Uncertainty Propagation using Probabilistic Affine Forms and
Concentration of Measure Inequalities

Olivier Bouissou!, Eric Goubault? Sylvie Putot?,
Aleksandar Chakarov® and Sriram Sankaranarayanan
1. CEA, LIST, Gif-sur-Yvette, France.
2. LIX, Ecole polytechnique, CNRS, Université Paris-Saclay, France
3. University of Colorado, Boulder, USA.

3

January 20, 2016

Abstract

We consider the problem of reasoning about the probability of assertion violations in straight-line,
nonlinear computations involving uncertain quantities modeled as random variables. Such computa-
tions are quite common in many areas such as cyber-physical systems and numerical computation. Our
approach extends probabilistic affine forms, an interval-based calculus for precisely tracking how the dis-
tribution of a given program variable depends on uncertain inputs modeled as noise symbols. We extend
probabilistic affine forms using the precise tracking of dependencies between noise symbols combined with
the expectations and higher order moments of the noise symbols. Next, we show how to prove bounds
on the probabilities that program variables take on specific values by using concentration of measure
inequalities. Thus, we enable a new approach to this problem that explicitly avoids subdividing the
domain of inputs, as is commonly done in the related work. We illustrate the approach in this paper on a
variety of challenging benchmark examples, and thus study its applicability to uncertainty propagation.

1 Introduction

We consider the problem of propagating uncertainty through computation that generates random numbers
with known distributions on-the-fly, and computes a variety of arithmetic operations on these numbers. Such
computations are common in a wide variety of applications including systems biology, robotics, control theory
and randomized algorithms. Reasoning about uncertainties involves answering queries about the probabilities
of assertions over the program variables, expectations of expressions, and more generally, characterizing
the possible probability distributions of program expressions, at the output. Often, the random number
generators draw values from simple distributions such as uniform random, gaussian or exponential. However,
as a result of nonlinear operations, the resulting distributions can be quite complex.

In this work, we restrict our attention to straight line computations involving random variables. In other
words, the programs do not branch on the values of the random variables involved. Nevertheless, such
computations are surprisingly common in many applications arising from controls, robotics and scientific
computation that can generate thousands of random variables. Currently, these applications are beyond many
of the existing approaches for reasoning about probabilistic programs. Our approach combines the framework
of probabilistic affine forms introduced by Bouissou et al. [7] to represent program variables in terms of
interval linear expressions involving uncertain noise symbols, and concentration of measure inequalities in
probability theory [13] to answer queries. This approach has two main advantages: (a) probabilistic affine
forms can be used to rapidly approximate several nonlinear arithmetic operations including trigonometric
operations, and (b) the application of concentration of measure inequalities yields valid probability bounds
without the need to perform expensive subdivisions of the set of support. In fact, in situations involving
more than a few tens of noise symbols, such a subdivision is prohibitively expensive.

The contributions of this paper include (a) we extend probabilistic affine forms with precise tracking of the
bounds on the expectations and higher-order moments of these forms, (b) we propose the use of concentration

of measure inequalities to reason about the probabilities of queries over affine forms and (¢) we demonstrate
our approach on many challenging examples involving nonlinear arithmetic operations. Wherever possible,
we also compare our approach with the previous use of probabilistic affine forms without concentration of
measure inequalities [7]. The experimental evaluation in this paper allows us to draw two main conclusions.
(A) Probabilistic affine forms are seen to be quite efficient even for nonlinear trigonometric and rational
functions over random variables. However, this is at the cost of information lost due to linear approximation
of nonlinear computations. (B) Concentration of measure inequalities can prove bounds on the probabilities
of rare events for large affine forms, quite efficiently. Often, such bounds seem beyond the reach of related
techniques. On the flip side, the bounds may sometimes be too conservative due to the abstraction.

Related work

Many approaches have focused on the problem of reasoning about uncertainties as they propagate through
computation. These include approaches from interval arithmetic, polynomial chaos approximations, symbolic
verification, and statistical approaches.

Interval Arithmetic and Imprecise Probabilities: Imprecise probability representations describe sets
of probability distributions. These are well-suited for describing situations where some values, or events
are known non-deterministically (e.g. values in an interval), whereas others are known probabilistically.
Tools from this domain include P-boxes [17] and Dempster-Shafer structures [33]. These have been used to
propagate both probabilistic and non-deterministic information in numerical simulation for instance, see also
[8, 37, 38, 30, 18, 21]. Arithmetic rules for P-boxes have been studied [39] and implemented in toolboxes
such as DSI, INTLAB, and RiskCalc [3, 31, 16]. Our work builds on probabilistic affine forms proposed by
Bouissou et al., wherein a variety of operators over these forms including meet, join and widening operators
are presented [7, 2].

However, these approaches rely on an explicit, finite representation of probability bounds that requires
us to decompose the joint domain of distributions of these random variables. Such a decomposition rapidly
becomes intractable beyond a few tens of random variables. We partly tackle this issue in our approach
using concentration of measure inequalities, whose application does not require a decomposition.

Polynomial chaos approximations express the output distributions as polynomials over the input ran-
dom variables [10]. However, these approximations also suffer from the curse of dimensionality. Moreover,
polynomial chaos approximations focus on estimating moments, but not necessarily on providing probability
bounds.

Formal Verification Approaches: Prism and related model checking tools have revolutionized the
problem of reasoning about finite state probabilistic programs [25]. This has spurred interest in infinite state
programs involving more complex random variables with distributions such as gaussian and exponential.
Related approaches include probabilistic symbolic executions that extend traditional symbolic execu-
tion over probabilistic programs and probabilistic abstract interpretation. Probabilistic symbolic execution

has been explored for analyzing complex programs computing over random variables [19, 32, 4]. These
approaches rely on expensive volume approximation techniques either off the shelf [12], or using domain
decomposition [32]. Barring a few exceptions [4], they are restricted to programs with linear assignments

and conditionals. However, recent work by Chistikov et al. has demonstrated a randomized approximation
to volume estimation that holds the promise of scaling to larger systems involving thousands of random
variables [10]. However, that approach is currently restricted to linear arithmetic SMT formulas. The
ProbReach tool by Shmarov et al. also provides precise probability bounds for nonlinear continuous-time
systems, building on top of the dReach tool [35]. While capable of precise reasoning for complex nonlinear
systems, it relies on domain decomposition. In particular, it is currently restricted to systems with uncer-
tainties in initial parameters as opposed to stochastic systems that are driven by noisy inputs. Similar ideas
using Taylor models have been investigated by Enszer et al. [15]. Finally, the work of Abate et al. derives
discrete Markov chain abstractions to compute probability of reaching unsafe states in general stochastic
Markov processes [1]. The discretization also involves a subdivision of the state space of these processes
with a finer subdivision providing better results. In contrast, our approach does not subdivide the state or
random variables. However, our approach depends intimately on obtaining good bounds for expectations
and higher-order moments for noise symbols.

1 | angles = [10, 60, 110, 160, 140, ... 936 -

2 100, 60, 20, 10, 0]

3 | x := TruncGaussian(0,0.05,-0.5,0.5) 5351

4 |y := TruncGaussian(0, 0.1,-0.5,0.5)

5 | for reps in range(0,100):

6 | #iterate through angles 534 -

7 for theta in angles:

8 # Distance travelled variation

9 d = Uniform(0.98,1.02) 533

10 # Steering angle variation

11 t = deg2rad(theta) * (1 + ... 5321

12 TruncGaussian(0,0.01,-0.05,0.05))

13 # Move distance d with angle t

14 x =x +d * cos(t) 531+

15 y =y +d* sin(t)

16 | #Probability that we went too far? 530 ‘) ‘ ‘ ‘ ‘
17 | assert(x >= 272) 266 27 268 269 210 27 2

Figure 1: Left: A probabilistic program capturing the final position of 2D robotic end effector. Right:
Scatter plot showing the final (z,y) values.

Abstract domains for probabilistic programs have been investigated by Monniaux [29] and Cousot and
Monereau [11]. Whereas our approach focuses on finite computations, abstract interpretation typically
excels in dealing with unbounded length computations wherein approximations such as join (see also [2])
and widening provide the ability to generalize. Previous work by Chakarov et al. also uses concentration of
measure inequalities in this context to handle loops in probabilistic programs [9].

Statistical Approaches: Finally, statistical approaches use hypothesis testing to answer queries on uncer-
tainties [41, 24]. The main advantage lies in the ability to handle quite complex systems through simulations.
However, the disadvantages often involve rare events, wherein the number of simulations required to gain
a given degree of statistical confidence is simply prohibitive. In such situations, techniques like importance
sampling have been applied to minimize the number of simulations [23]. However, statistical approaches
provide guarantees that are fundamentally different from ours. Also, with very few exceptions [26], they do
not attempt to represent the output distribution but simply answer queries by examining the evidence from
simulations. As such, very little work has been undertaken to relate the two types of guarantees. A related
approach by Bernholt et al. [5], introduces an explicit uncertainty data type to reason about uncertainty
using Bayesian hypothesis testing. Therein, the main idea is to use Bayes networks to represent the influence
of random variables over program variables and allow hypothesis testing techniques to enable programmers
to deal with this uncertainty in making decisions.

2 Motivating Example

Figure 1 shows an example probabilistic program that models the (z,y) position of a simple 2D robotic
end effector that starts close to the origin and whose series of motions is specified by the list angles. The
initial position is uncertain with a truncated normal distribution centered at the origin and with given
variance as shown in Lines 3, 4. At each iteration, the effector moves from its current position (z,y) to
x+djcos(b;),y+d; sin(0;), wherein d; is distributed as a uniform random number in the interval [0.95,1.05]
(Line 9, modeling the distance 1.0 with a 5% uniform error). Likewise, 6; is given by multiplying angles(i)
with a truncated Gaussian random variable centered around 1 with variance 0.01 in the interval [0.95,1.05]
(Line 12). The position update is shown in lines 14 and 15. We are interested in the probability that an
assertion violation is triggered in line 17.

A scatter plot (Fig. 1) of the values of (z,y) at the end of the computation are shown. As noted, 10°
simulations do not produce any violations of the property x > 272. In fact, the largest value of = seen in our
simulations is around 271. Therefore, we may rightfully conclude that it is “quite rare” to reach x > 272. On
the other hand, using nondeterministic semantics for the random choices concludes a potentially reachable
range of z € [210.5,324.3]. We therefore, seek to know bounds on the probability that the assertion is
satisfied.

Affine Forms At Output: Our approach uses symbolic execution to track the value of x at the output

as a function of random variables called noise symbols. The affine form for z is (partially) shown below:

[268.78, 268.82] + [1, 1] * yg -+ [0.984, 0.985] * yo + [0.030,0.031] * y3 + [—1, —1] * y4 + [0.030, 0.031] * y5
T +[—1, —1] * yg + [0.49,0.51] * yg + [0.90,0.91] * y1g + [—1, —1] * y11 + [0.90,0.91] * y19+

[0.03,0.031] * yggg2 + [—1, —1] * ygg93 + [1, 1] * yeg96 + [—1, —1] *x ygggs + [—1, —1] * yeg99

Here, each y; is a noise symbol with associated information concerning it’s range, dependencies with other
noise symbol, expectations and higher order moments (e.g., the second moment). For instance, yo corresponds
to the truncated Gaussian random variable in line 3. Using this affine form, we conclude at the end of
computation that the value of x has an expectation in the range [265.9,268.9] and variance in the range
[0.17,0.23]. This matches with the empirical evidence gathered from 10° simulations. The time required for
the affine form was ~ 15 seconds and comparable to 10% simulations in Matlab (~ 20 seconds).

Reasoning with Affine Forms: Finally, we utilize a concentration of measure inequality to obtain the
guarantee P(z > 272) < 6.2 x 1077 [13]. We note that such bounds on rare events are often valuable, and
hard to establish.

3 Probabilistic Affine Forms

In this section, we introduce probabilistic affine forms involving random variables known as noise symbols,
and discuss the approximation of straight line computations using these affine forms.

3.1 Random Variables, Expectations, Moments and Independence

Let R represent the real numbers and R = RU {oc, —0o}. Univariate random variables over reals are defined
by a cumulative density function (CDF) F : R + [0,1], wherein F(—oc) = 0, F(00) = 1 and F is a non-
decreasing, right continuous function with left limits. The value of F'(t) represents the probability P(X < t)
for any t € R. The CDF naturally extends to multivariate random variables as well [14].

The expectation of a function g(X) for random variable X, denoted by E(g(X)) is defined as the in-
tegral: E(g(X)) : [, g(Z)dF(Z). Here D, the domain of integration, ranges over the set of support for
the random variable X. The expectation exists if the integral is well-defined and yields a finite value.
An important property of expectations is their linearity. Whenever the expectations exist, and are fi-
nite, we have]E(Zf=1 a;g; (%)) = Zle a;E(g; (%)), for constants ay,...,a, and functions gi,...,gg. Like-
wise, the k** moment for £ > 1 for a random variable X is defined as IE(X*). Its variance is defined as
VAR(X) : E((X —E(X))3?).

