Act Responsibly!

Responsibility-Driven Design Concepts and Tools

Jennifer Wood
CSCl 5448 — Fall 2012

Act Responsibly!

Responsibility-Driven Design Concepts and Tools

* Executive Summary:

11/16/12

Structuring objects by their responsibilities was originally presented as
an alternative to Data-Driven Design by Rebecca Wirfs-Brock and Brian
Wilkerson in 1989

Responsibility-Driven Design promotes the analysis and design of
software systems by focusing on what things the application and its
objects must know, do or decide to fulfill its purpose

* A detailed guide to the Responsibility-Driven Design process is presented in
Rebecca Wirfs-Brock and Alan Kean’s text Object Design: Roles,
Responsibilities, and Collaborations (2003)

Maintaining a responsibility-driven design approach can result in a
system with excellent encapsulation, loose coupling and strong
cohesion by:

* Keeping related attributes and methods within the same object or
“neighborhood of objects”

* Preventing knowledge of a data structure in an object from being revealed in
the object’s public methods

Jennifer Wood CSCl 5448 2

What are responsibilities?

e Let’s start with the big concepts and definitions:
— Objects are things with responsibilities
— Responsibilities fall into one of three categories:
* To know things
e To do things
* To decide things
— A group of related responsibilities is a role

* An object can implement more than one role if appropriate

* Roles commonly encountered across many designs are called
Role Stereotypes — more on these later

— When two or more roles or objects work together it is
called a collaboration

11/16/12 Jennifer Wood CSCI 5448 3

Early Responsibility-Driven Design

e Conceived by Rebecca Wirfs-Brock and Brian Wilkerson and first
documented in the OOPSLA (Object-Oriented Programming,
Systems, Languages & Applications) Conference Proceedings of
1989 in “Object-Oriented Design: A Responsibility-Driven Approach”

* They contrasted Responsibility-Driven Design with Data-Driven
Design
e Data-Driven Design meant designing objects around the data they contained

and was a common approach in early Object-Oriented programming
— Wirfs-Brock and Wilkerson argued that this violated encapsulation because the internal
structure of the (hidden) data was visible in the implementation of the object containing
It
* Responsibility-Driven Design tries to avoid revealing internal structure by
ignoring implementation details until after the responsibilities of an object
have been characterized

— Forces encapsulation during the design phase rather than in implementation when it can
be difficult to achieve

11/16/12 Jennifer Wood CSCI 5448 4

Benefits of Responsibility-Driven Design

* In adata-driven design, the structure of the data is often
reflected in the objects designed around it — compromising
encapsulation by providing a view into that structure

 Many design heuristics can be strengthened by applying
Responsibility-Driven Design

By identifying as many responsibilities as possible within a design prior
to implementation it can be easier to:

11/16/12

Find opportunities for polymorphism (you can see that there are several
different objects that need to be processed in the same way)

Determine what and where abstractions add value to your design

Group related responsibilities into the same object or cluster of objects
making your design more cohesive

Group information and methods performed on that information within the
same object or cluster of objects, reducing coupling

Jennifer Wood CSCl 5448 5

Growth of Responsibility-Driven Design

* Wirfs-Brock and her colleagues took that original view “An object is
something with responsibilities” and developed tools and
techniques to use this insight throughout the design process

* Wirfs-Brock’s Object Design: Roles, Responsibilities, and
Collaborations (2003) provides a guide to taking a responsibility-
driven viewpoint through the analysis and design process

— The goal in Responsibility-Driven Design (RDD) is to identify as many
responsibilities and roles present in your system as possible BEFORE
you begin to implement them into objects and classes

— It’s easier to change what objects you have or what responsibilities
they have BEFORE you have thousands of lines of code written

11/16/12 Jennifer Wood CSCI 5448

Responsibility-Driven Analysis & Design Stages

* Wirfs-Brock identifies three main analysis and design phases in the
development of a project from the responsibility-driven perspective

Development Stage

Phase

Focus of Activities

RDD Analysis

System Definition

* System level architecture
* Main design themes and concepts
* Goals for your system to accomplish

Detail Description

* [dentify users and write user stories and use cases

* Determine platforms, frameworks and other key pre-built
components

* Develop “scenarios” and “conversations”

Object Analysis

* Sketch screen views and user interfaces
* |dentify system-defining objects and assign preliminary roles
and responsibilities

Exploratory Design

* |dentify supporting objects and their likely roles and
responsibilities
* Identify collaborations between objects or groups of objects

Design Refinement

* Revise system solution to make it more maintainable, flexible,
and reliable

* Finalize object roles and responsibilities

* Generate class descriptions

* Determine attribute and method visibilities

* Create formal documentation (if required)

11/16/12

Jennifer Wood CSCl 5448

S9SeaJou| [1e19(JO |9AdT]

