INTEGER LINEAR PROGRAMMING INTRODUCTION

Integer Linear Programming

Integer Linear Programming

- Relaxation to a (real-valued) Linear Program
- How does the LP relaxation answer relate to the ILP answer?
- Integrality Gap
- Complexity of Integer Linear Programs
- NP-Completeness
- Some special cases of ILPs.
- Algorithms:
- Branch-And-Bound
- Gomory-Chvatal Cuts

INTEGER LINEAR PROGRAMMING: LP RELAXATION

1. Relax an ILP to an LP
2. Examples with same answers and different answers.
3. Integrality gap.

Integer Linear Programming

Integer Linear Program

$$
\begin{array}{rll}
\max & c_{1} x_{1} & +c_{2} x_{2}
\end{array}+\cdots+c_{n} x_{n} .
$$

- Feasibility of ILP:
- Integer feasible solution.

$$
\begin{array}{r}
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m} \\
x_{1}, \ldots, x_{n} \in \mathbb{Z}
\end{array}
$$

- Unbounded ILP:
- Integer feasible solutions can achieve arbitrarily large values for the objective.

Linear Programming Relaxation

$\max \quad c_{1} x_{1} \quad+c_{2} x_{2}+\cdots+\quad c_{n} x_{n}$
s.t. $a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1}$

$$
\begin{aligned}
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m} \\
& x_{1}, \ldots, x_{n} \in \mathbb{Z}
\end{aligned}
$$

$\mathrm{Q}:$ What happens to the answer if we take away the integrality constraints?

Feasible Regions

$$
\begin{array}{rll}
\max & c_{1} x_{1} & +c_{2} x_{2} \\
\text { s.t. } & a_{11} x_{1} & +a_{12} x_{2}+c_{n} x_{n} \\
& +\cdots+a_{1 n} x_{n} \leq b_{1}
\end{array}
$$

$$
\begin{gathered}
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m} \\
x_{1}, \ldots, x_{n} \in \mathbb{Z}
\end{gathered}
$$

ILP feasible region \subseteq LP feasible region

Case-I: Both LP and ILP are feasible.

Case-I

Optimal Objective of ILP \leq Optimal solution of LP relaxation.

Example-I

Write down an example where LP optimum = ILP optimum

Example-2

Write down an example where the two optima differ

Case-II: LP relaxation is feasible, ILP is infeasible.

$\max x$

s.t.
$3 \leq 10 x \leq 5$

ILP is infeasible.

LP relaxation has optimal solution: 0.5
$0.3 \quad 0.5$

Case III: ILP is infeasible, LP is unbounded.

Example:
$\max y$
$3 \leq 10 x \leq 5$
$0 \leq y$

ILP is infeasible.
LP relaxation is unbounded

ILP outcomes vs. LP relaxation outcomes

Integer Linear Program (ILP)

		Infeasible	Unbounde d	Optimal
	Infeasible	Possible	Impossible	Impossible
Relaxation	Unbounde d	Possible	Possible	Possible (*)
	Optimal	Possible	Impossible	Possible
(*) Impossible if ILP has rational coefficients				

Summary (LP relaxation)

- LP relaxation: ILP minus the integrality constraints.
- LP relaxation's feasible region is a super-set of ILP feasible region.
- Analysis of various outcomes for ILP vs. outcomes for LP relaxations.

COMPLEXITY OF ILP

Complexity of Integer Linear Programs

 Integer Linear Programming problems are NP-complete

Implications of P vs NP question

- $\mathrm{P}=\mathrm{NP}$
- Considered an unlikely possibility by experts.
- In this case, we will be able to solve ILPs in polynomial time.
- P != NP
- In this case, we can show a non-polynomial lower bound on the complexity of solving ILPs.

Current State-of-the-art

- We have some very good algorithms for solving ILPs
- They perform well on some important instances.
- But, they all have exponential worst-case complexity.
- Compared to LPs,
- The largest ILPs that we can solve are a 1000 -fold smaller.
- Two strategies:
- Try to solve the ILP
- Find approximate answers for some special ILP instances.

ILP AND COMBINATORIAL OPTIMIZATION

Reducing 3-SAT to ILP

3-SAT Problem

$x_{1}, x_{2}, x_{3}, x_{4} \quad$ Boolean Variables

$$
\begin{aligned}
& \left(x_{1} \text { OR } x_{2} \text { OR } \neg x_{3}\right) \\
& \left(\neg x_{2} \text { OR } \neg x_{4} \text { OR } x_{1}\right) \\
& \left(x_{1} \text { OR } x_{2} \text { OR } \neg x_{3}\right)
\end{aligned}
$$

Find values for Boolean variables
such that

All the Clauses are True.