A pair of random variables (X7, X5) are independent if and only if their CDF F(x1,x2) can be decom-
posed as F(x1,z2) : Fi(x1)Fa(x2). Otherwise, the random variables are called correlated. More generally,
(X1,...,X,) are pairwise independent iff F(x1,...,2,): Fi(z1) - Fo(z,). If X1, X5 are independent then
it follows that E(g(X1)h(X2)) = E(g(X1))E(h(X2)).

We assume that random variables that we encounter in this paper are well-behaved in the following
sense: (a) Each random variable has a bounded set of support. However, we present a simple trick to handle
distributions such as gaussians that have unbounded sets of support. (b) Expectations and higher moments
of the random variables are finite and computable. We recall useful properties of expectations:

Lemma 3.1. Let X be a (univariate) random variable whose set of support is the interval I C R. It follows
that E(X) e I.
Let X1, X5 be two random variables. The following inequality holds:

~JE(XE(XZ) < B(X, X2) < /E(XDE(X3).

The inequality above follows from the Cauchy-Schwarz inequality.

3.2 Environments and Affine Forms

Before introducing affine forms, we first define noise symbols and the data associated with these symbols. Let
¥:(y1,...,yn) represent a set of random variables called noise symbols. Each noise symbol y; is associated

with an interval of support I;, and a vector of moment intervals I(y;) = (IJ(I), . ,Ij(k)), wherein E(y!) € [j(-l).

Note that in addition to storing estimates of E(yf), we may optionally store moments of the form E(y;y;)
for pairs y;,y; € for i # j. This can also extend to higher order moments of the form E(y! ---yk) for
monomials. In this presentation, we restrict ourselves to (marginal) expectations of single random variables
of the form]E(yj), using Lemma 3.1 to conservatively estimate missing moment information.

Finally, our approach produced new noise symbols y; that are functions of other noise symbols y; :
f(Wjis---195,.). While we abstract away the function f, we remember these functional dependencies as a
directed (functional) dependence graph G with vertices V' : {y1,...,yn} and edges E C V x V wherein the
edge (y;,y;) signifies that the random variable y; : f(--- ,y;,---) for some function f. Clearly, if (y;,y;) € E
and (y;,yx) € E we will also require (y;,yx) € E. The edge relation E is thus a transitive relation over .
For simplicity, we also add all self-loops (y;,y;) € E.

Definition 3.1 (Environment). An environment £ : (§,Z, M,G) is a collection of noise symbols 7 :
(y1,---,Yn), the sets of support for each noise symbol Z : (I3, ..., I,), the moment intervals for each noise
symbol M : (I(mq),...,I(my)) and the directed functional dependence graph G.

Based on the functional dependence graph, we define the notion of independence between random vari-
ables.

Definition 3.2 (Probabilistic Dependence). Noise symbols y; and y; are probabilistically dependent random
variables if there exists y; such that (y;,yx) and (y;, yx) belong to the graph G. Otherwise, they represent
independent random variables. R

The probabilistic dependence graph G is an undirected graph where an undirected edge (y;,y;) exists in

G iff there exists y; such that (y;,s), (yj,yk) € Eof G 1.
An affine form is an interval-valued linear expression over noise symbols [7].

Definition 3.3 (Affine Form). An affine form f(¥) is a linear expression f(¥) : ag + Z?:I a;jy;, with real 2
coefficients a;.

Example 3.1 (Environments and Affine Forms). Let us consider an environment £ with the noise symbols
Y1,Y2,Yy3. Here, y; is a random variable over the set of support I; : [—j, j], for j = 1,2, 3, respectively. The
moment vectors containing information up to the 4" moments are provided below:

E(y;) B(y3) E(y;) E(y;)
I(my) : (]0,0], (2,2], [0, 0], [2,2]) + Moments for y
I(ms) : ([0,0.1], [1,1.1], [-0.1,0.1], [0.1,0.2]) < Moments for y,
I(ms) : (-1,0.2], [0.1,1.2], [-0.5,0.5], [1.1,2.3]) ¢ Moments for ys

The graph with dependencies is shown below (without the self-loops):

(— @)

As a result, the variables y1,ys are independent. But y; and y, are dependent. The expression fi :
[—1,2] + [3,3.1]y1 + [1.9,2.3]y2 + [—0.3, —0.1]ys is an affine form over yi,...,ys in the environment €.

Semantics: We briefly sketch the semantics of environments and affine forms.

An environment £ with noise symbols ¢ : (y1,...,ys) corresponds to a set of possible random vectors
Y : (Y1,...,Y,) that conform to the following constraints: (a) (Yi,...,Y,) must range over the set of
support I x --- x I,,. They cannot take on values outside this set. (b) The moment vectors lie in the

appropriate ranges defined by £ : (E(Yj),... ,IE(YJ’“)) € I(m;). (c) If noise symbols y;,y; are independent
according to the dependence graph G (Def. 3.2), the corresponding random variables Y;,Y; are mutually

1The functional dependence graph is akin to the points-to graph in programs, whereas the probabilistic dependence graph
is analogous to the alias graph.

2In the implementation, these coefficients will be safely over-approximated either by intervals of floating-point numbers, or
by floating-point coefficients but with additional noise terms over-approximating the error.

independent. Otherwise, they are “arbitrarily” correlated while respecting the range and moment constraints
above. Semantically, an affine form f(%) : ap+ >, a;y; represents a set of linear expressions [f(¥)] over

Lf(@)] = {7’04'27”1‘3/1 | 7i € ai, (Y,...,Yy) € [[S]]} :

i=1

We now present the basic operations over affine forms including sums, differences, products and continuous
(and k-times differentiable) functions over affine forms.

Sums, Differences and Products: Let fi, fo be affine forms in an environment £ given by fi : @'+ ao
and fo : bt + by. We define the sum f; & fo to be the affine form (@+ l_)')tgj'—k (ap + bo).

Likewise, let A be a real number. The affine form Af; is given by (A\@)'§ + Aao.

We now define the product of two forms f; ® fo.

n n

fL® fa: agbo + aofz + bofi +approx(D > aia;yiy;) -

i=1 j=1

The product operation separates the affine and linear parts of this summation from the nonlinear part that
must be approximated to preserve the affine form. To this end, we define a function approx that replaces the
nonlinear terms by a collection of fresh random variables. In particular, we add a fresh random variable y;;
to approximate the product term y;y;.

Dependencies: We add the dependency edges (yi;, i) and (i, y;) to the graph G to denote the functional
dependence of the fresh noise symbol on y; and y;.

Set of Support: The set of support for y;; is the interval product of the set of supports for y;, y;, respectively.
In particular if i = j, we compute the set of support for y?. Let I;; be the interval representing the set of
support for y;;.

Moments: The moments of y;; are derived from those of y; and y;, as follows.

Case-1 (i = j). If i = j, we have that the]E(yzpj) =]E(yizp). Therefore, the even moments of y; are taken to
provide the moments for y;;. However, since we assume that only the first £ moments of y; are available,
we have that the first g moments of y;; are available, in general. To fill in the remaining moments, we
approximate using intervals as follows: E(yfj) € Ij;. While this approximation is often crude, this is a
tradeoff induced by our inability to store infinitely many moments for the noise symbols.

Case-2 (i # j). If i # j, we have that E(y;;) = E(y;y}). If yi,y; form an independent pair, this reduces
back to E(y?)E(yf). Thus, in this instance, we can fill in all £ moments directly as entry-wise products of
the moments of y; and y;. Otherwise, they are dependent, so we use the Cauchy-Schwarz inequality (see

Lemma 3.1): — E(y?p)IE(y?p) <E(y)) < E(y?p)lE(yf.p), and the interval approximation E(y;;) € I}

Continuous Functions: Let g(%) be a continuous and (m + 1)-times differentiable function of §. The
Taylor expansion of g around a point ¢y allows us to approximate g as a polynomial.

. . I Dg(4o) (Y — go)*
9(7) = g(ih) + Dg(Go) (T —Ho) + Y, o + R
2<|ali<m ’
wherein Dg denotes the vector of partial derivatives (%)jzl ,,,,, ns @ (di,...,dy) ranges over all vector
J
of indices where d; € N is a natural number, |«a|; : Z?Zl d;, ! = dylds!---d,!, D“g denotes the partial

R rd’"’ — —
derivative % and (¥ — 40)* : H?=1(yj — Yo0,7)%. Finally, Rg”“ is an interval valued Lagrange

remainder. Since we have discussed sums and products of affine forms, the Taylor approximation may be
evaluated entirely using affine forms.

The remainder is handled using a fresh noise symbol yémﬂ). Its set of support is R;”“ and moments are
estimated based on this interval. The newly added noise symbol is functionally dependent on all variables
that appear in g(7). These dependencies are added to the graph G.

The Taylor expansion allows us to approximate continuous functions including rational functions and

trigonometric functions of these random variables.

Example 3.2. We illustrate this by computing the sine of an affine form. Let y; be a noise symbol over
the interval [—0.2,0.2] with the moments (0,[0.004,0.006],0,[6 x 10=°,8 x 107°],0). We consider the form
sin(yy). Using a Taylor series expansion around y; = 0, we obtain

1
sin(yy) = y1 — gyf’ +[~1.3x107°,1.4 x 1077].

We introduce a fresh variable yo to replace y; and a fresh variable y3 for the remainder interval I3 :
[~1.3 x 107°,1.4 x 107°].

Dependence: We add the edges (y2,y1) and (ys3,y1) to G.
Set of Support: I : [-0.008,0.008] and I3 : [-1.3 x 107°,1.4 x 10~°].

Moments: E(yz) = E(y?) = 0. Further moments are computed using interval arithmetic. The moment
vector I(mg) is (0,[0,64 x 107°], [-512 x 102,512 x 107°],...). For y3, the moment vector I(ms3) :
(I3,square(l3), cube(I3), .. .).

The resulting affine form for sin(y;) is [1,1]y; — [0.16,0.17]y2 + [1, 1]ys.

3.3 Approximating Computations using Affine Forms

Having developed a calculus of affine forms, we may directly apply it to propagate uncertainties across
straight-line computations. Let X = {z1,...,2,} be a set of program variables collectively written as &
with an initial value Z5. Our semantics consist of a tuple (£,7) wherein £ is an environment and 1 : X —
AffineForms(£) maps each variable z; € X to an affine form over &.

The initial environment & has no noise symbols and an empty dependence graph. The initial mapping
1o associates each x; with the constant x; o. The basic operations are of two types: (a) assignment to a fresh
random variable, and (b) assignment to a function over existing variables.

Random Number Generation: This operation is of the form z; := rand(I, m), wherein I denotes the

set of support interval for the new random variable, and m denotes a vector of moments for the generated

i:=rand(Z, . .
random variable. The operational rule is (£,7) ——— S (£’,n), wherein the environment £’ extends &

by a fresh random variable y whose set of support is given by I and moments by m. The dependence graph
is extended by adding a new node corresponding to y but without any new edges since freshly generated
random numbers are assumed independent. However, if the newly generated random variable is dependent
on some previous symbols, such a dependency is also easily captured in our framework.

Assignment: The assignment operation is of the form z; := ¢g(&), assigning x; to a continuous and j + 1-

times differentiable function g(#). The operational rule has the form (€,7) zi=9@), (&',n'). First, we
compute an affine form f, that approximates the function g(n(z1),...,n(xy)). Let Y, denote a set of fresh
symbols generated by this approximation with new dependence edges E,. The environment &’ extends £
with the addition of the new symbols Y, and and new dependence edges E,;. The new map is 1’ : n[z; — fq].

Let C be a computation defined by a sequence of random number generation and assignment operations.
Starting from the initial environment (&y,n9) and applying the rules above, we obtain a final environment
(€,m). However, our main goal is to answer queries such as P(z; € I;) that seek the probability that a
particular variable x; belongs to an interval I;. This directly translates to a query involving the affine form
n(x;) which may involve a prohibitively large number of noise symbols that may be correlated according to
the dependence graph G.

4 Concentration of Measure Inequalities

We present the use of concentration of measure inequalities to bound probabilities of the form P(f > ¢) and
P(f <c¢). Let f be an affine form in an environment £.

There are numerous inequalities in probability theory that provide bounds on the probability that a
particular function of random variables deviates “far” from its expected value [13]. Let Xi,..., X, be

a sequence of random variables that may be pairwise independent or depend on each other according to
a probabilistic dependence graph G. Consider their sum X : Z?Zl X; and its expected value E(X) :
2?21 E(X;). Under numerous carefully stated conditions, the sum “concentrates” around its average value
so that the “tail” probabilities: the right tail probability P(X —IE(X) > ¢) of the sum being ¢ > 0 to the right
of the expectation, or the left “tail” probability P(X — E(X) < —t) are bounded from above and rapidly
approach zero as t — co. We note that concentration of measure inequalities provide valid bounds on large
deviations. In other words, they are more powerful than asymptotic convergence results, although they are
typically used to prove convergence. A large category of concentration of measure inequalities conform to
the sub-gaussian type below.

