Δv is
the ripple amplitude of the output voltage. For simplicity,
the transistors are treated as ideal switches. Then we have

Δv = f(L,C) =
Vg − V
16LC

DT 2s , (1)

where V is the DC component of the output voltage, D
is the duty cycle and Ts is the time period of the control
voltage. Let V = 3V, D = 0.25 and Ts = 2μs. From (1),
we derive the condition LC ≥ 18.75 that guarantees the
satisfaction of the specification.

In practice, φ is usually represented by a complicated
function f with a unknown closed from. To verify a given

1Our approach can handle a larger variety of distributions that
one may encounter in practice.

Fig. 2. Verification result of the buck converter. The region below
the solid curve is shown to be unsafe. The shaded region is the

statistically unsafe subset predicted by SMI.

specification, SMI relies on repeated simulations to find
a statistical over-approximation of f , which consists of a
polynomial q and a tolerance interval I such that

Pr (φ ∈ q(p)⊕ I) ≥ θ , p ∈ P , (2)

where ⊕ denotes the Minkowski sum and θ is a given prob-
ability. This means that the pair (q, I) over-approximates
φ for at least θ portion of the parameter space P. Such an
approximation can be used to derive a statistically safe
subset of P for the specification.
To obtain a statistical over-approximation of φ, SMI

works in two phases: 1) a regression phase that finds a
polynomial q to approximate φ, and 2) a bloating phase
that derives a tolerance interval I. In the first phase, we
construct a polynomial approximation q. A simple ap-
proach based on ordinary least squares (OLS) is used in
Zhang et al. [13], which does not scale well to circuits
with many parameters. Therefore, a novel algorithm is
presented in Section III to improve SMI by using sparse
regression techniques. The bloating phase remains unal-
tered and is briefly presented below.

Bloating. With an approximation q, we consider the
problem of deriving a tolerance interval I for a given prob-
ability θ such that (2) holds. In SMI, it is formulated as a
hypothesis testing problem that involves two hypotheses:

H0 : Pr(φ ∈ q ⊕ I) ≥ θ and H1 : Pr(φ ∈ q ⊕ I) < θ .
We wish to find an interval I so that we can be convinced
of H0 as opposed to H1. In SMI, the interval I is derived
using an algorithm based on Bayesian hypothesis testing.
Starting with a zero interval I = [0, 0], SMI repeatedly
simulates the circuit with randomly sampled parameters
and adjusts the interval I until for some K > 0 consec-
utive simulations, φ ∈ q ⊕ I. The threshold K is chosen
so that when it is achieved, the observed data provide
strong statistical evidence to accept H0, indicating that
the interval I is sufficiently large. The rationale of SMI
including the choice of K is discussed by Zhang et al. [13].
The two steps, regression and bloating, construct a

model (q, I). Intuitively, such a model convinces a sta-
tistical model checker [14, 15] that (2) holds with a given
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θ. With this model, identifying the safety of a point p re-
duces to checking whether q(p)⊕ I ⊆ [�, u]. Furthermore,
S, the safe subset of the parameter space, can be com-
puted conservatively by nonlinear solvers, such as Z3 [16]
and iSAT [17], or statistically by Monte-Carlo sampling.

Example II.2 (Verifying Buck Converter). We use N =
20 simulations to construct a cubic polynomial q3(L,C).
Using OLS, we obtain the following polynomial 2.

(
0.031− 0.002L− 0.009C − 0.002L2 − 0.005C2 + 0.003LC+

0.004L2C − 0.002LC2 − 0.000L3 + 0.010C3

)
. (3)

As a comparison, using the proposed algorithm (as de-
scribed below), we obtain a sparser approximation

0.028− 0.001L− 0.001C . (4)

Clearly, (4) provides a more compact representation
than (3). Such a polynomial is bloated with θ = 0.95,
leading to a tolerance interval I = [−3, 4]mV. The model
(q3, I) is used to check the specification, Δv ≤ 30mV. The
result is shown in Figure 2. The solid curve plots of the
equation LC = 18.75 so that the region below is known to
be unsafe. The shaded region is the unsafe subset predicted
by SMI. It can be shown that in this example, bloating (4)
yields identical verification result as bloating (3).