3-SAT Problem (Infeasible/Unsat)

$$
x_{1}, x_{2}, x_{3}, x_{4} \quad \text { Boolean Variables }
$$

$$
\begin{array}{r}
\left(x_{1} \text { OR } \neg x_{4} \text { OR } x_{2}\right) \\
\left(\neg x_{1} \text { OR } \neg x_{4} \text { OR } x_{2}\right) \\
\left(x_{4} \text { OR } x_{2}\right) \\
\left(\neg x_{2}\right)
\end{array}
$$

No Boolean valuation satisfies all 4 clauses.

Reducing 3-SAT to ILP

$$
\begin{array}{cc}
x_{1}, \ldots, x_{n} \text { are Boolean variables. } \\
C_{1}: & \left(\ell_{1,1} \text { OR } \ell_{1,2} \text { OR } \ell_{1,3}\right) \\
\vdots & \ddots \\
C_{m}: & \left(\ell_{m, 1} \text { OR Cluses. } \ell_{m, 2} \text { OR } \ell_{m, 3}\right)
\end{array}
$$

$\ell_{i, j}$ stands for a variable x_{k} or its negation $\neg x_{k}$

ILP reduction.

$$
\begin{aligned}
& x_{j} \rightarrow y_{j} \in\{0,1\} \begin{array}{c}
\substack{\text { False }=0 \\
\text { True }=1} \\
\neg x_{j} \equiv\left(1-y_{j}\right)
\end{array}
\end{aligned}
$$

Clauses Inequalities
$\left(x_{1}\right.$ OR x_{2} OR $\left.\neg x_{5}\right) \rightarrow y_{1}+y_{2}+\left(1-y_{5}\right) \geq 1$

Example-I

Convert this SAT problem to an ILP

$$
\begin{aligned}
& \left(x_{1} \text { OR } x_{2} \text { OR } \neg x_{3}\right) \\
& \left(\neg x_{2} \text { OR } \neg x_{4} \text { OR } x_{1}\right) \\
& \left(x_{1} \text { OR } x_{2} \text { OR } \neg x_{3}\right)
\end{aligned}
$$

Example-2

Convert this SAT problem to an ILP

$$
\begin{array}{r}
\left(x_{1} \text { OR } \neg x_{4} \text { OR } x_{2}\right) \\
\left(\neg x_{1} \text { OR } \neg x_{4} \text { OR } x_{2}\right) \\
\left(x_{4} \text { OR } x_{2}\right) \\
\left(\neg x_{2}\right)
\end{array}
$$

LP RELAXATIONVS.ILP RELAXATION

Claim

LP relaxation's answer can be arbitrarily larger than the ILP's answer.

\max			
s.t		x_{2}	
	x_{2}	≥ 0	
	$2 K x_{1}$	$-x_{2}$	≥ 0
	$-2 K x_{1}$	$-x_{2}$	\geq
	x_{1},	x_{2}	$\in \mathbb{Z}$

ILPANDVERTEX COVER

A flavor of approximation algorithms

Rounding Schemes

- LP relaxation yields solutions with fractional parts.
- However, ILP asks for integer solution.
- In some cases, we can approximate ILP optimum by "rounding"
- Take optimal solution of LP relaxation
- Round the answer to an integer answer using rounding scheme.
- Deduce something about the ILP optimal solution.

Vertex Cover Problem

Choose smallest subset of vertices Every edge must be "covered"

Eg, $\{1,2,3,5\}$
or
$\{1,2,3,7\}$

ILP for the vertex cover problem (Example)

ILP decision variables

$$
x_{1}, \ldots, x_{8}
$$

$x_{i}= \begin{cases}0 & \text { Vertex } \# i \text { not chosen in subset } \\ 1 & \text { Vertex } \# i \text { is chosen in subset }\end{cases}$

ILP for the vertex cover problem (Example)

$$
\begin{aligned}
x_{1}+x_{7} & \geq 1 \quad \leftarrow \text { Edge: }(1,7) \\
x_{1}+x_{6} & \geq 1 \quad \leftarrow \text { Edge: }(1,6) \\
x_{2}+x_{4} & \geq 1 \\
\ldots & \\
x_{i}+x_{j} & \geq 1 \quad \leftarrow(i, j) \in E \\
\ldots & \\
x_{1} & \leq 1 \\
\vdots & \\
x_{8} & \leq 1 \\
x_{1}, \ldots, x_{8} & \geq 0 \\
x_{1}, \ldots, x_{8} & \in \mathbb{Z}
\end{aligned}
$$

Vertex Cover to ILP

- Vertices \{I,..., n\}
- Decision variables:

$$
x_{1}, \ldots, x_{n} \quad x_{i} \in\{0,1\}
$$

$$
\begin{array}{ccc}
\min & \sum_{i=1}^{n} x_{i} & \\
\text { s.t. } & 0 \leq x_{i} \leq 1 & \forall i \in V \\
& x_{i}+x_{j} \geq 1 & \forall(i, j) \in E \\
& x_{i} \in \mathbb{Z} & \forall i \in V
\end{array}
$$

LP relaxation of a vertex cover

- Problem: we may get fractional solution.