Definition 4.1 (Sub-Gaussian Concentration of Measure). Let Xi,..., X, be a set of random variables
wherein each X; has a compact set of support in the interval [a;, b;]. A sub-gaussian type concentration of
measure inequality is specified by two parts: (a) a condition ¥ on the dependence structure between the
random variables X;, and (b) a constant ¢ > 0. The inequality itself has the following form for any ¢ > 0,

CZj:l(bi —a;)?

The expression for the left tail probability is derived identically.

P(X — E(X) >) < exp <t> |

In general, many forms of these inequalities exist under various assumptions. We focus on two important
inequalities that will be used here.
Chernoff-Hoeffding: The condition ¥ states that X1, ..., X, are independent. Alternatively, the probabilistic
dependence graph G does not have any edges. In this situation, the inequality applies with a constant ¢ = %
Chromatic Number-Based: Janson generalizes the Chernoff-Hoeffding inequality using the chromatic number
of the graph G [22]. Let x(G) be an upper bound on the minimum number of colors required to color G (i.e,
it’s chromatic number). The condition ¥ states that the random variables depend according to G. In this
situation, the inequality applies with a constant ¢ = @ For the independent case, x(CAv') = 1 and thus,
Chernoff-Hoeffding bounds are generalized.

The sub-gaussian bounds depend on the range [a;, b;] of the individual random variables. Often, the
variance o? of each random variable is significantly smaller. In such situations, the Bernstein inequality

provides useful bounds.

Theorem 4.1 (Bernstein Inequality). Let Xi,...,X,, be independent random variables such that (a) there
exists a constant M > 0 such that | X; — E(X;)| < M for each i € [1,n], and (b) the variance of each X; is
012. For anyt > 0:

—t2
PX —EX)>t) <
=00 1) < e (g5

For the left tail probability, we may derive an identical bound.

We now illustrate how these inequalities can be used for the motivating example from Section 2. Let &
be an environment and f(y) : ap + Y., a;y; be an affine form involving noise symbols .

Chromatic Number-Based Inequality: The application of Janson’s dependent random variable in-
equality requires the following pieces of information: (a) An upper bound on the chromatic number of the
graph X(@) While the precise chromatic number is often hard to compute, it is often easy to estimate upper
bounds. For instance, X(é) <1+ A wherein A is the maximum degree of any node in G. (b) We compute
the expectation I : E(f(%)) by summing up the expectations of the individual terms. (c) Next, for each
term a;y;, we compute it’s set of support [¢;, d;] := a;I; wherein I; is the range of the noise symbol y; in &.
Specifically, we calculate C': Y7 | (d; — ¢;)2.

Since the expectation I is an interval, we apply the concentration of measure inequality using the upper
bound of Ig for right tail inequalities and the lower bound for the left tail inequalities.

Example 4.1. Continuing the affine form in the 2D robotic effector model in Figure 1, we compute the
relevant constants to enable our application of the dependent random variable inequality.

~

The chromatic number y(G) < 4. The sum C : Y. (d; — ¢;)? was calculated as 12.2642. The
expectation lies in the range [265.9, 268.9]. Combining, we obtain the concentration of measure inequalities:

P(f > 268.9 +t) < exp (%) Similarly, P(f < 265.9 — t) < exp (ﬁ)

f <220 f<235 | f<250| f<260 | f>275| f>285| f>295]| f>310
42FE —-35 | 1.2E—-13 | 5E-5 0.48 0.21 22E-7 | TE-13 | 9.2E-31

Applying Chernoff-Hoeffding and Bernstein Inequalities: The Bernstein inequality and Chernoff-
Hoeffding bounds require independence of the random variables in the summation. However, the noise
symbols involved in f(%) may be dependent.

Suppose we compute the maximal strongly connected components (MSCC) of the graph G. Note that
symbols that belong to different MSCCs are mutually independent. As a result, we decompose a given affine
form f(¢) into independent clusters as f(§) : f1(#h)+-- -+ fx(¥x). Each cluster corresponds to an affine form
fj(y;) over noise symbols ¢; involved in the jth MSCC of G. Note that each fi itself will be independent
of fr for k # 4. Thus, we may apply the Chernoff-Hoeffding bounds or the Bernstein inequality by treating
each f;(¥;) as a summand. Let [¢;, u;] represent the set of support for each cluster affine form f;(¢;). To
apply the Chernoff-Hoeffding bounds, we compute C' : E?Zl(uj — ;)2

To apply the Bernstein inequality, we collect the information on the variance sz of each f; and compute
M as max?_, (Ju; — E(f;)]). The environment & tracks the required information to compute o2 : 27:1 o3
and M, respectively. Since the variance is estimated over an interval, when we apply the Bernstein inequality,

we always use the upper bound on 2.

Example 4.2. We illustrate our ideas on the example from Fig. 1. For Chernoff-Hoeffding bounds, the
original form with nearly 6900 variables yields about 3000 clusters. The value of C' is 17.027. Combining,

we obtain the concentration of measure inequalities: P(f > 268.9 4+ t) < exp (%) for the right tail and

P(f <265.9 —t) < exp (%) for the left tail. This yields much improved bounds when compared to the
bounds in Example 4.1.

F<220 | £ <235 | f<250 | f<260 | f>275| f>285 | f>295 | f> 310
25E-108 | 2E—-49 | 1.1E-13 | 0.016 0.21 4FE—-14 | 1E —-35 | 3E-87

Applying the Bernstein inequality, we note that o2 € [0.1699985951, 0.2292648934] and M = max(|f; —
E(f;)]) = 0.1035521711.

F<220 | £<235 | f<250 | f<260| f>275 | f>285 | f>295
5E—-253 | 9E—-161 | 2.6E—-71 | 4E—-18 || 4.2E-19 | 1.8E-72 | 2E—-223

In particular, we obtain the result in Section 2: P(X > 272) < 6.2E—7.

Finally, it is sometimes seen that the value of M in Bernstein inequality is large but the value of o2 lies
inside a small range. In such a situation, Chebyshev inequalities are easy to apply and prove tight bounds.

Theorem 4.2 (Chebyshev-Cantelli Inequality). For any random variable X, P(X — E(X) > ko) < 1+1k2.
A similar inequality holds for the right tail, as well.

Handling Unbounded Random Variables: Finally, we mention a simple trick that allows us to bound
random variables with distributions such as the normal or the exponential.

Suppose the truncated Gaussian distributions in lines 3, 4 and 12 of the program in Fig. 1 are all
replaced by normal random variables. The concentration of measure inequalities no longer apply directly.
However, for most distributions the probability of a large deviation from the mean is easily computed. For
instance, it is known that for a normally distributed variable X with mean p and standard deviation o,
P(|X — p| > 50) < 6 x 1077, Therefore, we simply truncate the domain of each such random variable to
[— 50, p+50] and simply add 6K x 10~7 to any probability upper bound, wherein K is the number of times
a Gaussian random variable is generated. Similar bounds can be obtained for other common distribution
types. Even if the distribution is not known but its mean and variance are provided, a weaker Chebyshev
inequality bound can be derived: P(|X — pu| > ko) < /5.

Table 1: Experimental results at a glance: T: indicates a nonlinear example, #INS: total number of instruc-
tions, #Rv: random variable generator calls, n: number of noise symbols, Tag: Time (seconds) to generate
affine form, Temi: Time (seconds) to perform concentration of measure inequality, x: Chromatic number
of the probabilistic dependence graph G, #scc: number of strongly connected components, JAN.: Jansen
2004, c-H.: Chernoff-Hoeffding, BERN.: Bernstein inequality, CHEB. Chebyshev inequality.

ID FINS #RV n Tafr Temi X #scc END OF RANGE PROBABILITY
JAN. C-H. BERN. CHEB.
FERSONT 20 2 20 <0.1 <0.1 19 2 0.95 0.55 0.78 1
FiLTER 182 32 32 <0.1 <0.1 1 32 0.2 0.2 0.1 0.1
TANK 78 52 52 <0.1 <0.1 1 52 5E-12 5E-12 5E-21 1E-4
CARrTPOLET 180 40 164 0.2 <0.1 92 71 0.94 0.30 0.09 2.5E-4
TUMOR T 400 100 200 2.7 0.1 200 1 0.94 0.65 0.31 0.05
DBLWELLT 400 100 200 <0.1 | <0.1 99 102 0.95 0.63 0.43 0.34
EULER 3K 1K 1K 2.7 0.1 1 1K 1E-217 | 1E-217 3E-620 1E-8
Arm2DT 4K 2K 6.9K 5.8 9.5 5 3.1K 3E-44 3E-160 | 1.1E-309 1E-4
RMLSWHL | 6K 2K 3K 7.4 2.7 3 1K 0.32 0.07 0.02 0.03
STEERING 11.3K 45 4.5K 3 22 2.9K 1.5K 0.993 0.599 0.224 0.016
ANESTHESIA | 224K | 5.6K | 5.6K 438.2 12.2 1 5.6K 9E-19 9E-19 3E-26 0.006

Example 4.3. If the random variable in line 12 of Fig. 1 were a normally distributed variable with ¢ = 0.01,
we note that 1500 such variables are generated during the computation. The result from Example 4.2 is
updated as P(X > 272) < 6.2 x 1077 + 1500 x 6 x 1077 < 9.0062 x 10~%.

5 Experiments

In this section, we report on an experimental evaluation of our ideas and a comparison the p-box based
implementation of Bouissou et al. [7], wherever possible.

Implementation: Our prototype analyzer is built as a data-type in C++ on top of the boost interval
arithmetic library with overloaded operators that make it easy to carry out sequences of computations. Our
implementation includes support for nonlinear trigonometric operators such as sine and cosine. It tracks
the expectation and second moments of noise symbols. Currently, we do not explicitly account for floating
point/round off errors. However, as future work, we will integrate our work inside the Fluctuat analysis tool
that has a sophisticated model of floating point errors [20]. The dependency G and probabilistic dependency
G graphs are maintained exactly as described in Section 3. All concentration of measure inequalities presented
in Section 4 have been implemented.

Table 1 reports on the results from our prototype on a collection of interesting examples taken from related
work : FERSON [2], FILTER [2], TANK [2], CARTPOLE [36], TUMOR [6], RMLSWHL [36], ANESTHESIA [28§]
as well as new examples for this domain: DBLWELL, EULER, ARM2D, STEERING. We present for each
example, the number of instructions including the random variables involved. Note that for all but one
example (FERSON), this number ranges from many tens of random variables to many thousands. We also
report on the number of noise symbols involved in our affine forms. Finally, the times to derive the affine form
and analyze it using concentration of measure inequalities (CMI) are reported. To evaluate the performance
of various CMIs at a single glance, we simply compare the probability bounds that each CMI provides
for the affine form taking a value past its upper or lower bound. This probability should ideally be zero,
but most CMIs will ideally report a small value close to 0. We note that Bernstein inequality is by far
the most successful, thanks to our careful tracking of higher order moments as part of the affine form. The
overestimation of chromatic number makes the Jansen inequality much less effective than Chernoff-Hoeffding
bounds. However, for the STEERING and TUMOR examples, we find that CMIs do not yield bounds close to
zero, whereas we still obtain small bounds through Chebyshev inequality. We now highlight a few examples,
briefly. A detailed description of each benchmark is provided in the Appendix.

Comparison with p-Boxes: We directly compared our approach with the previous work of Adjé et al.
on three reported examples: FERSON, TANK and FILTER [2]. At this stage, we could not handle any of the

10

other examples using that prototype.

The FERSON example uses a large degree 5 polynomial p(6;,62) over two random variables 61, 65. In this
example, Adjé et al. obtain a much smaller range of [1.12,1.17] for p due to the subdivisions of the domain
of 61,05. In contrast, our tool reports a range of [1.05,1.21]. Our approach produces a relatively narrow
bound on the expectation of p and is able to conclude that P(p < 1.13) < 0.5. However, they report a much
more precise bound of 0.05 for the same probability. This suggests that subdividing random variables can
indeed provide us more precision. In contrast, our running time is roughly 0.01 seconds while Bouissou et
al. report a running time of nearly 100 seconds.

The TANK example considers the process of filling a tank using noisy tap and measurement devices. In
this example, Adjé et al. bound the probability that the tank does not fill within 20 iterations as 0.63. In
fact, our approach bounds the same probability by 0.5. Likewise, they incorrectly report that the tank will
always fill within 26 iterations. Our approach correctly proves a bound of at most 10~% on the probability
that the tank is not full. A simple calculation also reveals that this probability is tiny but non-zero.