III. A Sparse Regression Algorithm

In this section, we introduce a sparse regression algo-
rithm. Let p be the process parameters and φ be a re-
sponse of a circuit. Let w(p) be the probability density
function of p. Our goal is to find a polynomial to ap-
proximate the response surface using a limited number of
samples. The main challenge is that the number of pa-
rameters is often large, while the number of simulations
is greatly limited by the available computational power.
This means that the underlying linear system is under-
determined. Using conventional approaches, such as least
squares fitting, can easily lead to over-fitting.
To solve this problem, we propose an approach shown

in Algorithm 1, which uses LASSO [12], a L1 regulariza-
tion technique, to solve the under-determined system. Let
φ = f(p) where f is a square-integrable function with an
unknown closed form. Given a set of n samples, X is an
n × k matrix where k is the number of parameters, and
Y consists of n observations of the property φ. The algo-
rithm operates in an iterative fashion, wherein the approx-
imation is constructed using a sequence of latent variables.
The j-th iteration attempts to fit a polynomial of degree
j to approximate the residue Rj−1 from the previous it-
eration in terms of X. Initially R0 = Y. At each step,
we discover a latent variable zj = qj(p) that provides an
approximation qj of Rj−1, and Rj = Rj−1 − qj(p). The
process is stopped when the degree limit D is reached or
when |Rj | is below a threshold. As a final step, the overall

2The parameter values for L and C are normalized to [−1, 1].

Data: Matrices X,Y, Degree Limit D, Initial Degree d
Result: Approximation q(p)
latent vars := empty set ;
R := Y ;
while true do

S′
d := choose a sparse basis(d,X,R) ;

z,R := compute latent variables by lasso(S′
d,X,R) ;

latent vars := latent vars ∪ z ;
d := d + 1 ;
if |R| < ε or d == D then

q(p) := do least squares fitting(latent vars,X,Y) ;
end

end
Algorithm 1: Sparse Regression Algorithm.

model is constructed as a polynomial that approximates
Y in terms of the latent variables z1, . . . , zk. Our ap-
proach finds a hierarchical model that expresses the out-
put response φ as a function of latent variables z1, . . . , zk,
each of which is a polynomial of increasing degree over p.

A. Choosing a Sparse Basis

Polynomial chaos expansion (PCE) provides a mathe-
matical basis for approximating functions of random vari-
ables by a polynomial obtained by a truncated generalized
Fourier series

f(p) ≈
∑
i∈Sd

ciQi(p) ,

where Sd is an index set of terms, ci a generalized Fourier
coefficient, and {Qi | i ∈ Sd} is a set of orthogonal poly-
nomials of degree d [18]. The polynomials Qi are chosen
based on the distribution F of process parameters using
the standard Wiener-Askey scheme. We call each Qi as
a term. Intuitively, if ci is sufficiently small, the corre-
sponding term contributes little to f and can be dropped
without losing much accuracy. The coefficients ci can be
computed from the following equation [18].

ci =
1

γi
〈f,Qi〉 = 1

γi

∫
p∈P

f(p)Qi(p)w(p)dp

where each γi is a normalization constant, 〈, 〉 an inner
product, and w(p) a probability density function.
It can be difficult, if not impossible, to compute ci ex-

actly because (1) f may not have a closed form and (2) p
may consist of a large number of parameters. As a pos-
sible solution, numerical quadrature methods suffer from
their scalibility. They also rely on the ability to sample at
certain points, which is not always realizable in practice.
We use Monte-Carlo methods to estimate ci,

ĉi =
1

γin

n∑
j=1

f(pj)Qi(pj) , (5)

where n is the number of samples and each pj is sam-
pled according to w(p). Note that such an estimation
can at best capture the trend of ci due to finite sample
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size. Using ĉi usually leads to poor approximations of the
response surface. However, the computation of (5) is effi-
cient even with many parameters. Thus in our approach,
we use (5) to construct a filtering stage such that terms
with small ĉi are dropped. In particular, we drop those
terms whose corresponding ĉi are in the lower k-quantile
of the whole set, where k is controlled by the user. The
index set of remaining terms is denoted by S′d.

B. Computing Latent Variables by LASSO

We need to find an approximation consisting of Qi, i ∈
S′d. This is usually solved as a least squares problem

min
ci,i∈S′

d

‖f(p)− g(p)‖22 , g(p) =
∑
i∈S′

d

ciQi(p) . (6)

To avoid over-fitting, we use LASSO to solve the mini-
mization problem in (6). LASSO handles the problem by
adding an extra constraint on the coefficients ci,

min
ci,i∈S′

d

‖f(p)− g(p)‖22 + α
∑
i∈S′

d

|ci| , (7)

where α is a Lagrangian multiplier of the regularization
term

∑
i∈S′

d
|ci|. Intuitively, the extra term forces the

coefficients ci to behave “regularly” so that they cannot
range over many orders of magnitude. Furthermore, due
to the nature of L1-norm minimization, proper choices of
α result in sparse solutions. In general, a larger α leads to
a sparser solution. When α approachs 0, LASSO reduces
to ordinary least squares regression.
To apply LASSO in our algorithm, we construct a n×

|S′d| matrix Xexp that comprises observations mapped to
each expansion term,

Xexp =

⎛
⎜⎜⎜⎝
Qi1(X1) · · · Qim(X1)
Qi1(X2) · · · Qim(X2)

...
. . .

