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Abstract. In this paper, we use a novel combination of probabilistic program-
ming and flowpipe construction to predict bounds on future biogas production
for a wastewater treatment plant given operational data from the past. The opera-
tion of the anaerobic digester of a wastewater treatment plant is modeled through
an Ordinary Differential Equation (ODE) model with unknown parameters and
unobservable internal states. We are given data from the plant’s operation that
includes the daily measurement of the incoming waste volumes and concentra-
tions along with the volume of biogas produced. We formalize our problem as
first estimating the unknown parameters and initial conditions using Bayesian
inference, such that the past behavior of the system is “compatible” with the ob-
served data. Next, we propagate those input parameter estimates forward using
flowpipe construction. To enable rapid and accurate flowpipe construction, we
exploit the monotonicity property of the dynamical model of the plant. The pro-
cedure yields an over-approximation of the upper and lower bounds on biogas
production, given the inputs. As a result, it can be used to formally bound future
predictions that might inform facility operations. We implemented this procedure
using a first-order kinetics model of hydrolysis to model the anaerobic digester
of a real-world case study facility. We demonstrate how this method constructs
realistic bounds for biogas prediction from the historical data that contain the ac-
tual ground-truth data 100% of the time. Our approach outperforms the standard
approach that computes a posterior predictive distribution from samples both in
terms of time and accuracy.

Keywords: Cyber-Physical Systems, Reachability Analysis, Flowpipe Construc-
tion, Monotone Systems, Waste-Water Treatment and Bayesian Inference.

1 Introduction

This work uses a combination of probabilistic programming and reachability analysis
to predict probabilistic bounds on the future biogas production of wastewater treatment
plants (WWTP). WWTPs involve a digester that employs a process of anaerobic di-
gestion to convert various input waste streams into biogas that can be used as a source
of renewable energy. The operation of WWTPs is rife with many sources of uncertain-
ties. The process of digestion can be captured (approximately) by ordinary differential
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equation (ODE) models with uncertain rate parameters, and unobservable state vari-
ables. There is also uncertainty in the data, including the amount and concentration of
wastes in the various input streams. Finally, data at WWTPs is measured at varying
frequencies and accuracies. Some data is measured using real-time sensors, while other
data is measured every few days by a laboratory technician. The differing frequency and
accuracy in these measurements adds additional uncertainty to an already underspec-
ified problem. Given all of these uncertainties, being able to obtain formal bounds on
predictions of future conditions, such as anaerobic digester biogas production, would
be useful to WWTP operators. For instance, the operator may wish to predict the biogas
production over the near term for various future input scenarios.

In this paper, we use ideas from formal verification of cyber-physical systems (CPS)
and probabilistic programming to analyze the operation of WWTPs. We wish to con-
struct upper and lower bounds for the future biogas production of an anaerobic digester
at a WWTP such that for an input probability level ~, the future biogas production
should lie within the computed bounds with probability at least . Our method is a two-
step approach. First, we use Bayesian modeling and inference to estimate a range of
uncertain input parameters whose posterior probability exceeds + [38]. Bayesian mod-
eling and inference consists of specifying a generative model of the process of biogas
production from the input waste streams. Probabilistic programming languages such as
PyRO [10], Stan [13], Anglican [48] and Turing. j1 [25] are commonly used to
specify such models. We refer the reader to a survey by De Meent et al [39] or the mono-
graph edited by Barthe et al [8] for a detailed introduction to probabilistic programming
concepts. Our work uses the Julia programming language based Turing. j1 to spec-
ify the model and perform inference [25]. The process of inference yields samples from
the posterior distribution over the unknown parameters and initial conditions, condi-
tioned on the observed data from plant operation. Second, we extract the credible inter-
vals (the Bayesian analog of confidence intervals) over the input parameters and initial
states such that the (sample-estimated) posterior probability of these intervals is at least
v [32]. Finally, given a planned future set of inputs, we perform reachability analysis
over the differential equation model. Given a set of initial states and unknown param-
eters, reachability analysis constructs a flowpipe that is an over-approximation of all
states reached over some finite time horizon of interest [4, 19]. By exploiting the mono-
tonicity properties of the WWTP model, we show how to perform reachability analysis.
Our approach here is a simplified version of a framework for reachability analysis pro-
posed by Meyer et al [40]. This approach reduces reachability analysis to a simulation
of the upper and lower bound trajectories of the system, showing that all behaviors are
contained “in between” these trajectories. As a result, we obtain an enormous speedup
over existing approaches.

We evaluate our two-step approach against a standard approach based on simulation
of the samples from the posterior over a dataset that spans three months of operational
data consisting of waste inputs and gas production outputs for a WWTP in the San
Francisco Bay Area. We evaluate our approach by splitting the data into 8-day segments
wherein parameters and initial conditions are obtained by running Bayesian inference
over data from 3 days and then using data from the subsequent 5 days as a prediction
period. We assess the flowpipes constructed for various credible intervals against the
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ground truth data. In addition to measuring prediction accuracy, we also compare the
flowpipe bounds and computational times against those obtained through the posterior
simulation approach. We show that our approach is more accurate in terms of contain-
ing ground truth data within the predicted bounds but also quite fast when compared
to posterior simulations. However, we also note that our approach to deriving credible
intervals can be quite conservative, leaving room for future improvements. The bounds
predictions obtained using our approach could be used by plant operators to formulate
a cost-minimizing energy management plan, especially at facilities with highly vari-
able electricity tariffs [15], gas storage resources like a biogas storage tank [11, 16], or
energy storage resources like a Li-ion battery [41, 11, 16].