Finally, we compare the filter example wherein the affine form is obtained as a linear combination of
independent random variables. Bouissou et al. [7] analyze the same example and report probability bounds
for the assertion y < —1 as P(y < —1) < 0.16. Our approach on the other hand finds a bound of 0.5 for the
same assertion. The difference here is a pitfall of using concentration of measure inequalities which ignore
characteristics of the underlying distributions of the noise symbol. Our approach is quite fast taking less
than 0.01 seconds whereas depending on the number of subdivisions, Bouissou et al. report between 1 second
to 5 minutes.

We now consider models that could not be attempted by the P-Box implementation.

Anesthesia Model: The anesthesia model consists of a four chamber pharmacokinetic model of the anes-
thetic fentanyl that is administered to a surgical patient using an infusion pump [28]. This model is widely
used as part of automated anesthesia delivery systems [34]. As part of this process, we model an erroneous
infusion that results in varying amounts of anesthesia infused over time as truncated gaussian random noise.
The target state variable x4 measures the concentration of anesthesia in the blood plasma. The goal is to
check the probability that the infusion errors result either in too much anesthesia x4 > 300ng/mL poten-
tially causing loss of breathing or too little anesthesia x4 < 150ng/mL causing consciousness during surgery.
Our approach bounds the probability P(z4 > 300) < 7 x 107! and P(z4 < 150) < 10723, These bounds
guarantee that small infusion errors alone have a very small probability of causing safety violations.

Tumor Model: We examine a stochastic model of tumor growth with immunization [6]:

B

e).

Tpy1 = Tp + d(az, — (by +

where x,, denotes the fraction of tumor cells at time t = nd. We use a = by = f = 1 and w as a truncated
normal random variable with mean 0, variance 02 = § and range [—100, 100]. We ask for the probability
that z190 > 0.6, and obtain a Chebyshev inequality bound P(x199 > 0.6) < 0.405. Note that, the structure
of the model leads to a situation wherein all noise symbols in our final form end up depending on each other.

Rimless Wheel Model: The rimless wheel model, taken from Tedrake et al. [36], models a wheel with
spokes but no rims rolling down a slope. Such models are used as human gait models in robotics. Details of
the model are given in the appendix. As part of this model, we wish to verify whether P(z1900 < 0) < 0.5.
Our approach proves a bound of 0.07 on this probability, verifying the property.

6 Conclusion and future work

Thus far, we have presented a tractable method for answering queries on probabilities of assertions over
program variables, using a combination of set-based methods (affine forms), moment propagation and con-
centration of measure inequalities. We showed that this method often yields precise results in a very (time
and space) efficient manner, especially when tracking rare events. However, we also documented failures of
this approach on some examples.

As part of the future work, we are considering extensions to programs with conditional branches and the
use of concentration of measure inequalities on higher order moments. We are exploring possible improve-
ments to our approach using the so-called “moment problem” [27].

11

Acknowledgments: This work was partially supported by the US NSF under award number 1320069,
and the academic research chair “Complex Systems Engineering” of Ecole polytechnique, Thales, FX, DGA,
Dassault Aviation, DCNS Research, ENSTA ParisTech, Télécom ParisTech, Fondation ParisTech and FDO
ENSTA. All opinions involved are those of the authors and not necessarily of our sponsors.

References

[1] A. Abate, J. Katoen, J. Lygeros, and M. Prandini. Approximate model checking of stochastic hybrid
systems. European Journal of Control, (6):624-641, 2010.

[2] A. Adje, O. Bouissou, E. Goubault, J. Goubault-Larrecq, and S. Putot. Static analysis of programs
with imprecise probabilistic inputs. In Verified Software: Theories, Tools and Experiments (VSTTE’13),
May 2013.

[3] E. Auer, W. Luther, G. Rebner, and P. Limbourg. A verified matlab toolbox for the dempster-shafer
theory. In Workshop on the Theory of Belief Functions, 2010.

[4] M. Borges, A. Filieri, M. d’Amorim, C. S. Péasareanu, and W. Visser. Compositional solution space
quantification for probabilistic software analysis. 2014.

[5] J. Bornholt, T. Mytkowicz, and K. S. McKinley. Uncertain<t>: Abstractions for uncertain hardware
and software. IEEE Micro, 35(3):132-143, 2015.

[6] T.Bose and S. Trimper. Stochastic model for tumor growth with immunization. Phys. Rev. E, 79:051903,
May 20009.

[7] O. Bouissou, E. Goubault, J. Goubault-Larrecq, and S. Putot. A generalization of p-boxes to affine
arithmetic. Computing, 2012.

[8] J. Busaba, S. Suwan, and O. Kosheleva. A faster algorithm for computing the sum of p-boxes. Journal
of Uncertain Systems, 4(4), 2010.

[9] A. Chakarov and S. Sankaranarayanan. Probabilistic program analysis using martingales. In Computer-
Aided Verification (CAV), volume 8044 of LNCS, pages 511-526. Springer-Verlag, 2013.

[10] D. Chistikov, R. Dimitrova, and R. Majumdar. Approximate counting in SMT and value estimation for
probabilistic programs. In TACAS’15, pages 320-334, 2015.

[11] P. Cousot and M. Monereau. Probabilistic abstract interpretation. In Proc. ESOP’12, pages 169-193.
Springer Verlag LNCS 7211, 2012.

[12] J. De Loera, B. Dutra, M. Koeppe, S. Moreinis, G. Pinto, and J. Wu. Software for Exact Integration
of Polynomials over Polyhedra. ArXiv e-prints, July 2011.

[13] D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms.
Cambridge University Press, 2009.

[14] R. Durrett. Probability. Theory and examples. Wadsworth & Brooks/Cole, 1991.

[15] J. Enszer, Y. Lin, S. Ferson, G. Corliss, and M. Stadtherr. Probability bounds analysis for nonlinear
dynamic process models. AIChE Journal, 57:404422 2011.

[16] S. Ferson. RAMAS Risk Calc 4.0 Software: Risk Assessment with Uncertain Numbers. Lewis Publishers,
2002.

[17] S. Ferson, V. Kreinovich, L. Ginzburg, D. Myers, and K. Sentz. Constructing probability boxes and
Dempster-Shafer structures. Technical Report SAND2002-4015, Sandia National Laboratories, 2003.

[18] M. Fuchs and A. Neumaier. Potential based clouds in robust design optimization. J. Stat. Theory

Practice, 3:225-238, 2009.

12

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[32]

[33]
[34]

[38]

[39]

J. Geldenhuys, M. B. Dwyer, and W. Visser. Probabilistic symbolic execution. In ISSTA, pages 166—176.
ACM, 2012.

E. Goubault and S. Putot. Static analysis of numerical algorithms. In SAS, volume 4134 of LNCS,
pages 18-34. Springer, 2006.

J. Goubault-Larrecq. Continuous previsions. In CSL’07, volume 4646 of LNCS, pages 542-557. Springer,
2007.

S. Janson. Large deviations for sums of partly dependent random variables. Random Structures Algo-
rithms, 24(3):234-248, 2004.

C. Jegourel, A. Legay, and S. Sedwards. Cross-entropy optimisation of importance sampling parameters
for statistical model checking. In Computer Aided Verification, volume 7358 of LNCS, pages 327-342.
2012.

S. K. Jha, E. M. Clarke, C. J. Langmead, A. Legay, A. Platzer, and P. Zuliani. A bayesian approach to
model checking biological systems. In CMSB, volume 5688 of LNCS, pages 218-234. Springer, 2009.

M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic real-time systems.
In CAV, volume 6806 of LNCS. Springer, 2011.

R. Lassaigne and S. Peyronnet. Probabilistic verification and approximation. Annals of Pure and
Applied Logic, 152(1-3):122 — 131, 2008.

J.-B. Lasserre. Moments, Positive Polynomials and their Applications, volume 1 of Imperial College
Press Optimization Series. World Scientific, 2011.

D. A. McClain and C. C. Hug. Intravenous fentanyl kinetics. Clinical Pharmacology € Therapeutics,
28(1):106-114, july 1980.

D. Monniaux. Abstract interpretation of probabilistic semantics. In SAS’00, number 1824 in LNCS,
pages 322-339. Springer Verlag, 2000.

A. Neumaier. Clouds, fuzzy sets and probability intervals. Reliable Computing, 2004.

S. Rump. INTLAB - INTerval LABoratory. In T. Csendes, editor, Developments in Reliable Computing,
pages 77-104. Kluwer Academic Publishers, 1999.

S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis for probabilistic programs: Inferring
whole program properties from finitely many paths. In PLDI’13, pages 447-458. ACM Press, 2013.

G. Shafer. A Mathematical Theory of Fvidence. Princeton University Press, 1976.

S. L. Shafer, L. C. Siegel, J. E. Cooke, and J. C. Scott. Testing computer-controlled infusion pumps by
simulation. Anesthesiology, 68:261-266, 1988.

F. Shmarov and P. Zuliani. Probreach: verified probabilistic delta-reachability for stochastic hybrid
systems. In HSCC"15, pages 134-139, 2015.

J. Steinhardt and R. Tedrake. Finite-time regional verification of stochastic non-linear systems. Intl.
Journal of Robotics Research, 31(7):901-923, 2012.

J. Sun, Y. Huang, J. Li, and J. M. Wang. Chebyshev affine arithmetic based parametric yield prediction
under limited descriptions of uncertainty. In ASP-DAC 2008, pages 531-536. IEEE Computer Society
Press, 2008.

G. Terejanu, P. Singla, T. Singh, and P. D. Scott. Approximate interval method for epistemic uncertainty
propagation using polynomial chaos and evidence theory. In ACC’10, 2010.

R. C. Williamson and T. Downs. Probabilistic arithmetic: Numerical methods for calculating convolu-
tions and dependency bounds. Journ. Approzx. Reas., 1990.

13

[40] D. Xiu. Numerical Methods for Stochastic Computation: A Spectral Method Approach. Princeton
university Press, 2010.

[41] H. L. S. Younes and R. G. Simmons. Statistical probabilitistic model checking with a focus on time-
bounded properties. Information & Computation, 204(9):1368-1409, 2006.

14

A Details of benchmarks

We now provide a detailed description of each benchmark and results obtained.

A.1 Ferson
Consider the polynomial p(ty,ts) below

(1.09467683743172)¢1° + (15.3223572746484)t4,
+(86.0297202975092)£3¢2 + (390.260443722082)t, t4
+(218.60704232612)t3 — (31.9645099690168)4—
(361.491077961158)t3t, — (800.011819233185)2¢2—
(1334.22983617068)¢,3 — (2257.7540329627)4+
(375.296580066101)¢3 + (2465.09948122341)¢3t,
+(4103.19455646941)¢, 12 + (6134.72163986329) 3
—(1960.94158113753)t2 — (7497.63254682701)t, £,
—(9497.30109206786)t2 -+ (4772.67824380499)t;
+(9816.86840978377)t, — (4668.81238573154) + T

Here t1,ts are truncated normal variables over [—0.01,0.01] with mean 0,1, respectively, and o €
[0.002,0.004]. Here I is treated as a random variable whose set of support ranges over the interval [1.144,1.477]
and mean/moments are unknown. Also, I is correlated with ¢, ts.

Our approach produces an affine form with 20 noise symbols. with range [1.051864559,1.218775478] and
expectation [1.140690667, 1.147181581].

Chromatic number based bound Chromatic number bound on G is 19. Upper tail bound (¢ >
1.147181581) :

t —1.147181581)2
0.08921999871

P(p > t) < exp <_(

Lower tail bound (¢ < 1.140690667) :

—(1.140690667 — t)?
0.08921999871

P(p <t) < exp<

9153635631
9299753618
9433464398
9554169392
9661323166
9754437532
9833085254

P(p < 1.051864559) < 0.
0.
0.
0.
0.
0.
0.
0.9896903312
0.
0.
0.
0.
0.
0.
0.