...
Qi1(Xn) · · · Qim(Xn)

⎞
⎟⎟⎟⎠ , ik ∈ S′d , (8)

where Xi is the i-th row of X. Denote the coefficient
vector c = (ci1 , . . . , cim)

T
. We solve the LASSO problem

min
c
‖Rj−1 −Xexpc‖22 + α|c| ,

where Rj−1 is the residue from the previous iteration.
The solution c yields a latent variable

z = ci1Qi1 + · · ·+ cimQim , ij ∈ S′d ,
and the updated residue Rj = Rj−1 −Xexpc.

C. Least Squares Fitting with Latent Variables

The iteration in Algorithm 1 terminates when either
the residue R is smaller than some given ε, or the degree
d reaches the limit D. The resulting model consists of the
computed latent variables, each represented by a polyno-
mial. In practice, since the number of latent variables is
usually small, the fitting can be easily performed.

M2

M1 M3

M4

M5

M6

Vout

Fig. 3. A three-stage ring oscillator.

IV. Experimental Evaluation

In this section, we experimentally evaluate the sparse-
SMI approach proposed in this paper, comparing it with
the original SMI proposed by Zhang et al. [13] and a yield
estimation using Monte-Carlo simulation. Our compari-
son involves two analog circuits: a three-stage ring oscilla-
tor and a two-stage operational amplifier (opamp) over a
range of output response functions (properties) for these
circuits. The sparse-SMI technique presented in this pa-
per is implemented in Python. We use LTSpice [19] as
the circuit simulator. All experiments were performed on
a quad-core 2.8GHz machine running Debian 6.0. Unless
specified, all the times are measured in seconds.
The comparisons between SMI and sparse-SMI are done

through a θ = 0.95 and a threshold K = 89, indicating
that the tolerance intervals covers at least 95% of the
parameter space with a high statistical confidence. We
compare the resulting models by using them to predict
the yield, which is also computed using Monte-Carlo Sim-
ulations for comparison.

A. Ring Oscillator

Figure 3 shows the schematic of a three-stage ring oscil-
lator. The circuit is designed to oscillate at 0.98GHz with
a tolerance within ±50MHz. The oscillation frequency
is affected by various process parameters in the transis-
tors Mi , i = 1, . . . , 6. We select 24 process parameters to
study, including the oxide thickness tox , threshold voltage
under zero bias vt0, channel width w and channel length l
for eachMi. We assume that each variation follow a trun-
cated normal distribution in the range [μ− 3σ, μ+ 3σ]
where μ is the nominal value. The standard deviation
of each variation is summarized in Table I.

TABLE I
Standard deviation of each process parameter. μ is the

nominal value of the corresponding parameter.

tox i vt0i wi li
σ 0.05μ 0.05μ 0.1μ 0.1μ

Experiment results. The experiment results for the
oscillator are presented in Table II. We choose a de-
gree limit of 3 for SMI and sparse-SMI. The results
for 10000 Monte-Carlo simulations are included. The
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Fig. 4. A two-stage operational amplifier.

columns “Yield”, “Var” and “SimTime” under “Monte-
Carlo” show the sampling yield, variance of the sampling
yield and time spent on simulations. Under the columns
“SMI” and “Sparse-SMI”, “#Sims” refers to the number
of simulations performed in the regression and the bloat-
ing phase, respectively. Similarly, “SimTime” shows the
simulation time and “Time” indicates the time spent in
the regression and bloating phases of SMI, excluding the
simulation time. “Safe” reports whether the specification
is satisfied and if not, the predicted yield under the given
variations. “Degree” is the final degree of the approxima-
tion in sparse-SMI.

Table II shows that under the given process variations,
the specification fosc ∈ [0.93, 1.03]MHz is not satisfied.
First, let us compare SMI and sparse-SMI with the Monte-
Carlo method. Since the SMI procedure procedure builds
a statistically sound over-approximation for the underly-
ing response surface, it tends to under-estimate the yield.
It explains why the predicted yields from SMI and sparse-
SMI are lower than the sampling yield from Monte-Carlo
simulations. The results clearly show the advantage of us-
ing sparse-SMI as opposed to SMI. Whereas SMI requires
3200 simulations, sparse-SMI requires roughly 400 simu-
lations in this case to result in almost identical yield esti-
mates. The results reduce simulation time from roughly
1.5 hours for SMI to 12 minutes for sparse-SMI, a 7.5×
reduction. Comparing to Monte-Carlo simulations also
show the benefits of a model building approach rather
than direct yield estimation.