1.1 Related Work

Significance and challenges: Recent research has highlighted the carbon emission re-
ductions [43, 16] and electricity bill savings [41, 50, 11] potential of flexible operation
of wastewater treatment plants (WWTPs). However, operational challenges make it dif-
ficult to realize those benefits in the real world [47]. Since WWTPs are critical infras-
tructure, facility operators are understandably risk-averse to modifying operations. For-
mal guarantees around predictions could help build operator confidence around novel
control approaches such as model predictive control.

Reachability Analysis: This work builds upon the existing literature on computing
reachable sets for cyber-physical systems described by ordinary differential equations [4,
19]. Reachability analysis techniques estimate bounds on the solutions to a differential
equation model over a finite time horizon, given the set of initial conditions and un-
known parameters. The problem of reachability analysis is known to be undecidable
even for linear systems. However, recent approaches have provided computationally
efficient and precise bounds to prove properties for systems with billions of state vari-
ables [6]. Unfortunately, these approaches are not directly applicable to our case due
to the presence of uncertain parameters. Approaches that can handle non-linear sys-
tems can be used for our application. For non-linear systems, we have numerous ap-
proaches including Taylor-model based verified integration [9, 17, 18], or polynomial
zonotopes [2], to mention a few. However, these approaches can be computationally
expensive. Our work here uses a specialized approach that exploits monotonicity prop-
erties of the underlying model [40]. As a result, we obtain a precise bound that is
also computationally inexpensive. Prior work has addressed the problem of reachabil-
ity analysis for models with uncertainty by employing sampling-based approaches to
reachability analysis as in [26, 36].

Sampling and Inference in Verification: The use of sampling and hypothesis testing to
prove properties of stochastic systems has been explored extensively in the past through
the statistical model checking approach [33,22]. This has been applied in many do-
mains, including biological systems [51]. Our approach is sample-based since we em-
ploy a Bayesian inference procedure that uses Monte Carlo methods to draw samples
from the posterior [39]. Although inference approaches such as Hakaru can charac-
terize the posterior distribution precisely [42], they are restricted to a relatively small
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class of programs, and cannot handle those involving differential equation models. As
a result, our work employs Monte Carlo approaches with asymptotic guarantees that
assume a sufficiently large number of samples. We emphasize that such an approach
is very common in the probabilistic programming literature, wherein the properties of
the posterior are inferred from a “large enough” number of samples. Our approach is in
direct contrast to the standard statistical approach of constructing “posterior predictive
samples” by simulating the posterior samples. However, we observe in our empirical
evaluation that such an approach is relatively expensive since it involves simulation of
a large number of samples and at the same time loses accuracy since it is unable to
generalize effectively from the samples.

Prior work has explored the combination of reachability analysis and statistical in-
ference for predictive monitoring of a variety of systems including road vehicles [3],
stochastic processes [12], and human models [7]. Of these, our work is most closely re-
lated to the work of Chou et al [20] in which the authors apply Bayesian approximation
methods to estimate forward projection sets for a vehicle model.

2 Problem Statement and Approach

Ordinary differential equations (ODEs) are used to model a variety of natural and en-
gineered systems in domains ranging from physics to ecology. Let x € R"™ represent
a vector of state variables x = (z1,...,2,) and f : R" x R™ — R" be a Lipschitz
continuous function wherein f(x, 6) is dependent on parameters § € © C R™. An
ODE is of the form %X = f(x,6), wherein the function f (also known as the vector
field) maps each state x and parameter § € © to a derivative f(x,6). The solution to
the ODE given fixed parameter values § € © and initial conditions x(0) is a trajectory
¢ : [0,T) — R™ for some time horizon 7' > 0 such that (a) ¢(0) = x(0) and (b) for
allt € [0,7), 42 = f(¢(t),0). In other words, the derivative of the solution satisfies
the differential equation for a fixed 6. Since f is assumed to be Lipschitz continuous,
we know that the solution exists and is unique. In this paper, we will work with ODEs
with inputs. Let u € R represent a vector of k inputs.

An ODE with inputs drawn from a domain U C R¥ has the form 2 = f(x, u,6).
In many ODE models of physical systems (including that studied here), the internal
state x is not directly measurable. We will assume that y = g(x) is a measurable output.
Given a fixed parameter # € © and an input signal £ : [0,7] — U, the corresponding
trajectory ¢ for initial condition x(0) satisfies ¢(0) = x(0) and (fl—f = f(p(t),&(1),0).

For notational convenience, given a set of values uy, . . ., u; € R¥, we write u(l,...,t)
to denote the function [0,¢) — R™ wherein u(7) = u;ifi — 1 < 7 < i.

Definition 1 (Problem Statement). The problem of predicting future range of possible

biogas production given past data and the model structure is as follows:

Inputs: Model structure (f,©,U, g), pastdata (u(1,...,t),y(1,...,t)), future planned
input signal u(t + 1,...,t + k), and confidence level v € (0, 1).

Outputs: Credible interval for parameters : (0,5, Or;] and future output bounds [y, (7), ¥ni (7)),
wherein yio,yni : [t,t+k) — R such that vt € L4+ 1,t+k),yi0(T) < yhi(7)
are bounds on the future outputs of the model.
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Fig. 1. Overall approach at a glance using a combination of probabilistic inference to estimate
the parameter and initial condition posterior ranges while using reachability analysis to estimate
bounds on future outputs.

