CSCI 2824-Spring 2014: Work sheet on induction.

P1 Let $T_{n}$ be a recurrence defined as follows:

$$
T_{0}=1, T_{n+1}=(n+1)+\frac{1}{2} T_{n}, n \in \mathbb{N} .
$$

We wish to prove that $T_{n} \geq 2 n+1$ for all $n \in \mathbb{N}$.
Proof: Proof is by weak induction on $n$.
Base Case:


Ind. Hyp.


## Proof of Ind. Hyp.


$\mathbf{P} 2$ Let $F_{n}, n \geq 0$ be the Fibonacci series. Theorem: For all $n \in \mathbb{N}, \sum_{j=0}^{n} F_{j}=F_{n+2}-1$. Proof: Proof is by weak induction on $n$.


Ind. Hyp.

## Answer

Proof of Ind. Hyp.

## Answer



P3 Let $F_{n}, n \geq 0$ be the Fibonacci series.
Theorem: For all $n \in \mathbb{N}$, If $n \geq 2$ then $F_{n} \geq 1.2^{n}$.
Proof: Proof is by strong induction on $n$.

## Base Case:

## Answer

## Ind. Hyp.

(Write down the statement of the ind. hyp.)

## Answer

Proof of Ind. Hyp.
(prove the ind. hyp.)