B. Two-stage Operational Amplifier

The schematic of a commonly used two-stage opamp is
shown in Figure 4. The performance of an opamp is char-
acterized by many properties, such as input offset voltage
and slew rate. Usually, each property is measured us-
ing a specific type of simulation and circuit configuration.
For example, input offset voltage is often measured by
arranging the opamp in the unity-gain configuration and
sweeping DC input voltage. In contrast, the measure-
ment of slew rate requires transient simulation. Table III
shows a list of specifications under verification and the
types of simulation for the measurement. For a detailed
description on how to simulate these properties, we refer

TABLE III
A list of opamp specifications under verification.

ID Specification Sim type
1 Input offset voltage ≤ 50mV DC
2 DC voltage gain ≥ 60dB AC
3 Unity-gain bandwidth ≥ 5MHz AC
4 Phase margin ≥ 30◦ AC
5 CMRR ≥ 80dB AC
6 PSRR (+) ≥ 80dB AC
7 Slew rate (+) ≥ 10V/μs Transient

the interested reader to [20] (Chapter 6.6).
We select 4 process parameters, the oxide thickness tox ,

threshold voltage under zero bias vt0, channel width w and
channel length l, for each transistor Mi , i = 1, . . . , 8. It
leads to a total of 32 parameters. We assume the same
variations for each parameter as in Table I.

Experiment results. The experimental results for the
opamp are summarized in Table IV. The first col-
umn, “ID”, indicates the specification under verification.
Again, we include 10000 Monte-Carlo simulations for
comparison. The degree limit for SMI and sparse-SMI
is 3. For sparse-SMI, we use 200 simulations in the re-
gression phase for all the properties.
First, we compare SMI and sparse-SMI with the Monte-

Carlo method. As in the ring oscillator experiment, we
observe that the predicted yield from the two approaches
are similar. For all the properties, sparse-SMI requires
fewer simulations and finishes much faster. Sparse-SMI
reduces the running times from many hours to a few min-
utes, often resulting in 25× or larger speed-ups.
The speed-up in terms of running time and number

of simulations required is much more significant than in
the ring oscillator verification. The regression time in
SMI has become prohibitively large, while that in sparse-
SMI is quite affordable. This demonstrates the scalability
of sparse-SMI to handle problems that are too large for
conventional approaches.
In the “Degree” column, we see that for some proper-

ties, sparse-SMI is able to construct accurate models with
a degree lower than the limit. Correspondingly, for these
properties, the regression times are significantly smaller.
In fact, the major cost in regression lies in the compu-
tation of the generalized Fourier coefficients and LASSO.
The former can be easily parallelized, leading to further
performance improvements.

V. Conclusion

In this paper, we propose a sparse regression algorithm
to address the problem of performance modeling for ana-
log circuits under process variations. The algorithm uses
a limited number of simulations to approximate response
surfaces with many parameters. We have applied this
technique to statistical model inference, a recently pro-
posed statistical verification framework that aims to con-
struct statistical over-approximations of the response sur-
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TABLE II
Verification results for the ring oscillator with 24 process parameters.

Monte-Carlo SMI Sparse-SMI

Yield SimTime #Sims SimTime Time Safe #Sims SimTime Time Degree Safe

51% 4.8h 3000/213 1.5h 391s/17s �, 46% 200/197 693s 15s/4s 3 �, 45%

TABLE IV
Verification results for the opamp with 32 process parameters.

ID
Monte-Carlo SMI Sparse-SMI

Yield SimTime #Sims SimTime Times Safe #Sims SimTime Time Degree Safe

1 61% 1.8h 8500/201 1.6h 4.2h/45s �, 58% 200/193 264s 5s/3s 1 �, 58%
2 65% 1.4h 8500/118 1.3h 4.9h/29s �, 61% 200/180 191s 96s/5s 3 �, 60%
3 100% 1.9h 8500/241 1.7h 5.1h/56s � 200/161 271s 4s/3s 1 �

4 98% 1.9h 8500/197 1.7h 4.4h/47s �, 94% 200/131 229s 101s/4s 3 �, 93%
5 100% 2.2h 8500/194 1.7h 3.9h/51s � 200/281 381s 34s/7s 2 �

6 62% 2.1h 8500/156 1.8h 4.9h/33s �, 55% 200/154 260s 91s/5s 3 �, 54%
7 87% 2.8h 8500/123 2.5h 4.1h/28s �, 85% 200/201 413s 6s/5s 1 �, 84%

face. We show that our sparse regression algorithm can
significantly improve the scalability of SMI to handle cir-
cuits with many process parameters.
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