The specific wastewater treatment model is detailed in section 3. It has n = 7 state
variables, k = 10 inputs, m = 7 unknown parameters and a scalar (]y| = 1) observable
output which represents the gas production. Each parameter is known to belong to a
large interval of possible values and the states of the plant x cannot be observed. As a
result, the problem has two aspects to it: (a) given past data, find out possible values of
parameters 6 and possible initial states x(0); and (b) given future inputs, and the set of
possible values of 6, x(0), predict bounds on the outputs y.

Figure 1 summarizes the overall approach to the problem, which consists of two
parts: (a) we run Bayesian inference through a probabilistic programming framework
to compute posterior credible intervals over the unknown parameters and final states of
the model; and (b) we perform a reachability analysis over the unknown parameters and
initial conditions given the future inputs to compute the overall bounds.

Bayesian Inference: Bayesian inference inputs (a) the generative model given by the
probability distribution P(y(1,...,%) | ¢,x(0),u(1,...,t)) which represents the prob-
ability of observing the output data, given the inputs to the plant, the unknown param-
eters # and initial state x(0) for the model; and (b) the prior distribution 7(6,%(0))
with support over the set © x R™. We seek to compute a representation of the posterior
distribution P(0,x(0) | y(1,...,t),u(l,...,t)) using Bayes’ rule:

P0,x(0) |y(1,...,¢),u(l,...,t)) x P(y(1,...,t) | 6,x(0),u(l,...,t)) m(x(0),0).

There are many computational approaches to Bayesian inference, including techniques
such as Markov chain Monte Carlo (MCMC), sequential Monte Carlo (SMC), Belief
Propagation (BP), and Variational Inference (VI) [39, 8]. Tools such as Turing. j1 [25],
PyRo [10] and Stan [13] support Bayesian inference by specifying the model, and the
prior distribution as programs in a domain specific language called a probabilistic pro-
gramming language.

Our framework uses probabilistic programming to compute samples from the pos-
terior distributions for P(0,x(0) | y(1,...,%¢),u(1,...,t)). Given the posterior and a
confidence level v € (0, 1), we extract credible intervals over [0, Op;] X [X(t) 10, X(t) 1]
for 6, x(t), such that the probability of drawing a sample from the credible interval is at
least .
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Reachability Analysis: We wish to predict bounds on the output [y;,, yn;] such that
for any choice of parameters § € [0},,0p;], an initial state x(0) € [x(0);0,%(0)p;], an
input signal u(1,...,t + k), the resulting trajectories ¢ : [0,¢ + k) — R™ is such that
Vi € [0,t 4+ k), 9(p(t) € [¥io(t), yni(t)]. In other words, the reachability analysis
returns a bound that accounts for all possible outputs that can be observed for the input
parameter and initial condition ranges.

Overall Result: The Bayesian inference yields the following guarantee:

Theorem 1. Assume that the observed data was generated by an instance of the model
with parameter 0 € © and x(0) € R"™ that are sampled according to the prior dis-
tribution (0*,x*(0)) ~ m(0,x). Suppose, that we run a Bayesian inference procedure
that generates N posterior samples. As N — oo, the probability that the 0% ,x*(0) lie
within the credible intervals [0,,,0r;] and [x(0);0, %(0)n] is at least .

The reachability analysis approach yields the following guarantee:

Theorem 2. For any 0 € [0,,,0};] and initial condition x(0) € [x(0);0,%(0)ps], the
output obtained from the resulting trajectory ¢ : [0,t + k) — R"™ is contained in the
computed reachable output bounds [y o, Y hi)-

Vte[0,t+k), yio(t) < glp(t) < yni(t).

Theorem 1 combined with the soundness guarantee of the reachability analysis from
Theorem 2 yields the result that the bounds computed by our approach capture all pos-
sible future outputs of the system with probability at least .

3 Wastewater Treatment Model

The goal of our wastewater treatment model is to compute the biogas production in
m?/day based on the influent (incoming waste stream) concentrations and flow rates.
We use a simplified first-order kinetics reaction to model the biogas production of an
anaerobic digester. The anaerobic digester is modeled as a continuously stirred tank
reactor (CSTR). Anaerobic digestion consists of three main steps. First, sludges and
other wastes are hydrolyzed into simpler fats, acids, and proteins. Second, those sim-
pler organic compounds are fermented into acetate and Ho. Third, acetate and Hy are
converted into CH4 and CO4 by acetotrophic or hydrogenotrophic methanogens [44].
Recent research has shown that hydrolysis can be rate limiting when there are high con-
centrations of volatile solids (VS) [44]. For example, Mahmood et al. found that hydrol-
ysis was the rate-limiting step in the presence of high phosphine concentrations [37].
Since the rate-limiting step of anaerobic digestion depends on the wastewater’s compo-
sition, our model incorporates two steps of the anaerobic digestion process: hydrolysis
of complex wastes into simpler organic compounds and methane fermentation of those
simple organics into CHy. In other words, we combine fermentation and methanogene-
sis into a single step by assuming that methanogenesis is rate limiting. We model both
steps using first-order kinetics models.
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Fig. 2. Diagram of anaerobic digester at a wastewater treatment plant. The variables associated
with each flow are labeled.

Figure 2 shows the overall model of the digester in terms of a block diagram. The
model has 7 state variables C1, ..., C5 representing the concentration of the various
wastes coming from the input streams numbered 1,...,5 whose meanings are ex-
plained in Figure 2, S}, representing the overall chemical oxygen on demand (COD),
and the gas production g. The detailed explanation of the state variables, parameters
and the differential equations is provided through the rest of this section.