)
P(p < 1.060210105)
P(p < 1.068555651)
P(p < 1.076901197)
P(p < 1.085246743)
P(p < 1.093592289)
P(p < 1.101937835)
P(p < 1.110283381)
P(p < 1.118628927)
P(p < 1.126974473)
P(p < 1.135320018)

)

)

9945595697
9978935691
9996767631
999738609
9980563341
0.994822493

P(p > 1.15201111

P(p > 1.160356656

P(p > 1.168702202)
P(p > 1.177047748)
P(p > 1.185393294) 9837676304
P(p > 1.19373884) < 0.9759979827
P(p > 1.202084386) < 0.9667791189
P(p > 1.210429932) < 0.9561533556
P(p > 1.218775478) < 0.9441691271

9900521865

\/\V\V\I/\V\I/\V\\/\\AM\/\V\\/\V\I/\I/\I/\V\

Clustered dependencies and Chernoff-Hoeffding Number of components in G is 2. Upper tail bound
(t > 1.147181581) :

t— 1.147181581)2>

—(
Plp>t) <
(p=1t) <exp (0.01338530368

Lower tail bound (¢ < 1.140690667) :

1140690667 — t)? >

—(
Plp < t) <
(p<t) <exp (0.01338530368

15

P(p < 1.051864559) < 0.5546276836
P(p < 1.060210105) < 0.6163761082
P(p < 1.068555651) < 0.6779075887
P(p < 1.076901197) < 0.7378628428
P(p < 1.085246743) < 0.7948061736
P(p < 1.093592289) < 0.8472806122
P(p < 1.101937835) < 0.8938687446
P(p < 1.110283381) < 0.9332557636
P(p < 1.118628927) < 0.9642908716
P(p < 1.126974473) < 0.9860430499
P(p < 1.135320018) < 0.9978474298
P(p > 1.15201111) < 0.9982589826
P(p > 1.160356656) < 0.9871155748
P(p > 1.168702202) < 0.9659913283
P(p > 1.177047748) < 0.9355325385
P(p > 1.185393294) < 0.8966542525
P(p > 1.19373884) < 0.850494626
P(p > 1.202084386) < 0.7983596535
P(p > 1.210429932) < 0.7416620106
P(p > 1.218775478) < 0.6818579889

Bound based on Bernstein inequality We obtain 02 = [0,0.008620738996] M = 0.09198952204 Upper
tail bound (¢ > 1.147181581) :

—(t — 1.147181581)?)

P(p>1t) <
(p=1) <exp <0.01724147799 +0.06132021539¢

Lower tail bound (¢ < 1.140690667) :

P(p< 1) < —(1.140690667 — t)*
ex
P P\ 0.01724147799 + 0.06132021539 * ¢
[P’(p < 1.051864559) < 0.7062745893
]I”(p < 1.060210105) < 0.7467207148
]P(p < 1.068555651) < 0.7864899274
]P’(p < 1.076901197) < 0.8250091014
P(p < 1.085246743) < 0.8616349552
TP'(p < 1.093592289) < 0.8956573095
P(p < 1.101937835) < 0.9263056328
P(p < 1.110283381) < 0.9527595539
P(p < 1.118628927) < 0.9741640299
P(p < 1.126974473) < 0.9896498156
P(p < 1.135320018) < 0.9983597711
[P’(p > 1.15201111) < 0.9986709254
]P’(p > 1.160356656) < 0.9904290413
]P(p > 1.168702202) < 0.9753569059
]P’(p > 1.177047748) < 0.9543098199
P(p > 1.185393294) < 0.9281571065
P(p > 1.19373884) < 0.8977554104
P(p > 1.202084386) < 0.8639278645
P(p > 1.210429932) < 0.8274485974
P(p > 1.218775478) < 0.7890319388

A.2 Filter

Consider a second order butterworth filter with the following equation:

y(n+1) =14y(n) — 0.7y(n — 1) + 0.7w(n + 1) + —1.3w(n) + 1.1w(n — 1)

Here w(n) is distributed as uniform random variable in the range [—1, 1]. Initially y(—1),y(—2) are also
uniform random variables in the range [—1,1]. Our approach considers n = 30 executions of the filter. y(30)
has 52 noise symbols with range: [—3.848280763, 3.848280763] and expectation: [—0.0002769020739, 0.0002769020739].

Chromatic number based bound Chromatic number bound on G is 1. Upper tail bound (¢ >
0.0002769020739) :

—(t— 0.0002769020739)2>

P(y(30) 2 1) < exp (2.844444715

Lower tail bound (¢ < —0.0002769020739) :

—0.0002769020739 — t)2>

P(y(30) <) < exp <_(2.844444715

16

P(y(30) < —3.848280763) < 0.005485579986
P(y(30) < —3.463452687) < 0.01475025575
P(y(30) < —3.07862461) < 0.03573999539
P(y(30) < —2.693796534) < 0.07803463032
P(y(30) < —2.308968458) < 0.153531752
P(y(30) < —1.924140381) < 0.2721992835
P(y(30) < —1.539312305) < 0.4348642371
P(y(30) < —1.154484229) < 0.6260346218
P(y(30) < —0.7696561526) < 0.8121213987
P(y(30) < —0.3848280763) < 0.9493393865
P(y(30) > 0.3848280763) < 0.9493393865
P(y(30) > 0.7696561526) < 0.8121213987
P(y(30) > 1.154484229) < 0.6260346218
P(y(30) > 1.539312305) < 0.4348642371
P(y(30) > 1.924140381) < 0.2721992835
P(y(30) > 2.308968458) < 0.153531752
P(y(30) > 2.693796534) < 0.07803463032
P(y(30) > 3.07862461) < 0.03573999539
P(y(30) > 3.463452687) < 0.01475025575
P(y(30) > 3.848280763) < 0.005485579986

Clustered dependencies and Chernoff-Hoeffding Number of components in G is 52. Upper tail
bound (¢ > 0.0002769020739) :

—(t — 0.0002769020739)?
P > <
(y(30) 2 1) < exp 2.844444562

Lower tail bound (¢ < —0.0002769020739) :

—(~0.0002769020739 — t)2
P < <
(y(30) <) < exp 2.844444562

P(y(30) < —3.848280763) < 0.005485578447
P(y(30) < —3.463452687) < 0.01475025239
P(y(30) < —3.07862461) < 0.03573998897
P(y(30) < —2.693796534) < 0.07803461959
P(y(30) < —2.308968458) < 0.1535317365

P(y(30) < —1.924140381) < 0.2721992644
P(y(30) < —1.539312305) < 0.4348642176
P(y(30) < —1.154484229) < 0.626034606
P(y(30) < —0.7696561526) < 0.8121213896
P(y(30) < —0.3848280763) < 0.9493393839
P(y(30) > 0.3848280763) < 0.9493393839
P(y(30) > 0.7696561526) < 0.8121213896
P(y(30) > 1.154484229) < 0.626034606
P(y(30) > 1.539312305) < 0.4348642176
P(y(30) > 1.924140381) < 0.2721992644
P(y(30) > 2.308968458) < 0.1535317365
P(y(30) > 2.693796534) < 0.07803461959

P(y(30) > 3.07862461) < 0.03573998897
P(y(30) > 3.463452687) < 0.01475025239
P(y(30) > 3.848280763) < 0.005485578447

Bound based on Bernstein inequality We obtain 02 = [0.4740266863,0.4740266863] M = 0.7 Upper
tail bound (¢ > 0.0002769020739) :

—(t — 0.0002769020739)>2
P >t) <
(y(30) = 1) < exp | 59150533725 + 0466620

Lower tail bound (¢ < —0.0002769020739) :

—(—0.0002769020739 — t)?
P <t) <
(y(30) < 1) < exp (0.9480533725 +0.46662 * ¢
P(y(30) < —3.848280763) 04531955767

< 0.0
P(y(30) < —3.463452687) < 0.009303940832
P(y(30) < —3.07862461) < 0.01879996587

P(y(30) < —2.693796534) < 0.03724537016
P(y(30) < —2.308968458) < 0.07196672801
P(y(30) < —1.924140381) < 0.1346377737
P(y(30) < —1.539312305) < 0.2413477608
P(y(30) < —1.154484229) < 0.4081645529

P(y(30) < —0.7696561526) < 0.635801073
P(y(30) < —0.3848280763) < 0.8770810736
P(y(30) > 0.3848280763) < 0.8770810736

P(y(30) > 0.7696561526) < 0.635801073
P(y(30) > 1.154484229) < 0.4081645529
P(y(30) > 1.539312305) < 0.2413477608
P(y(30) > 1.924140381) < 0.1346377737

P(y(30) > 2.308968458) < 0.07196672801
P(y(30) > 2.693796534) < 0.03724537016
P(y(30) > 3.07862461) < 0.01879996587
P(y(30) > 3.463452687) < 0.009303940832
P(y(30) > 3.848280763) < 0.004531955767

17

A.3 Tank

Consider a stochastic process described by the volume in a tank:
v(n+1) =v(n) +wy + we

Here v(0) = 0 and w; is a truncated gaussian in the range [—0.03,0.03] with p; = 0,07 = 0.00003 while
wo has the same range with p; = 0,05 = 0.00001. At n = 26, we obtain an affine form with 52 noise symbols
over the range: [1.04,4.16] and expectation: [2.6,2.6].

Chromatic number based bound Chromatic number bound on G is 1. Upper tail bound (¢t > 2.6) :

—(t— 2.6)2)

P(0(26) > 1) < exp (L

Lower tail bound (¢t < 2.6) :

P(0(26) < 1) < exp (W)

P(v(26) < 1.04) < 5.109089028e — 12
P(v(26) < 1.196) < 7.140986485¢ — 10
P(v(26) < 1.352) < 5.933894507e — 08
P(v(26) < 1.508) < 2.931489214e — 06
P(v(26) < 1.664) < 8.610009872e — 05
P(v(26) < 1.82) < 0.001503439193
P(v(26) < 1.976) < 0.01560755792
P(v(26) < 2.132) < 0.09632763823
P(v(26) < 2.288) < 0.353454682
P(v(26) < 2.444) < 0.7710515858
P(v(26) > 2.756) < 0.7710515858
P(v(26) > 2.912) < 0.353454682

INIAL

P(v(26) > 3.068) < 0.09632763823

P(v(26) > 3.224) < 0.01560755792

P(v(26) > 3.38) < 0.001503439193
P(v(26) > 3.536) < 8.610009872¢ — 05
P(v(26) > 3.692) < 2.931489214e — 06
P(v(26) > 3.848) < 5.933894507e — 08
P(v(26) > 4.004) < 7.140986485¢ — 10

P(v(26) > 4.16) < 5.109089028e — 12

Clustered dependencies and Chernoff-Hoeffding Number of components in G is 52. Upper tail
bound (¢ > 2.6) :

e 2
P(v(26) > t) < exp (%09?566))

Lower tail bound (¢t < 2.6) :

0.0936

P(v(26) < 1.04) < 5.109089028e — 12
P(v(26) < 1.196) < 7.140986485¢ — 10
P(v(26) < 1.352) < 5.933894507e — 08
P(v(26) < 1.508) < 2.931489214e — 06
P(v(26) < 1.664) < 8.610009872e — 05
P(v(26) < 1.82) < 0.001503439193
P(v(26) < 1.976) < 0.01560755792
P(v(26) < 2.132) < 0.09632763823
P(v(26) < 2.288) < 0.353454682
P(v(26) < 2.444) < 0.7710515858
P(v(26) > 2.756) < 0.7710515858
P(v(26) > 2.912) < 0.353454682
P(v(26) > 3.068) < 0.09632763823
P(v(26) > 3.224) < 0.01560755792
P(v(26) > 3.38) < 0.001503439193
P(v(26) > 3.536) < 8.610009872e — 05

P(u(26) < 1) < exp (—(26—t)z>

P(v(26) > 3.692) < 2.931489214e — 06
P(v(26) > 3.848) < 5.933894507¢ — 08
P(v(26) > 4.004) < 7.140986485¢ — 10

P(v(26) > 4.16) < 5.109089028e — 12

Bound based on Bernstein inequality ~We obtain 02 = [0.0104,0.0104] M = 0.03 Upper tail bound
(t>26):

—(t —2.6)*
P(v(26) 2 t) < exp | o502 0.019998¢

Lower tail bound (¢t < 2.6) :

—(2.6 —t)?
< <
P(u(26) < t) < exp (0.0208 £ 0.019998 * £

18

P(v(26) < 1.04) < 4.731711389e — 21
P(v(26) < 1.196) < 3.061399301e — 18
P(v(26) < 1.352) < 1.65270404e — 15
P(v(26) < 1.508) < 7.15457885¢ — 13
P(v(26) < 1.664) < 2.357094879¢ — 10
P(v(26) < 1.82) < 5.509065619¢ — 08
P(v(26) < 1.976) < 8.293819161e — 06
P(v(26) < 2.132) < 0.0007016548332

P(v(26) < 2.288) < 0.02732372245
P(v(26) < 2.444) < 0.3615368507
P(v(26) > 2.756) < 0.3615368507

P(v(26) > 2.912) < 0.02732372245
P(v(26) > 3.068) < 0.0007016548332
P(v(26) > 3.224) < 8.293819161e — 06
P(v(26) > 3.38) < 5.509065619¢ — 08
P(v(26) > 3.536) < 2.357094879¢ — 10
P(v(26) > 3.692) < 7.15457885¢ — 13
P(v(26) > 3.848) < 1.65270404e — 15
P(v(26) > 4.004) < 3.061399301e — 18
P(v(26) > 4.16) < 4.731711389e — 21

A.4 CartPole

The cart pole balancing system is taken from Steinhardt and Tedrake [36]. It models an inverted pendulum
balanced on a cart with four state variables (z,6,v,w). The equations are

sn+1) = w(n) +6(u(n) + wi(n)
f(n+1) = 6(n) +é(w(n)+wa(n))
_ w cos(0) —mp Lw? cos(0) sin(0)+(me+mp)g sin(6)
wn+1) = w(n) +6 TGP ——) + wg(n)>
—my sin w2 —gcos
vin+1) = wv(n) +6 L-mp (9)(Lv_ g2 Q)] + wya(n)
metmp sin(0)

We set u = 10z — 289.836 + 19.53v — 63.25w.