Objective value: 4
But solution meaningless for vertex cover.

Rounding Scheme

- Simple rounding scheme:

$$
\begin{array}{ll}
\qquad x_{i}^{*} \geq \frac{1}{2} \rightarrow & x_{i}=1 \\
\begin{array}{l}
\text { Real-Optimal Solution } \\
\text { is at least } 0.5
\end{array} & \begin{array}{l}
\text { Include vertex in } \\
\text { the cover. }
\end{array} \\
X_{i}^{*}<\frac{1}{2} \rightarrow & \rightarrow X_{i}=0
\end{array}
$$

LP relaxation of a vertex cover

- Problem: we may get fractional solution.

x_{1}	1
x_{2}	1
x_{3}	$\frac{3}{4}$
x_{4}	0
x_{5}	$\frac{5}{6}$
x_{6}	0
x_{7}	$\frac{1}{6}$
x_{8}	$\frac{1}{4}$

x_{1}	1
x_{2}	1
x_{3}	1
x_{4}	0
x_{5}	1
x_{6}	0
x_{7}	0
x_{8}	0

Rounding Scheme

Rounding scheme takes optimal fractional solution from LP relaxation and produces an integral solution.

$$
\mathbf{X}^{*} \xrightarrow{\text { rounding }} \hat{\mathbf{X}}
$$

1. Does rounding always produces a valid vertex cover?
2. How does the rounded solution compare to the opt. solution?

Rounding Scheme Produces a Cover

$$
\begin{aligned}
& \mathbf{x}^{*} \xrightarrow{\text { rounding }} \hat{\mathbf{X}} \\
& x_{i}^{*}+x_{j}^{*} \geq 1, \text { for each }(i, j) \in E \\
& \hat{x}_{i}=1 \text { or } \hat{x}_{j}=1 \text { for each }(i, j) \in E
\end{aligned}
$$

To Prove:The solution obtained after rounding covers every edge.

Rounding Scheme Approximation Guarantee

Fact: $2 x_{i}^{*} \geq \hat{x_{i}}$ for all vertices i.

$$
2 \sum_{i=1}^{n} x^{*} \geq \sum_{i=1}^{n} \hat{x}_{i}
$$

2 * Cost of LP relaxation) \geq (Cost of Rounded Scheme Vertex Cover)

Approximation Guarantee

- Theorem \#I: Rounding scheme yields a vertex cover.
- Cost of the solution obtained by rounding: C
- Optimal vertex cover cost: C*
- Theorem \#2: C* $\leq \mathrm{C} \leq 2 \mathrm{C}^{*}$
- LP relaxation + rounding scheme:
- 2-approximation for vertex cover!!

SOLVING ILP USING GLPK

Specifying integer variables in Mathprog

GLPK integer solver

- GLPK has a very good integer solver.
- Uses branch-and-bound + Gomory cut techniques
- We will examine these techniques soon.
- In this lecture,
- Show how to solve (mixed) integer linear programs
- Continue to use AMPL format.
- This is the best option for solving ILPs/MIPs

Example-I (ILP)

$\min \quad x_{1} \quad+x_{2}+x_{3} \quad+x_{4} \quad+x_{5} \quad+x_{6}$

x_{1}	$+x_{2}$					≥ 1
x_{1}	$+x_{2}$				$+x_{6}$	≥ 1
		x_{3}	$+x_{4}$			≥ 1
	x_{3}	$+x_{4}$	$+x_{5}$		≥ 1	
		x_{4}	$+x_{5}$	$+x_{6}$	≥ 1	
				$+x_{5}$	$+x_{6}$	≥ 1
x_{1},	x_{2},	x_{3},	x_{4},	x_{5},	x_{6}	$\in \mathbb{Z}$

Specifying variable type

var x; \# specifies a real-valued decision variable var y integer; \# specifies an integer variable var z binary; \# specifies a binary variable