3.1 Hydrolysis

We model reactions using first-order kinetics, meaning that the reaction rate is linearly
dependent on the concentration of the reactant [49]. For our problem, there are j het-
erogeneous waste streams into the reactor. As a CSTR, we can assume that the effluent
waste stream is fully mixed throughout the reactor. Let )5, ; be the influent flow rate
of the jth waste stream in m3/day, Qout be the effluent flow rate of the well mixed
sludge in m3/day, V be the total volume of wastewater in the reactor in m®, Cin,; be
the influent volatile solids (VS) concentration of the j** waste stream in mg / L, C; be
the VS concentration of the jth constituent within the reactor in mg / L, and £, ; be
the hydrolysis rate of the j** waste stream in 1/day. Then, we can use mass balance to
define dC} /dt, the rate of change of the jth waste concentration, in mg/L/day as

de _ Qin,j Qout

dt V Vv
wherein, the term Qi}"" C'in,; represents the influent flow of waste stream j, %Cj
represents the effluent flow, and £, ;C; represents the mass converted in the hydrolysis
reaction. We assume that Q,¢ = Z?zl Qin,; and thus, the volume of the tank V
remains constant throughout the operation of the digester.

Cz’n,j - ( + kh,j)Cj B (1)

3.2 Methanogenesis

In reality, methane fermentation (or methanogenesis) takes multiple steps. Hydrolyzed
organic compounds are first fermented to acetate and Hs, then acetate and H are fer-
mented further to CO5 and CHy. To simplify our system of equations, we model the
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entire methane fermentation process from hydrolyzed organic compounds to CHy as a
single first-order reaction.

We define the chemical oxygen demand (COD) of the homogeneous concentra-
tion of hydrolyzed substrate as S;, (in mg / L) and assume that .S;, will be consumed
during methanogenesis at rate of k,, (in 1/day), a first-order rate constant to approxi-
mate overall methane fermentation. Far more precise models of methanogenesis exist,
but literature has shown that those models can be simplified considerably when the
rate-limiting steps of anaerobic digestion are known [44]. In our case, we assume that
hydrolysis or methanogenesis are the two potentially rate-limiting steps, so we believe
that combining all fermentation into a single methanogenesis reaction is reasonable.

The rate of change in concentration, d.Sy, /dt, can be modeled as

s,
dt

= (zj: kn,;Cj) — (Q{}Ut + km)Sh, 2

wherein, the first term, j kn,;C;, representing the specific hydrolysis rate of the di-
gester as described by Guo et al. [28]

We rely on stoichiometry to estimate biogas production. There are 0.35 m3 of CH,
produced for every kg of COD at standard temperature and pressure [44]. Therefore,
we can estimate the daily biogas production, dg/dt, in m*/day using the equation

d
dit’ = 0.00035k:, V Sh /1c 1, 3)

where ¢, is the percent of methane in biogas by volume. The factor 0.00035
comes from converting 0.35 m® CH, / kg COD to 0.00035 L CH4 / mg COD to account
for the units of V' (m?) and S, (mg/L).

3.3 Sources of Uncertainty

The anaerobic digester receives five distinct waste streams: thickened primary sludge
(TPS); thickened waste activated sludge (TWAS); food waste (FW); and fats, oils, and
greases (FOG); and scum. As discussed above, each of these streams has a different
influent flow rate (Q;y,;), concentration (C}y, ;), and hydrolysis rate (K, ;). Inline flow
meters are installed at the facility, so @y, ; is well understood (Figure 1).

The concentrations, Cj;, j, are measured periodically by laboratory technicians, so
the data has two potential issues. First, the concentrations vary with time, so this single
sample is not representative of the temporal fluctuations in concentration. Second, the
single grab sample may not be representative spatially, so that, for a given time it is only
an estimate of the waste concentration.

The largest source of uncertainty is the the hydrolysis (kj_ ;) and methanogenesis
(k) reaction rates. To preserve model simplicity, these reactions are modeled using
first-order kinetics. In reality, a complex series of microbial kinetics involving growth
and decay of biomass is at play. As a result, these reaction rates vary in time and do
not have a true physical meaning (in the way a cell death rate would). Nonetheless,
this approach excels at capturing various dimensions of uncertainty from the microbial
kinetics in a single reaction term. One final source of uncertainty is the methane fraction
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of biogas by volume (1¢ #, ), which varies between 45% and 75% depending on the ratio
of acetotrophic to hydrogenotrophic methanogens [31].

Table 1. Parameters in the biogas production model and their range of values from the literature.
We assumed an initial concentration of zero for parameters such as food waste concentration that
are highly dependent on plant operation and not available from the literature as a result.