The parameters are m, = 1.0,m. = 10.0,L = 0.5,g = 9.8. Unlike Tedrake et al., we do not di-
rectly Taylor approximate the equations. For 6(10), we obtain a form with 163 noise symbols over a range
[—0.01871302394, 0.01871302394] and expectation [—1.017171575e — 06, 1.017171575e — 06].

Chromatic number based bound
1.017171575e — 06) :

Chromatic number bound on G is 92. Upper tail bound (¢t >

)
")

—(t —1.017171575¢ — 06)>
0.005454388623

P(9(10) > 1) < exp (
Lower tail bound (¢ < —1.017171575e — 06) :

—1.017171575e¢ — 06 — ¢t

P(0(10) < t) < exp <_(

0.005454388623
P(6(10) < —0.01871302394) < 0.9378230143
P(6(10) < —0.01684172155) < 0.9493321537
P(6(10) < —0.01497041916) < 0.9597494062
P(6(10) < —0.01309911676) < 0.9690359089
P(6(10) < —0.01122781437) < 0.9771567726
P(6(10) < —0.009356511972) < 0.9840813001
P(6(10) < —0.007485209578) < 0.9897831797
P(6(10) < —0.005613907183) < 0.9942406516
P(6(10) < —0.003742604789) < 0.9974366463
P(6(10) < —0.001871302394) < 0.9993588932

P(6(10) > 0.001871302394) < 0.9993588932
P(6(10) > 0.003742604789) < 0.9974366463
P(6(10) > 0.005613907183) < 0.9942406516

Clustered dependencies and Chernoff-Hoeffding Number of components in G is T1. Upper tail

P(6(10) > 0.007485209578) < 0.9897831797

P(6(10) > 0.009356511972) < 0.9840813001
P(6(10) > 0.01122781437) < 0.9771567726
P(6(10) > 0.01309911676) < 0.9690359089
P(6(10) > 0.01497041916) < 0.9597494062
P(6(10) > 0.01684172155) < 0.9493321537
P(6(10) > 0.01871302394) < 0.9378230143

bound (¢t > 1.017171575¢ — 06) :

t —1.017171575e — 06

()

P(A(10) > t) < exp (_

Lower tail bound (¢t < —1.017171575¢ — 06) :

0.0002835373766

—1.017171575e — 06 — ¢

)

P(0(10) < t) < exp (_(

0.0002835373766

19

)

P(6(10) < —0.01871302394) 2908649849
P(6(10) < —0.01684172155) 3677861039
P(6(10) < —0.01497041916) 4537032105
P(6(10) < —0.01309911676) 5460357167
P(6(10) < —0.01122781437) 6411252963

7344080642

<o.
<o.
<o.
<o.
<o.
P(6(10) < —0.009356511972) < 0
<o
<o
<o
<o

) .
P(6(10) < —0.007485209578) .8207381555
P(6(10) < —0.005613907183) .8948381134
P(6(10) < —0.003742604789) .9518247332
P(0(10) < —0.001871302394) .9877389065
P(6(10) > 0.001871302394) < 0.9877389065
P(0(10) > 0.003742604789) < 0.9518247332
P(6(10) > 0.005613907183) < 0.8948381134
P(6(10) > 0.007485209578) < 0.8207381555
P(0(10) > 0.009356511972) < 0.7344080642
P(6(10) > 0.01122781437) < 0.6411252963
P(6(10) > 0.01309911676) < 0.5460357167
P(6(10) > 0.01497041916) < 0.4537032105
P(6(10) > 0.01684172155) < 0.3677861039
P(6(10) > 0.01871302394) < 0.2908649849

Bound based on Bernstein inequality = We obtain o2 = [1.907853127¢-07,2.020835084e-07] M =
0.0114408025 Upper tail bound (¢t > 1.017171575¢ — 06) :

—(t — 1.017171575¢ — 06)?
P(6(10) > t) <
(6(10) 2 1) < exp (4.0416701686 — 07 + 0.007626438945¢

Lower tail bound (¢t < —1.017171575¢ — 06) :

—(—1.017171575¢ — 06 — t)*
P(6(10) <) <
(6(10) =) < exp (4.0416701686 — 07 + 0.007626438945 + ¢

P(6(10) < —0.01871302394) < 0.08660502982
P(0(10) < —0.01684172155) < 0.1106864675
P(6(10) < —0.01497041916) < 0.1414639251
P(6(10) < —0.01309911676) < 0.1807992169
P(6(10) < —0.01122781437) < 0.2310717661
P(6(10) < —0.009356511972) < 0.295322421
P(6(10) < —0.007485209578) < 0.3774370738
P(0(10) < —0.005613907183) < 0.4823806806
P(6(10) < —0.003742604789) < 0.6164932775
P(6(10) < —0.001871302394) < 0.7878430425
P(6(10) > 0.001871302394) < 0.7878430425
P(6(10) > 0.003742604789) < 0.6164932775
P(6(10) > 0.005613907183) < 0.4823806806
P(6(10) > 0.007485209578) < 0.3774370738

P(6(10) > 0.009356511972) < 0.295322421
P((10) > 0.01122781437) < 0.2310717661
P(6(10) > 0.01309911676) < 0.1807992169
P(6(10) > 0.01497041916) < 0.1414639251
P((10) > 0.01684172155) < 0.1106864675

P(6(10) > 0.01871302394) < 0.08660502982

A.5 Tumor Model

Next, we examine a stochastic model for tumor growth with immunization [6].

B

T3 o),

Tpy1 = Tp + d(az, — (by +
wherein z,, denotes the fraction of tumor cells at time ¢t = nd. We use a = by = 5 =1 and w as a truncated
normal random variable with mean 0, variance 02 = § and range [—100, 100].

We obtain an affine form for 199 with 200 variables. Range is [0.4739245521, 0.6539437842] and expec-
tation [0.5579084111, 0.5699599252].

Chromatic number based bound Chromatic number bound on G is 200. Upper tail bound (¢ >
0.5699599252) :

—(-0 252)2

0.1150435105
Lower tail bound (¢ < 0.5579084111) :

—(0.5579084111 —)2
Pl@ioo <) < exp | —57750035105

20

P(z100 < 0.4739245521) < 0.9405318673
P(z100 < 0.4829255137) < 0.9523027811
P(z100 < 0.4919264753) < 0.9628638955
P(z100 < 0.5009274369) < 0.9721718997
P(z100 < 0.5099283985) < 0.980188352
P(z100 < 0.5189293601) < 0.9868799432
P(z100 < 0.5279303217) < 0.9922187281
P(z100 < 0.5369312833) < 0.9961823193
P(z100 < 0.5459322449) < 0.9987540437
P(z100 < 0.5549332065) < 0.9999230595
P(z100 > 0.5729351297) < 0.9999230595
P(z100 > 0.5819360913) < 0.9987540437
P(z100 > 0.5909370529) < 0.9961823193
P(z100 > 0.5999380145) < 0.9922187281
P(z100 > 0.6089389762) < 0.9868799432
P(z100 > 0.6179399378) < 0.980188352
P(z100 > 0.6269408994) < 0.9721718997
F(z100 > 0.635941861) < 0.9628638955
P(z100 > 0.6449428226) < 0.9523027811
P(z100 > 0.6539437842) < 0.9405318673

Clustered dependencies and Chernoff-Hoeffding Number of components in Gis 1. Upper tail bound
(t > 0.5699599252) :
—(t — 0.5699599252)?

0.01620267069

P(x100 > t) < exp
Lower tail bound (¢ < 0.5579084111) :

—(0.5579084111 — ¢)?
0.01620267069

P(J?loo S t) S ex

P(z100 < 0.4739245521) < 0.6470598932
P(z100 < 0.4829255137) < 0.7068006096
P(z100 < 0.4919264753) < 0.7643745034
P(z100 < 0.5009274369) < 0.8184126096
P(z100 < 0.5099283985) < 0.8675515201
P(z100 < 0.5189293601) < 0.9104897922
P(z100 < 0.5279303217) < 0.9460448596
P(z100 < 0.5369312833) < 0.9732069966
P(z100 < 0.5459322449) < 0.9911869098
P(z100 < 0.5549332065) < 0.9994538293
P(x100 > 0.5729351297) < 0.9994538293
P(x100 > 0.5819360913) < 0.9911869098
P(x100 > 0.5909370529) < 0.9732069966
P(x100 > 0.5999380145) < 0.9460448596
P(z100 > 0.6089389762) < 0.9104897922
P(z100 > 0.6179399378) < 0.8675515201
P(z100 > 0.6269408994) < 0.8184126096

P(z100 > 0.635941861) < 0.7643745034
P(z10g > 0.6449428226) < 0.7068006096
P(z10g > 0.6539437842) < 0.6470598932

Bound based on Bernstein inequality We obtain o2 = [0,0.0003682150586] M = 0.09603097759 Upper
tail bound (¢ > 0.5699599252) :

—(t — 0.5699599252)2
0.0007364301172 + 0.06401424966¢

P(z100 > t) < exp

Lower tail bound (¢ < 0.5579084111) :

—(0.5579084111 — ¢)?
0.0007364301172 + 0.06401424966 ¢

P(x100 < t) < exp

P(z100 < 0.4739245521) < 0.3154380289
P(z100 < 0.4829255137) < 0.3622389952
P(z100 < 0.4919264753) < 0.4157660815
P(z100 < 0.5009274369) < 0.4768546224
P(z100 < 0.5099283985) < 0.5463389394
P(z100 < 0.5189293601) < 0.6249295473
P(z1090 < 0.5279303217) < 0.7129060619
P(z100 < 0.5369312833) < 0.809273188
P(z100 < 0.5459322449) < 0.9089924179
P(z100 < 0.5549332065) < 0.9904955604
P(z100 > 0.5729351297) < 0.9904955604
P(z100 > 0.5819360913) < 0.9089924179
P(x1090 > 0.5909370529) < 0.809273188
P(z1090 > 0.5999380145) < 0.7129060619
P(z100 > 0.6089389762) < 0.6249295473
P(z100 > 0.6179399378) < 0.5463389394
P(z100 > 0.6269408994) < 0.4768546224
P(x100 > 0.635941861) < 0.4157660815
P(x100 > 0.6449428226) < 0.3622389952
P(z100 > 0.6539437842) < 0.3154380289

21

A.6 DblWell

We consider the stochastic “double well” potential system given by
X(n+1)=09X(n)+0.1X(n)* +ew1(n)X(n), Y(n+1)=11Y(n)—0.1Y,> + ews(n)Y (n).

Wherein w;(n) is a gaussian with zero mean, ¢ = 0.01 and range [—500,500] and € = 0.05. We consider
here the form for ¥ (50). This has 200 noise symbols with range [0.8064897514,1.139303777] and expectation
[0.9442546879, 1.00153884].

Chromatic number based bound Chromatic number bound on
1.00153884) :

is 99. Upper tail bound (¢t >

G
—(t - 1.00153884)2>

P(Y(50) 2 1) < exp (0.3368841428

Lower tail bound (¢ < 0.9442546879) :

P(Y (50) < t) < exp <(0.9442546879 _ t)z)

0.3868841428
P(Y (50) < 0.8064897514) < 0.9521273434
P(Y (50) < 0.8231304527) < 0.9627888818
P(Y (50) < 0.839771154) < 0.9721771326
P(Y (50) < 0.8564118552) < 0.9802526895
P(Y (50) < 0.8730525565) < 0.9869814486
P(Y (50) < 0.8896932578) < 0.9923348483
P(Y (50) < 0.9063339591) < 0.9962900712
P(Y (50) < 0.9229746604) < 0.9988302062

P(Y (50) < 0.9396153616) < 0.999944369

P(Y (50) > 1.006178167) < 0.999944369
P(Y (50) > 1.022818868) < 0.9988302062
P(Y (50) > 1.039459569) < 0.9962900712
P(Y (50) > 1.056100271) < 0.9923348483
P(Y (50) > 1.072740972) < 0.9869814486
P(Y (50) > 1.089381673) < 0.9802526895
P(Y (50) > 1.106022374) < 0.9721771326
P(Y (50) > 1.122663076) < 0.9627888818
P(Y (50) > 1.139303777) < 0.9521273434

Clustered dependencies and Chernoff-Hoeffding Number of components in G is 102. Upper tail
bound (¢ > 1.00153884) :

P(Y(50) > t) < exp ((t - 1.00153884)2>

0.04124188647
Lower tail bound (¢ < 0.9442546879) :

0.04124188647

P(Y (50) < 0.8064897514) < 0.6311625805
P(Y (50) < 0.8231304527) < 0.700660005
P(Y (50) < 0.839771154) < 0.7674346293
P(Y (50) < 0.8564118552) < 0.8293606695