Example - I expressing in AMPL

var x\{l..6\} integer; \# Declare 6 integer variables minimize obj: sum\{i in $1 . .6\} \times[i]$;
cl: $\mathrm{x}[1]+\mathrm{x}[\mathrm{L}]>=1$;
c : $: x[1]+x[2]+x[6]>=1$;
$\mathrm{c} 4: \mathrm{x}[3]+\mathrm{x}[4]>=1$;
c5: $\mathrm{x}[3]+\mathrm{x}[4]+\mathrm{x}[5]>=1$;
c6: $x[4]+x[5]+x[6]>=1$; $c 7: x[2]+x[5]+x[6]>=1$;
solve;
display\{i in l..6\} x[i];
end

$$
\begin{array}{rlllllll}
\min & \begin{array}{llllll}
x_{1} & +x_{2} & +x_{3} & +x_{4} & +x_{5} & +x_{6} \\
& & \\
x_{1} & +x_{2} & & & & \\
x_{1} & +x_{2} & & & & +x_{6}
\end{array} & \geq 1 \\
& & x_{3} & +x_{4} & & & \geq 1 \\
& & x_{3} & +x_{4} & +x_{5} & & \geq 1 \\
& & & x_{4} & +x_{5} & +x_{6} & \geq 1 \\
& & & & & & & \\
& & & & x_{5} & +x_{6} & \geq 1 \\
x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}, & x_{6} & \in \mathbb{Z}
\end{array}
$$

Example-I Solving using GLPK

$>$ glpsol -- math ipl.math
Display statement at line 25
$\mathrm{x}[\mathrm{l}] . \mathrm{val}=0$
$x[2] . v a l=1$
$\mathrm{x}[3] . \mathrm{val}=0$
$\mathrm{x}[4] \cdot \mathrm{val}=1$
$\mathrm{x}[5] . \mathrm{val}=0$
$x[6] . v a l=0$
Model has been successfully processed

Example -2

Vertex Cover Problem

Vertex Cover to ILP

- Vertices \{I,..., n\}
- Decision variables:

$$
x_{1}, \ldots, x_{n} \quad x_{i} \in\{0,1\}
$$

$$
\begin{array}{ccc}
\min & \sum_{i=1}^{n} x_{i} & \\
\text { s.t. } & 0 \leq x_{i} \leq 1 & \forall i \in V \\
& x_{i}+x_{j} \geq 1 & \forall(i, j) \in E \\
& x_{i} \in \mathbb{Z} & \forall i \in V
\end{array}
$$

Vertex Cover AMPL (Model + Data)

param n;
var x \{l..n\} binary;
\# binary specifies that the variables are binary data;
param n := 16;
set E within $\{\mathrm{i}$ in $1 . . n, \mathrm{j}$ in $1 . . n: \mathrm{i}<\mathrm{j}\}$;
\# specify that the edges will be a set.
\# each edge will be entered as (i,j) where $i<j$
set $\mathrm{E}:=(2,3)(3,5)(5,8)$
$(4,16)(5,16)(8,14)$
$(1,8)(4,12)(3,12)(4,14)$
minimize obj: sum\{i in l..n\} x[i];
$(1,12)(2,14)(2,15)(1,15)(15,16)$;
\# minimize cost of the cover
s.t.
$c\{(i, j)$ in $E\}: x[i]+x[j]>=1 ;$
end;
solve;
display\{i in l..n\} x[i];
> glpsol -m vertexCover.model

$$
\text { x[l].val = } 0
$$

$$
\text { x[2].val = } 1
$$

$$
\mathrm{x}[3] \cdot \mathrm{val}=0
$$

$$
\mathrm{x}[4] . \mathrm{val}=1
$$

$$
\mathrm{x}[5] \cdot \mathrm{val}=1
$$

$$
\mathrm{x}[6] \cdot \mathrm{val}=0
$$

$$
\mathrm{x}[7] \cdot \mathrm{val}=0
$$

$$
\mathrm{x}[8] \cdot \mathrm{val}=1
$$

$$
\mathrm{x}[9] . \mathrm{val}=0
$$

$$
x[10] \cdot v a l=0
$$

$$
\mathrm{x}[\mathrm{ll}] . \mathrm{val}=0
$$

$$
\text { x[12].val = } 1
$$

$$
x[13] \cdot v a l=0
$$

$$
\mathrm{x}[14] \cdot \mathrm{val}=0
$$

$$
x[15] \cdot v a l=1
$$

$$
\text { x[16].val = } 0
$$

SOLVING ILPS IN MATLAB/ OCTAVE

MATLAB Optimization Package

- Supports solving binary integer programming problem
- "bintprog function"
- Same interface as linprog.
- Except that all variables are assumed binary.
- Uses branch-and-bound
- Not considered to be a good implementation.
- Unfortunately, does not support integer programming in the free version.
- Links to commercial tools Gurobi/MOSEK/CPLEX
- Powerful state of the art integer solvers.
- They make it available to academic users for free.
- We will continue to use GLPK for MATLAB/Octave.

Solution for MATLAB

- We will use glpkmex: a glpk interface to matlab and octave.
http://sourceforge.net/projects/glpkmex/
- Octave users may already know about this interface.
- It implements a convenient function glpk(..)

Over to matlab demo...