Parameter Meaning Range (Literature) Units  Source
km 15" -order methanogenesis rate 0.05-0.3 1/day [34] [28]
kn1 15t-order TPS hydrolysis rate 0.286-3.0 1/day [21][23]
kn2 15*-order TWAS hydrolysis rate 0.025-0.22 1/day [27][28]
kn,3 15*-order FW hydrolysis rate 0.2-0.8 1/ day [35]
kh,a 1%*-order FOG hydrolysis rate 0.333-50 1/day [5][30]
kns 1*¢-order scum hydrolysis rate 0.1-3.0 1/day [21][23]
ncH, Methane fraction of biogas by volume 0.45-0.75 [31]
Cio Initial concentration of TPS 1,000-50,000 mg/L [44][46]
Cs0 Initial concentration of TWAS 1,000-50,000 mg/L [44] [46]
Cs,0 Initial concentration of FW Not available
Cayo Initial concentration of FOG Not available
Cs,0 Initial concentration of scum Not available

Sh,o Initial hydrolyzed substrate in digester 100-10,000  mg/L [1] [29] [45]

4 Bayesian Inference

As mentioned earlier in Section 2, we use Bayesian inference to compute intervals over
parameters and the initial states, based on some past observations from the system. We
assume that the process of biogas production is explained by the model in Section 3, but
for unknown parameters and initial conditions. The ranges for these are shown in Ta-
ble 1. In this section, we describe the overall structure of the probabilistic programming
model for performing inference on the biogas production data. We will then briefly
summarize the process of extracting posterior samples through a Bayesian inference
procedure and the extraction of credible intervals from the samples.

The model used for specifying the prior probabilities 7(6,x(0)) and the generative
model P(y(1,...,t)|0,x(0),u(l1,...,t))is shown in Figure 3. It is a model expressed
in the Julia-based Domain Specific Language (DSL) for the state-of-the-art probabilistic
programming library Turing. j1. The model takes as inputs (Lines 1-6 in the listing
of Fig. 3) the input data u(1,...,t), the output data y(1, ..., t), the ranges for the pa-
rameters and initial conditions, as specified in Table 1 and a parameter ¢ that specifies
the standard deviation for the measurement of the gas production output. Lines 7 - 13
specify the generation of the prior distribution. The function sim_ode in line 18 is not
shown, but uses an off-the-shelf numerical ODE solver to solve the ODE given param-
eters, initial conditions and inputs. It then returns the total gas production aggregated
for each day in the data. Line 21 conditions that model predicted gas production against
the measurements from the data assuming that the measurement device has a known
standard error of &.
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@model function gas_production_model (
inp_data::Matrix{Float64}, # data: inputs to model
output_data::Vector{Float64}, # data: gas production
param_ranges::Matrix{Float64}, # parameter ranges
init_ranges::Matrix{Float64}, # initial condition

f) # std. measurement error
# Prior distribution

k1l ~ uniform(param_ranges[l,1], param_ranges|[1l,2])
k2 ~ uniform(param_ranges|[2,1], param_ranges|[2,2])
# ... prior for parameters

# initial conditions

Cl0 ~ uniform(init_ranges[1l,1], init_ranges([1l,2])

# ... prior for initial conditions

params = [k1, k2, k3, k4, k5, k, eta, V]

x0 = [Cl0, C20, C30, C40, C50, S0, GO]

# Run a ODE simulator given

# input data, parameter sample, initial cond. sample
daily_production = sim_ode (inp_data, params, x0)

for i in 1:n_days
# Condition the gas production on the output data
output_data[i] ~ daily_production[i] + Normal (0.0, &)
end
return params, init_ranges

Fig. 3. Probabilistic programming model in Turing. j1 for specifying the generative model for
the gas production data.

Once the model has been specified, we can use a built-in inference engine in Turing. j1
to return posterior samples. These samples are of the form

S = {(0W,xD(0),.... (6™, xM)},

for a large sample size N > 0 (set to 25, 000 for our experiments). The available proce-
dures in Turing. j1 include Markov chain Monte Carlo (MCMC) methods, Sequen-
tial Monte Carlo (SMC) methods and other approaches such as Variational Inference
(VD).

Next, given a confidence bound ~y, we extract intervals [6),, 05,;] and [x(0);,,%(0) ;]
so that the probability that a given sample (0, x(¢)) from the posterior distribution be-
longs to the intervals is > ~.

P(6 € [0, 0ni] | data) > ~, P(x(0) € [x(0)10,x(0)i] | data) > .

There are many ways of extracting such intervals. Consider the following scheme that

works independently with each dimension of # and x(0). Consider a dimension z; of
the vector 6 or x(0). We estimate the z; ;, = ﬁ quantile and z; p; = 1 — ﬁ
quantile of all the values of the scalar z; from the posterior samples .S. Assume that the
Bayesian inference procedure satisfies convergence in distribution to the true posterior

and that the posterior CDF is continuous everywhere.
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Lemma 1. As the number of samples N — oo, the posterior probability P(z; ¢

(%3105 Zi,hi]) — ﬁ

Proof. This follows from the fact that the empirical distribution Z](\?), formed by the
samples V) M) obtai Lo . _
ples z;7,...,2; ~ obtained by projecting the samples in set .S along z;, converges

to the true posterior Z (1), As a result, the values of Zi 1o and z; p; converge to the ﬁ

and 1— 5~ quantiles since the CDF is assumed to be continuous as well. Therefore,

2(m+n)
P(z; & [#i 10, zini]) = P(2i < 2i10) + P(2i > 2 0) = TZ;
The bounds [0},, Ori] X [X10(0),xp:(0)] are obtained as a product over intervals
[2i,10, Zi,hs] Wherein z; ranges over the dimensions §; for j = 1,...,m and z; for
1=1,...,n.

Lemma 2. Assuming the conditions for the convergence in distribution of the Bayesian
inference procedure and the continuity of the posterior CDFE, as the number of samples
N — o0, the posterior probability P((0,%(0)) & [010, Oni] X [X10(0), x1:(0)]) < (1—7).