P(Y(50) < t) < exp <(0.9442546879 _ t)z)

<

P(Y (50) < 0.8730525565) < 0.8843281703
P(Y (50) < 0.8896932578) < 0.9303609272
P(Y (50) < 0.9063339591) < 0.9657338311
P(Y (50) < 0.9229746604) < 0.9890799724
P(Y (50) < 0.9396153616) < 0.9994782554
P(Y (50) > 1.006178167) < 0.9994782554
P(Y (50) > 1.022818868) < 0.9890799724
P(Y (50) > 1.039459569) < 0.9657338311
P(Y (50) > 1.056100271) < 0.9303609272
P(Y (50) > 1.072740972) < 0.8843281703
P(Y (50) > 1.089381673) < 0.8293606695

P(Y (50) > 1.106022374) < 0.7674346293
P(Y (50) > 1.122663076) < 0.700660005
P(Y (50) > 1.139303777) < 0.6311625805

Bound based on Bernstein inequality We obtain 02 = [2.5¢-07,0.003417313805] M = 0.1700490888
Upper tail bound (¢ > 1.00153884) :

P(Y (50) > t) < exp (—(t — 1.00153884)2)

0.00683462761 + 0.1133547226¢
Lower tail bound (¢t < 0.9442546879) :

P(Y(5O) < t) < exp < _(0-9442546879 _ t)2)

0.00683462761 + 0.1133547226 * ¢

22

A.7 Euler

P(Y (50) < 0.9063339591) < 0.878835535

P(Y (50) < 0.9229746604) 522085605
P(Y (50) < 0.9396153616) 970801295

<0.9
< 0.9
P(Y (50) > 1.006178167) < 0.9970801295
< 0.9
<o0.8

P(Y (50) < 0.8064897514) < 0.4294269183
P(Y (50) < 0.8231304527) < 0.4899923015
P(Y (50) < 0.839771154) < 0.55742528
P(Y (50) < 0.8564118552) < 0.6316005317
P(Y (50) < 0.8730525565) < 0.7116976328
P(Y (50) < 0.8896932578) < 0.7956120146
0.
0.
0

P(Y (50) > 1.022818868) < 0.9522085605
P(Y (50) > 1.039459569) < 0.878835535
P(Y (50) > 1.056100271) < 0.7956120146
P(Y (50) > 1.072740972) < 0.7116976328
P(Y (50) > 1.089381673) < 0.6316005317
P(Y (50) > 1.106022374) < 0.55742528
P(Y (50) > 1.122663076) < 0.4899923015
P(Y (50) > 1.139303777) < 0.4294269183

We consider a simple stochastic integrator

w is a standard gaussian truncated to [—1000,1000] and o = 0.3, dt
1.2. We derive an affine form for Y (1000).
285.3871188,285.6155199] and expectation: [0.1142005277,0.1142005277].

Chromatic number based bound

0.1142005277) :

P(Y(1000) > t) < exp (

Y(n+1) =Y (n)+dt0(u—Y(n))) + oVdtw

163.1578492

Lower tail bound (¢ < 0.1142005277) :

P(Y'(1000) < t) < exp (

—(t— 0.1142005277)2)

163.1578492

P(Y (1000) < —285.3871188) < 1.080319436¢ — 217
P(Y (1000) < —256.8369869) < 1.807911943¢ — 176
P(Y (1000) < —228.2868549) < 1.385075354¢ — 139
P(Y (1000) < —199.736723) < 4.857810541e — 107
P(Y (1000) < —171.1865911) < 7.799715976¢ — 79
P(Y (1000) < —142.6364591) < 5.7330806e — 55
P(Y (1000) < —114.0863272) < 1.929160452¢ — 35
P(Y (1000) < —85.53619527) < 2.971800812e — 20
P(Y (1000) < —56.98606334) < 2.095762608¢ — 09
P(Y (1000) < —28.4359314) < 0.006766054971
P(Y (1000) < 0.1142005277) < 1
P(Y (1000) > 28.66433246) < 0.006766054971
P(Y (1000) > 57.21446439) < 2.095762608¢ — 09
P(Y (1000) > 85.76459633) < 2.971800812¢ — 20
P(Y (1000) > 114.3147283) < 1.929160452¢ — 35
P(Y (1000) > 142.8648602) < 5.7330806e — 55
P(Y (1000) > 171.4149921) < 7.799715976e — 79
P(Y (1000) > 199.9651241) < 4.857810541e — 107
P(Y (1000) > 228.515256) < 1.385075354e — 139
P(Y (1000) > 257.0653879) < 1.807911943e — 176
P(Y (1000) > 285.6155199) < 1.080319436e — 217

<
<

—(0.1142005277 — t)2)

Chromatic number bound on G is 1.

0.001, 8 = 1, and u

The affine form has a 1000 noise symbols with range:

Upper tail bound (¢

Clustered dependencies and Chernoff-Hoeffding Number of components in G is 1000. Upper tail

bound (¢ > 0.1142005277) :

t —0.1142005277

P(Y (1000) > t) < exp <(

Lower tail bound (¢t < 0.1142005277) :

163.1578492

0.1142005277 — ¢

)

P(Y(1000) < t) < exp <(

23

163.1578492

")

P(Y (1000) < —285.3871188) < 1.080319436e — 217
P(Y (1000) < —256.8369869) < 1.807911943¢ — 176
P(Y (1000) < —228.2868549) < 1.385075354¢ — 139
P(Y (1000) < —199.736723) < 4.857810541e — 107
P(Y(1000) < —171.1865911) < 7.799715976e — 79
P(Y (1000) < —142.6364591) < 5.7330806e — 55
P(Y (1000) < —114.0863272) < 1.929160452¢ — 35
P(Y (1000) < —85.53619527) < 2.971800812e — 20
P(Y (1000) < —56.98606334) < 2.095762608e — 09

P(Y (1000) < —28.4359314) < 0.006766054971

P(Y (1000) < 0.1142005277) < 1

P(Y (1000) > 28.66433246) < 0.006766054971
P(Y (1000) > 57.21446439) < 2.095762608¢ — 09
P(Y (1000) > 85.76459633) < 2.971800812¢ — 20
P(Y (1000) > 114.3147283) < 1.929160452¢ — 35

P(Y (1000) > 142.8648602) < 5.7330806e — 55
P(Y (1000) > 171.4149921) < 7.799715976e — 79
P(Y (1000) > 199.9651241) < 4.857810541e — 107
P(Y (1000) > 228.515256) < 1.385075354e — 139
P(Y (1000) > 257.0653879) < 1.807911943e — 176
P(Y (1000) > 285.6155199) < 1.080319436e — 217

Bound based on Bernstein inequality = We obtain % = [0.008157892458,0.008157892458] M = 0.3
Upper tail bound (¢ > 0.1142005277) :

—(+ — 2
IP’(Y(IOOO)Zt)geXp< (t — 0.1142005277) >

0.01631578492 + 0.19998t
Lower tail bound (¢ < 0.1142005277) :

—(0.1142005277 — t)*
P(Y(1000) < t) <
(Y (1000) <) < exp (0.01631578492 +0.19998 t

P(Y (1000) < —285.3871188)
P(Y (1000) < —256.8369869)
P(Y (1000) < —228.2868549) < 0
P(Y (1000) < —199.736723) < 0
P(Y (1000) < —171.1865911) < 0
P(Y (1000) < —142.6364591) < 1.577343606e — 310
P(Y (1000) < —114.0863272) < 1.56215748e — 248
P(Y (1000) < —85.53619527) < 1.54705759¢ — 186
P(Y (1000) < —56.98606334) < 1.531955316e — 124
P(Y (1000) < —28.4359314) < 1.516414296¢ — 62
P(Y(1000) < 0.1142005277) < 1
P(Y (1000) > 28.66433246) < 1.516414296¢ — 62
P(Y (1000) > 57.21446439) < 1.531955316e — 124
P(Y (1000) > 85.76459633) < 1.54705759¢ — 186
P(Y (1000) > 114.3147283) < 1.56215748e — 248
P(Y (1000) > 142.8648602) < 1.577343606e — 310
P(Y (1000) > 171.4149921) < 0
P(Y (1000) > 199.9651241) < 0
P(Y (1000) > 228.515256) <
P(Y (1000) > 257.0653879) <
P(Y (1000) > 285.6155199) <

<o
<o

0
0
0

A.8 Arm2D

This corresponds to the motivating example of a 2D arm presented in detail through the main paper.

A.9 RimlessWheel

The rimless wheel model, taken from Tedrake et al [36], models a wheel with spokes by no rims rolling down
a slope. Such models are used as human gait models in robotics.

z(n+1)= 0082(171-@9) (w(n) + 2fg(1 - COS(lgoﬁl))) - 2fg(1 - COS(%&)) .

Here 81 = g +w and By = g —w and w is a truncated gaussian with mean 8degrees, ¢ = 1.5 and truncated
to [0,16]. x(n) supposedly models w? the square of the wheel’s angular velocity. However, the invariant

2(n) > 0 is not enforced in this model. We have 6 = 30, g = 10, L = 1.

We are concerned with z(1000). It has 3000 noise symbols with range: [-1.24109475,9.373012643] and
expectation: [3.39358033,4.738337563].

Chromatic number based bound Chromatic number bound on G is 3. Upper tail bound (¢ >
4.738337563) :

—(t 4. 2
P((1000) > t) gexp((t — 4.738337563) >

18.6103127

24

Lower tail bound (¢ < 3.39358033) :

P(x(1000) < t) < exp <—(3.39358033 - t)2>

18.6103127

P(2(1000) < —1.24109475) < 0.3153064617
P(2(1000) < —0.7103893801) < 0.4045367902
P(x(1000) < —0.1796840105) < 0.5035446258
P(x(1000) < 0.3510213591) < 0.6080967664
P(2(1000) < 0.8817267287) < 0.7124628284

P(x(1000) < 1.412432098) < 0.8098535964
P(x(1000) < 1.943137468) < 0.8931113477
P(x(1000) < 2.473842838) < 0.9555633572
P(z(1000) < 3.004548207) < 0.9919006059
P(z(1000) > 5.127369686) < 0.9919006059
P(z(1000) > 5.658075055) < 0.9555633572
P(x(1000) > 6.188780425) < 0.8931113477
P(2(1000) > 6.719485794) < 0.8098535964
P(2(1000) > 7.250191164) < 0.7124628284
P(2(1000) > 7.780896534) < 0.6080967664
P(x(1000) > 8.311601903) < 0.5035446258
P(x(1000) > 8.842307273) < 0.4045367902
P(x(1000) > 9.373012643) < 0.3153064617

Clustered dependencies and Chernoff-Hoeffding Number of components in G is 1000. Upper tail
bound (¢ > 4.738337563) :

—(t — 2
P(z(1000) > t) < eXp((t — 4.738337563))

8.047091124
Lower tail bound (¢ < 3.39358033) :

—(3.39358033 — t)?
< <
P(w(1000) <) < exp < 8.047091124

P(x(1000) < —1.24109475) < 0.06929974783
P(x(1000) < —0.7103893801) < 0.1233165438
P(2(1000) < —0.1796840105) < 0.2046022571
P(x(1000) < 0.3510213591) < 0.3165183425
P(x(1000) < 0.8817267287) < 0.4565483016

P(2(1000) < 1.412432098) < 0.6140079106
P(2(1000) < 1.943137468) < 0.7699465684
P(x(1000) < 2.473842838) < 0.9002157255
P(x(1000) < 3.004548207) < 0.9813682177
P(x(1000) > 5.127369686) < 0.9813682177
P(z(1000) > 5.658075055) < 0.9002157255
P(2(1000) > 6.188780425) < 0.7699465684
P(x(1000) > 6.719485794) < 0.6140079106
P(x(1000) > 7.250191164) < 0.4565483016
P(x(1000) > 7.780896534) < 0.3165183425
P(x(1000) > 8.311601903) < 0.2046022571
P(x(1000) > 8.842307273) < 0.1233165438

P(x(1000) > 9.373012643) < 0.06929974783

Bound based on Bernstein inequality We obtain 02 = [0,0.5742328032] M = 1.494858078 Upper tail
bound (¢ > 4.738337563) :

—(t — 4. 2
P(x(1000) > t) < exp ((t — 4.738337563) >

1.148465606 + 0.996472395t

Lower tail bound (¢ < 3.39358033) :

—(3.39358033 — t)2 >

P(x(1000) < ¢) <
(2(1000) £ 1) < exp <1.148465606 +0.996472395 * ¢

P(x(1000) < —1.24109475) < 0.02412483238

P(z(1000) < —0.7103893801) < 0.04014600523
P(z(1000) < —0.1796840105) < 0.06645879973
P(z(1000) < 0.3510213591) < 0.1092280169
P(2(1000) < 0.8817267287) < 0.1776755358
P(x(1000) < 1.412432098) < 0.2845463237
P(2(1000) < 1.943137468) < 0.4443959462
P(x(1000) < 2.473842838) < 0.6638924688
P(x(1000) < 3.004548207) < 0.9061757399
P(x(1000) > 5.127369686) < 0.9061757399
P(z(1000) > 5.658075055) < 0.6638924688
P(z(1000) > 6.188780425) < 0.4443959462
P(z(1000) > 6.719485794) < 0.2845463237
P(x(1000) > 7.250191164) < 0.1776755358
P(x(1000) > 7.780896534) < 0.1092280169

P(z(1000) > 8.311601903) < 0.06645879973
P(x(1000) > 8.842307273) < 0.04014600523
P(2(1000) > 9.373012643) < 0.02412483238

25

A.10 Steering

The example models a 2 wheeled cart taken through a set of maneuvers at given speeds and steering angles
and for a given list of times, specified below. We integrate the dynamics of this cart to obtain it’s current
position and heading.