Proof. Proof is obtained by applying the union bound along each dimension to the
inequality derived in Lemma 1.

Our approach for deriving the posterior is conservative since it ignores the corre-
lations between the various components of #,x(0) in the posterior. Note that once we
have bounds for [x;,(0),xz;(0)] at time ¢ = 0, we can obtain corresponding bounds
at time t [x;,(t), Xp;(t)] using the reachability analysis algorithm that we will de-
scribe in the subsequent section. Finally, we will make the simplifying assumption that
[010,01i] C O. Failing this, we will need to consider the set [6;,, 0;,;] N ©, which will
be a hyper-rectangle if © is a hyper-rectangle.

S Fast Reachability Analysis using Monotonicity

Thus far, we have used Bayesian inference to obtain posterior bounds in the form of
intervals over 6 and x(0). We will now describe a reachability analysis procedure that
infers bounds [x;,(t),xp;(t)] for the states at time ¢ and therefore results in output
bounds [y;,(t), yr:(t)]. There are many reachability analysis tools that can be used off-
the-shelf for such analysis including Flow* [18] and CORA [2]. Note that although the
model presented in Section 3 is linear in the state-variables, the uncertainties in the pa-
rameters # means that standard approaches to linear systems that have been shown to
work for billions of state variables cannot be directly applied [6]. In this section, we
present an efficient approach by exploiting some key physical properties of the wastew-
ater model and ideas from the study of positive differential equations. Our approach is
based on ideas presented by Meyer et al [40]. The key contributions include showing
that the WWTP model in Section 3 satisfies the necessary monotonicity conditions; and
in doing so, adapting the ideas of Meyer et al to systems with uncertain parameters.

The ODE model in Section 3 has the form 2 = A(6)x + h(u), wherein A(0) is
a matrix whose entries are affine functions (linear plus constant) over the parameters 6
and h(u) is an input dependent term that is always non-negative.
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Definition 2 (Metzler Matrix). A matrix M € R™*™ is said to be Metzler (essentially
positive) iff M, ; > 0 for i # j.

An ODE is positive iff whenever x(0) > 0 then x(¢) > 0 for all time ¢ > 0. The notion
of positivity is significant because the waste-water treatment plant involves physical
quantities such as concentration of effluents that are non-negative at all times (negative
concentrations are not physically meaningful).

Theorem 3. Consider the ODE ‘fi—’t‘ = Mx+ b for vector b > 0 entrywise. The system
is positive if and only if M is a Metzler matrix.

Proof can be found in a standard textbook [24].

Lemma 3. The model 2 = A(0)x + h(u) defined in Section 3 satisfies the condition
that A(9) is Metzler for all 0 € [0,,,0;] and h(u) > 0 forallu € U.

Proof is by verifying each entry A; ;(§) > 0 fori # j and 6 € [0;,, O;]. From Eq. 1,
the off-diagonal terms include Q"‘;“j > 0 and from Eq. (2), the off-diagonal terms are
kn; > 0 (see Table 1).

Lemma 4. For any 0 € [0,,, 0] such that 0; > 0,, > 0, the matrix A(0) for the
model in Section 3 is Metzler. Also, there exists Metzler matrices L, U such that

V0 € [0, 0n:], L < A(0) < U,
wherein the inequality < between matrices is interpreted entrywise.

Proof. The matrices L, U are obtained by computing for each entry in A(0), L; ; =
Mingeg,, 6,,] Ai,j(0) and U; j = maxgeps,, 9,,) Ai,j(0). Since [0, Op;] form a com-
pact interval, it is easy to see that the minima and maxima exist. Furthermore, L is
Metzler following Lemma 3 for each ¢ # j, the minimum value of A4, ;(6) > 0. Since
L < U entrywise, U is Metzler as well.

Consider the time trajectories ;,(¢) of the initial value problem (IVP) X — Ix;, +

dt
h(u) for initial condition x;,(0) and ¢y (t) for the IVP &4 = Uxy,; + h(u) with
initial condition x;(0).

Theorem 4. For all § € [0,,,01,], x(0) € [Xi0,Xn;] and time t > 0, the solution (t)
of the system %% = A(0)x + h(u) satisfies the bounds ¢1,(t) < ¥(t) < @p; ().

Note that ¢y, is the solution of the system “Xle = Lx;, +h(u(t)) with initial condi-

tion x;,(0) while ¢y,; is the solution of the system Xti = Uxy,; + h(u(t)) with initial

condition xj,;(0). For any fixed 0, let M = A(6) be a Metzler matrix (by assumption).

Lemma 5. If L < M then forall x > 0, Lx < Mx.

Proof. Note that the matrix M — L has all non-negative entries since L < M. Therefore,
(M — L)x > 0 whenever x > 0. Thus, Lx < Mx.
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We recall a well-known result known as the monotone comparison principle, that is

also sometimes known as the Chaplygin’s theorem. We specialize this for the case of
linear systems in our presentation below.
Theorem 5 (Monotone Comparison Principle). Consider a dynamical system ‘fi—’t‘ =
Mx + h(u(t)), wherein M is Metzler and h(u) > 0 for all u. Consider a system
92 — Lz + h(u(t)), wherein L < M. If z(0) < x(0) at time t = 0, then z(t) < x(t)
for all time.

Note that L, M are both Metzler matrices. Furthermore, x;,(0) < x(0). As a result,
applying the monotone comparison principle, yields the result that x;,(¢) < x(¢). Sim-
ilarly, M, U are Metzler matrices and x(0) < x,(0). Applying the theorem yields the
result that x(¢) < xp;(¢). This concludes the proof of Theorem 4.

Theorem 4 is remarkable since it reduces the reachability analysis problem to that of
computing the solutions of two linear systems for fixed matrices and initial conditions.
We perform the reachability analysis as follows:

1. Compute the matrices L, U that form upper and lower bounds of A(6).
2. Compute a rigorous lower-bound ¢, (t) for the system dji‘f = Lxj, + h(u) with

initial condition x;,(0).

3. Compute a rigorous upper-bound ¢y (t) for the system ki = Uxy,; + h(u) with
initial condition xp;(0).
4. The reachable set at time ¢ > 0 is contained in [, (¢), ©ni(t)].

6 Implementation and Data Sources

We have implemented both the Bayesian inference and flowpipe construction in Julia.
The historical data used to evaluate our algorithm comes from a municipal WWTP in
the San Francisco Bay Area (Cf. Section 6.1). The ability for our algorithm to perform
on real-world data is vital given our industrial application.

6.1 Data Sources

We use historical data from our case study WWTP to evaluate our method. This data
includes a variety of measurements from different sources and on different timescales.
For example, flow rates of the various waste streams are recorded in close to real time by
inline sensors, while the strength of each waste stream (i.e., concentration) is measured
in a laboratory every few days. We perform our analysis on daily timesteps due to the
different granularity of data. I.e., we sum or average the sub-daily flow rate data to
daily values and linearly interpolate the concentration data between missing days so
that all the data is on the same timescale. We do not clean the data besides interpolating
missing values, so the typical noise and potential inaccuracies of real-world operational
data are present in our dataset. Our combined method of Bayesian inference followed by
flowpipe construction is especially suited to real-world data with large uncertainty such
as this case study. Further description of specific data used are found in the Appendix
(available upon request).
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We use data from three sample months for our analysis: September 2018, January
2020, and March 2020. These months include different operating conditions, such as
influent waste stream concentrations and reaction rate parameters, to demonstrate the
generalizability of our method at each step.

6.2 Bayesian Inference

The first step of our two-step approach is Bayesian inference to determine the cred-
ible intervals of unknown parameters. We perform this Bayesian inference using an
MCMC method (we use 25,000 iterations of the Metropolis Hastings algorithm) from
the Turing. j1 package [25]. In general, selecting the number of iterations for Bayesian
inference is hard. We chose to perform 25,000 iterations after initial tuning experiments
that compared the variability of the confidence intervals obtained after each run versus
the time taken to run. For 25, 000 iterations, the results had no variation across multi-
ple runs. We initialize the algorithm with the nominal parameters and initial values of
concentrations that are available in the Appendix (available upon request).

We chunk the historical data into 8-day segments, wherein the first 3 days of data
are used for Bayesian inference to determine the kinetic parameters and initial condi-
tions of the wastewater model. We then construct an 8-day flowpipe from the beginning
of the Bayesian inference, rejecting the first 3 days that overlap with the training period
to produce a 5-day prediction. The prediction uses the ground truth inputs for the next
5 days but in an application, it may consist of a future scenario that the plant operators
may consider for their analysis. We also use these samples to construct posterior pre-
dictive simulations for the next 5 days using an ODE solver and compare the flowpipe
against the posterior predictive simulations. In Section 7, we evaluate our approach for
75%, 90%, and 99% credible intervals.

6.3 Flowpipe Construction

As mentioned in Section 5, we can leverage the monotonicity of the wastewater model
presented in Section 3 to quickly over-approximate the bounds of biogas production. We
begin the flowpipe construction by taking the parameter estimates from the Bayesian
inference for the desired credible interval. Once we define the initial conditions using
the output from the Bayesian inference, we simply propagate those bounds from the
same start date as the Bayesian inference. We perform reachability analysis for a 8-day
period, then ignoring the 3 days that overlap with the Bayesian inference, we evaluate
the flowpipe on the final 5 days of the simulation period. Specific implementation details
in Julia are described in the Appendix (available upon request).

7 Evaluation

We evaluate our two-step approach of Bayesian inference and flowpipe construction
versus the standard approach of performing posterior predictive simulations. We com-
pare the accuracy and computational time of our predictions for credible intervals (CI)
of 75%, 90%, and 99%. The code used for evaluation can be found in the software
artifact available on Zenodo [14].
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Posterior Predictive Simulations: We compare our approach against a standard ap-
proach based on constructing the so-called “posterior predictive distribution” [38] through
simulations. The posterior predictive simulations approach uses the samples computed
through Bayesian inference to predict future states of the model through simulation. In
our implementation, we simulate the samples computed by the Bayesian inference pro-
cedure using the ODE model to obtain sample values for gas production for the 5 days
in the future. We then simply compute credible intervals for each of the future days as
an alternative to flowpipe construction. Note that the simulation is performed for each
sample obtained by the Bayesian inference algorithm.

In Figure 4, we illustrate representative prediction outcomes across different time
periods. Table 2 summarizes statistics across the entire data set spanning three months
split into multiple 8 day segments. Both the two-step approach (Figure 4, left) and the
approach using posterior predictive simulations (Figure 4, right) provide reasonable
prediction bounds that capture the historical trajectory. Although the posterior predic-
tive simulations produce tighter bounds, they fail to accurately predict the ground truth.
Whereas, the approach proposed here using flowpipe construction is able to capture the
ground truth data with very high accuracy.