Tpg1 = Tp 4+ 0(v,c08(0n)), Ynt1 = Yn + 0(vysin(b,))
Furthermore 5
Ont1 =0, + 7 Un tan(¢y,) -

The code below specifies the maneuvers and the integration.

1 const double angles[15]={0, -3, 0, -3,0,-2,0,-1,-3,0,-3,0, 0, -3, 0}
2 const double times[15] = {15,15,10,15,20,30,10,4,30,20,10,30, 15,15,10}
3 const double speeds[15] = {b5,12, 60,10,60,12,50,10,25,60,10,45, 55,12}
4 int nMoves = 15;

5 Interval delta(0.1);

6 int nRounds = 3;

7 Interval pi (3.1415);

8 Interval il (-0.05,0.05);

9 Interval i2(0.0);

10 Interval i3(1e-05);

11 Interval L (25.0);

12

13 AffineForm x (env), y(env), theta(env);

14

15 for (int j = 0; j < nRounds ; ++j){

16 cout << "Round # " << j << endl;

17 for (int i = 0; i < nMoves; ++i){

18 Interval a = Interval(angles[i])* (pi/Interval(180.0));
19 int T = times[i];

20 Interval v = speeds[i];

21 // Generate Random Variables

22 AffineForm tanphi= randomVariable(env, il, i2, i3);

23 AffineForm vel= randomVariable(env, i1, i2, i3);

24 // Scale and Translate

25 tanphi = tan(a) * (Interval(1.0) + tanphi);

26 vel = v * (Interval(1.0) + vel);

27 for (int k = 0; k < T; ++k){

28 x = X + delta* vel * cosine(theta);

29 y =y + delta * vel * sine(theta);

30 theta = theta + (delta/L) * vel * tanphi;

31 ¥

32 }

33 }

Our goal is to generate an affine form describing the value of = at the end of the computation. We obtain a
form with 4542 noise symbols and range: [1951.908124,2352.09445], expectation: [2150.134744,2153.840162].

Chromatic number based bound Chromatic number bound on G is 2973. Upper tail bound (¢t >
2153.840162) :

—(t — 2153.840162)2
P(th)SeXp< (53806))

5694294.018
Lower tail bound (¢ < 2150.134744) :

- _ £)2
P(z < t) < exp ((2150.134744 — t))

5694294.018

26

P(x < 1951.908124) < 0.9931231985
P(x < 1971.91744) < 0.9944377665
P(z < 1991.926757) < 0.995614059
P(z < 2011.936073) < 0.9966515815
P(z < 2031.945389) < 0.9975498975
P(x < 2051.954706) < 0.9983086287
P(z < 2071.964022) < 0.9989274554
P(z < 2091.973338) < 0.999406117
P(z < 2111.982655) < 0.9997444115
P(z < 2131.991971) < 0.9999421964
P(z > 2172.010604) < 0.99994202
P(z > 2192.01992) < 0.9997440407
P(z > 2212.029236) < 0.999405552
P(z > 2232.038552) < 0.9989266964
P(z > 2252.047869) < 0.998307676
P(z > 2272.057185) < 0.9975487516
P(xz > 2292.066501) < 0.9966502429
P(z > 2312.075818) < 0.9956125281
P(z > 2332.085134) < 0.9944360441
P(x > 2352.09445) < 0.9931212852

Clustered dependencies and Chernoff-Hoeffding Number of components in G is 1518. Upper tail
bound (¢ > 2153.840162) :
—(t — 2153.840162)>

76841.07311

P(x > t) <exp
Lower tail bound (¢ < 2150.134744) :

—(2150.134744 — t)?
76841.07311

P(z <t) <exp

P(xz < 1951.908124) < 0.5996767945
P(x < 1971.91744) < 0.6614380617

2131.991971) < 0.9957255125

Pz < 1991.926757) < 0.7219970533
P(z < 2011.936073) < 0.7799306214
Pz < 2031.945389) < 0.8337787503
Pz < 2051.954706) < 0.8821043771
P(x < 2071.964022) < 0.9235564285
Pz < 2091.973338) < 0.9569322652
P(z < 2111.982655) < 0.9812355279

0

0

BRE) :
IVIVIVIVIVIVIV [IVIAIAIAIAIAIAIAIA

2172.010604) < 0.9957124927
P(xz > 2192.01992) < 0.9812085582
P(x > 2212.029236) < 0.9568921744
P(x > 2232.038552) < 0.9235044282
P(x > 2252.047869) < 0.8820420003
P(x > 2272.057185) < 0.8337077769
P(z > 2292.066501) < 0.7798529939
P(x > 2312.075818) < 0.7219147891
P(z > 2332.085134) < 0.6613531674

P(xz > 2352.09445) < 0.5995911869

Bound based on Bernstein inequality = We obtain 0% = [0.0680625,60.37836935] M = 197.8347066
Upper tail bound (¢ > 2153.840162) :

—(t — 2153.840162)
120.7567387 + 131.8766154¢

P(x > t) <exp

Lower tail bound (¢ < 2150.134744) :

—(2150.134744 —)2
120.7567387 + 131.8766154 = ¢

Pz <t) <exp

P(z < 1951.908124) < 0.2240107211
P(x < 1971.91744) < 0.2607084489
P(z < 1991.926757) < 0.3034177742
P(z < 2011.936073) < 0.3531232989
P(z < 2031.945389) < 0.4109707279
P(z < 2051.954706) < 0.4782930386
P(z < 2071.964022) < 0.5566405779
P(x < 2091.973338) < 0.6478148369
P(z < 2111.982655) < 0.75390185
P(z < 2131.991971) <
2172.010604) < 0.8770767033

P(x >

P(x > 2192.01992) < 0.7537437919
P(z > 2212.029236) < 0.6476789784
P(z > 2232.038552) < 0.5565238278
P(xz > 2252.047869) < 0.4781927163
P(xz > 2272.057185) < 0.4108845242
P(xz > 2292.066501) < 0.3530492279
P(xz > 2312.075818) < 0.3033541288
P(xz > 2332.085134) < 0.2606537619
P(xz > 2352.09445) < 0.2239637317

27

A.11 Anesthesia

The anesthesia model consists of a four chamber pharmacokinetic model of the anesthetic fentanyl that
is administered to a surgical patient using an infusion pump [28]. This model is widely used as part of
automated anesthesia delivery systems [34]. As part of this process, we model an erroneous infusion that
results in varying amounts of anesthesia infused over time as a truncated gaussian random noise.The state
of the model is a vector of concentrations of anesthesia in various “chambers” of the body:

f: (1'17$23 SC3,$4)

The target state variable x4 measures the concentration of anesthesia in the blood plasma. wu(n) is the
anesthesia input at time n.
The model evolves as
Z(n+1) = AZ(n) + Bu(n)(1 + e(n))

The matrices A, B are specified below. e(n) is a truncated gaussian variable over the range [—0.4,0.4] with
mean 0 and standard deviation o = 0.08. It models the percentage error in the infusion at time n. The u(n)
input is specified below as a fixed set of infusion rates and times.

1 double infusionTimings[7] = {20, 15, 15, 15, 15, 15, 453};

2 double infusionRates[7] = { 3, 3.2, 3.3, 3.4, 3.2, 3.1, 3.0};

3 AAEnvironment env(3);

4 AffineForm x1(env), x2(env), x3(env), x4(env);

5 Interval e0(-0.4, 0.4), e1(0.0), e2(0.006,0.0064);

6

7 for (int i = 0; i < 7; ++i){

8 double currentInfusion= 20.0*infusionRates[i];

9 int curTime = infusionTimings[i];

10 for (int j = 0; j < 40*curTime; ++j){

11 AffineForm e = randomVariable(env, e0, el, e2);

12 e = e + Interval(1.0);

18 AffineForm u = e * Interval(currentInfusion);

14 AffineForm x1n = Interval(0.9012)* x1 + Interval(0.0304) * x2 +
15 Interval(0.0031) * x3 + Interval(2.676e-1) * u;
16 AffineForm x2n = Interval(0.0139)* x1 + Interval(0.9857) * x2 +
17 Interval (2e-3)*u;

18 AffineForm x3n = Interval(0.0015) * x1 + Interval(0.9985) * x3+
19 Interval(2e-4)*u ;

20 AffineForm x4n = Interval(0.0838) * x1 + Interval(0.0014) * x2 +
21 Interval(0.0001) *x3 + Interval(0.9117) * x4
22 + Interval(12e-3) * u;

28 x1 = x1n;

24 X2 = x2n;

25 x3 = x3n;

26 x4 = x4n;

27 }

28 }

29

The affine form for x4 has 5600 noise symbols in the range: [148.0791242,345.5179566] and expectation:
[246.7985404,246.7985404].

Chromatic number based bound Chromatic number bound = 1, Upper tail bound (¢ > 246.7985):

(t— 246.7985404)2>

Pzy > t) < exp < 234.3158871

Lower tail bound (¢t < 246.7985404):

—(246.7985404 — t)?
234.3158871

Plzy <t) <exp (

28

P(wy < 148.0791242) < 8.651460195¢ — 19
P(zy < 157.9510659) < 2.339065726¢ — 15
P(zy < 167.8230075) < 2.752562728¢ — 12
P(wy < 177.6949491) < 1.409852935¢ — 09
P(xy < 187.5668907) < 3.143056507¢ — 07
P(wy < 197.4388323) < 3.049806976¢ — 05

P(z4 < 207.3107739) < 0.001288054699
P(xy < 217.1827156) < 0.02367762005
P(ry < 227.0546572) < 0.1894451872
P(xy < 236.9265988) < 0.6597370803
P(xy > 256.670482) < 0.6597370803
P(wy > 266.5424236) < 0.1894451872
P(wy > 276.4143653) < 0.02367762005
P(xy > 286.2863069) < 0.001288054699
P(xy > 296.1582485) < 3.049806976¢ — 05
P(x4 > 306.0301901) < 3.143056507¢ — 07
P(xy > 315.9021317) < 1.409852935¢ — 09
P(wy > 325.7740733) < 2.752562728¢ — 12
P(xy > 335.646015) < 2.339065726e — 15
P(xy > 345.5179566) < 8.651460195¢ — 19

Chernoff-Hoeffding Bounds Number of components is 5600. The bounds are identitcal to Chromatic
number bounds in this instance.

Bernstein Inequality Bounds We obtain 02 = [4.393422883,4.686317742] and M = 2.361720039.

P(xy < 148.0791242) < 2.082001643¢ — 26
P(zy < 157.9510659) < 1.075895049¢ — 23
P(zy < 167.8230075) < 5.530928956¢ — 21
P(xy < 177.6949491) < 2.822757461e — 18
P(zy < 187.5668907) < 1.425489338e — 15
P(zy < 197.4388323) < 7.082952624¢ — 13
P(zy < 207.3107739) < 3.426386251e — 10
P(wy < 217.1827156) < 1.578147846¢ — 07
P(wy < 227.0546572) < 6.540149446¢ — 05
P(zy < 236.9265988) < 0.02001284103
P(zy > 256.670482) < 0.02001284103
P(wy > 266.5424236) < 6.540149446¢ — 05
P(wy > 276.4143653) < 1.578147846¢ — 07
P(xy > 286.2863069) < 3.426386251le — 10
Pz, > 296.1582485) < 7.082952624e — 13
P(zy4 > 306.0301901) < 1.425489338e — 15
P(wy > 315.9021317) < 2.822757461e — 18
P(zy > 325.7740733) < 5.530928956¢ — 21

P(zy > 335.646015) < 1.075895049¢ — 23
P(xy > 345.5179566) < 2.082001643¢ — 26

29

	Introduction
	Motivating Example
	Probabilistic Affine Forms
	Random Variables, Expectations, Moments and Independence
	Environments and Affine Forms
	Approximating Computations using Affine Forms

	Concentration of Measure Inequalities
	Experiments
	Conclusion and future work
	Details of benchmarks
	Ferson
	Filter
	Tank
	CartPole
	Tumor Model
	DblWell
	Euler
	Arm2D
	RimlessWheel
	Steering
	Anesthesia