We hypothesize that the use of credible intervals captures a simple but accurate set
of point estimates from the posterior samples. The rest of the approach is entirely free
of any randomness and therefore has generalized from the available samples to facts
about the underlying probability distributions. On the other hand, the posterior simula-
tions are tied to the samples and attempt to make complex inference (by propagating
the samples through a differential equation model) that fails to generalize well. The
high uncertainty in measurements and changing conditions of the wastewater treatment
processes exacerbate the challenges faced by the posterior simulation approach.

Table 2 presents key performance statistics comparing the two methods. The two-
step approach consistently outperforms Bayesian inference alone in terms of predic-
tion accuracy, defined as the proportion of ground-truth gas production values captured
within the predicted bounds. For example, the combined method captures 94% of sam-
ples at the 90% CI, while the posterior simulations method captures only 21% of the
samples.

Table 2. Performance statistic comparing our two-step approach of Bayesian inference followed
by flowpipe construction to posterior predictive simulations approach for various credible inter-
vals (Cls). Legend: Accuracy refers to the percentage of samples where the historical (ground-
truth) biogas production fell within the predicted bounds; Uncertainty refers to the average width
of the bounds in m*; Bayesian Inference Time refers to the amount of time it took to perform the
3-day initialization, and Prediction Time refers to the 8-day prediction. All computation times
were gathered on a 2023 MacBook Pro using the Apple M2 Pro chip with 12 cores.

Flowpipe Construction |Posterior Predictive Simulations
75% CI|90% CI|99% CI||75% C1|90% CI|  99% CI

Accuracy 0.85 | 094 | 1.00 0.13 | 0.21 0.33
Uncertainty (m®) 9220 | 13850 | 21290 || 330 490 770
Bayesian Inference Time (s)|| 64 64 64 64 64 64

Prediction time (s) 1.6 1.7 1.6 77 77 77
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Fig. 4. Sample predictions for a single 8 day segment from September 2018 (top) and March
2020 (bottom) using various methods for various credible intervals (Cls). (Left) Upper and lower
bounds from our two-step approach of Bayesian inference and flowpipe construction. (Right)
Credible intervals from posterior prediction.

This improved accuracy comes with increased uncertainty, i.e., wider bounds. At
the 99% CI, the combined method produces an average interval width of 21,290 m?.
However, the fact that the posterior predictive samples have a small credible interval is
irrelevant since their accuracy is quite low.

Importantly, the inference time remains constant across both methods and all CIs
(64 seconds), since both use the same Bayesian inference stage.

The most notable difference lies in prediction time: whereas posterior simulations
takes over 75 seconds, the combined method completes in under 2 seconds, regardless
of CI level. This 40x speedup enables the method to be used in time-sensitive applica-
tions without sacrificing reliability.

To conclude, our approach based on credible intervals and flowpipe computations
yields not just a speedup but also captures the ground truth data well when compared to
the standard approach of posterior predictive simulations.

8 Conclusion and Future Work

In this paper, we present a novel combination of two heavily researched mathemat-
ical topics: probabilistic programming and reachability analysis. Specifically, we use
MCMC on 3-days of past data to create credible intervals for the unknown parameters
and initial conditions of a first-order kinetics model of biogas production at a WWTP.
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We then exploit the monotonicity of this model to quickly compute upper and lower
bounds for the next 5-days of biogas production at the WWTP. These formal bounds
could be used to verify biogas production predictions at WWTPs, which in turn facili-
tates energy management plans.

We found it challenging to evaluate our results against previous publications given
the dearth of prior research in this area. Instead, we perform posterior predictive simu-
lations for the same 5-day period that we construct a flowpipe using reachability anal-
ysis. Across credible intervals from 75% to 99%, we found that posterior predictive
simulations had an accuracy of 13-31% compared to 85-100% accuracy for our two-
step Bayesian inference plus flowpipe construction. High accuracy is vital to building
the trust of operators when deploying prediction algorithms in the context of automated
control, especially for critical infrastructure like WWTPs. The much faster computation
time of flowpipe construction versus posterior predictive simulations (approximately
40x in the prediction phase) makes it better suited for automated planning and closed-
loop controls.

Our method seeks to construct formal bounds given the sensitive nature of WWTPs
as critical infrastructure. We are successful, as we achieve a 100% accuracy for a 99%
credible interval, but this comes with a large degree of uncertainty (21,290 m? for a 99%
credible interval). Unfortunately, this large uncertainty makes the algorithm impractical
to deploy in a real-world setting. The 75% credible interval is still quite accurate with
the biogas production falling within the bounds 85% of the time, and it has less than
half the uncertainty of the 99% credible interval.

More credible intervals could be tested, and the operators could give input on the
balance of accuracy and uncertainty that their prefer at their WWTP. Future work will
also study the effect of using inference algorithms other than MCMC such as sequen-
tial Monte Carlo and other methods. With further refinement, our combination of prob-
abilistic programming and reachability analysis has the potential to verify predictions
of biogas production at WWTPs. These predictions of biogas production are vital to
successfully deploying cost- or emissions-minimizing operational strategies that have
been recently studied at WWTPs [11, 16]. One challenge to deploying these optimal en-
ergy management plans is the role of WWTPs as critical infrastructure and subsequent
risk aversion of operators, so formal methods offer a compelling approach to reassuring
WWTP operators of the safety of these operational recommendations. This technique
could also be applied to critical infrastructure outside of the water sector that can be
modeled with ODEs, such as transportation and energy.
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