Analysis and Design from the RDD Perspective

e “Responsibility-Driven Design is a clarification process.”
— Wirfs-Brock and Kean, Object Design: Roles, Responsibilities, and Collaborations

 Each phase is more detail-oriented than the preceding one

e Although presented as a linear progression, in reality you
may find you have to double back to gain clarification in
some aspects of your design at the higher levels before you
can implement your objects

* The following slides will discuss each phase of activity
including
— Team discussions and decisions occurring in that stage
— Results for the stage
— Any additional tools or concepts needed to complete the stage

11/16/12 Jennifer Wood CSCI 5448

RDD Analysis Stage:

~ System Definition Phase
e Discussions your team will have at this stage:

— Define the main goals of your system
* What is it trying to accomplish?
* |dentify what system-level responsibilities must be present in your final system
— Compare what you think the system should do with what your team members
envision

* Do we mean the same things? Does our team have a common vocabulary for domain
level concepts and ideas?

* Are you using the same identifiers for potential objects and responsibilities?

* Are you sure you mean the same thing when you are using a term or throwing around a
concept?

— Define the boundaries of your system
* The system does this, but it doesn’t do that...

— Diagram what your team envisions the architecture of the system to look like
at its highest levels

e Stage Results:
— System level discussions
— Sketches of desired system architecture
— Understanding of constraints, technical limits, schedule, and budget

— List of potential user types and their perspectives
11/16/12 Jennifer Wood CSCI 5448

RDD Analysis Stage:

Detail Description Phase

e Discussions your team will have at this stage:

— Where will the system be developed and implemented (i.e. platforms,
programming languages, existing frameworks, etc.)?

— What do the potential users of this system want it to accomplish?
— What is the expected work flow through the system?

e Stage Results:

— Define development environment

— User stories

* Simple narratives of how a user expects to use the system and the task(s) they
seek to accomplish

— Scenarios
» Use case for a specific path through a task or user story
— Conversations
* Descriptions of how the user and the system will interact with each other over
time

— Activity Diagrams

11/16/12 Jennifer Wood CSCl 5448 10

RDD Analysis Stage:

Object Analysis Phase

* Discussions your team will have at this stage:
— What will the user interfaces look like? What will the
user(s) see?

— What domain-associated Candidates (roughed-in object
assignments) can we define?
* Example: If we’re building a jukebox we probably need a Player
— What major responsibilities will these Candidates have?
* What will they know?
* What will they do?
* What decisions will they make that impact other objects?

e Stage Results:

— User interface mock-ups

— CRC Cards for the potential objects (Candidates) we’ve
identified for our system

e Wait! What’s a CRC Card? Let’s talk about them for a bit...

11/16/12 Jennifer Wood CSCI 5448

11

Terminology Detour:
CRC Cards

* In Responsibility-Driven Design, CRC stands for Candidates,
Responsibilities, and Collaborators

 CRC Cards were originated by Kent Beck and Ward Cunningham in 1989 at
the same time that Wirfs-Brock was developing her ideas on
Responsibility-Driven Design
— Originally, the first ‘C’ stood for Class and the cards were used as a tool when
teaching programmers to work from an object-oriented perspective instead of
a procedural one

 CRC Cards in RDD are index cards used to document potential objects
(called Candidates) that you believe your final design will include and what
responsibilities they will have along with what other objects they will likely
work with (collaborators)
— Allows you to design on paper and rearrange your model before committing by
writing code
* Keeps your options and your mind open longer, allowing for a more flexible approach

* Cards and the responsibilities they carry can be easily arranged and rearranged — not true
for code

11/16/12 Jennifer Wood CSCl 5448 12

Terminology Detour:
CRC Card Layout

Candidate Name
List this potential objects List the other
rQSPOHSibiIiﬁQSZ imporfanf
- what it knows objects it
- what it does works with
- what decisions it (collaborators)
makes that impact other Back
objects
Candidate Name (aqain)
Purpose:
Front Write a short description about what the

purpose of this object is.

What’s a role Role: Name a set of responsibilities that has a
shared meaning in your system

Pattern: List this objects role in any Design
Patterns

>~ Stereotype: List any role stereotypes that apply

stereotype?
Go to the next
slide...

11/16/12 Jennifer Wood CSCl 5448

13

Terminology Detour:
Role Stereotypes — Slide 1

Role stereotypes act like Design Patterns in thinking
and talking about candidates in your design

— You can say, “l think we need this to be a Service Provider,”
and the rest of your team will be on the same page

Casting candidates in your design into applicable role
stereotypes can help you detail their responsibilities

— Each role stereotype has a set of responsibilities commonly
required to fulfill its function

Not all objects in your system will fit into one of these
stereotypes

Some objects in your design may hold the
responsibilities of more than one stereotype

11/16/12 Jennifer Wood CSCl 5448 14

Terminology Detour:
Role Stereotypes - Slide 2

e Six common role stereotypes (Wirfs-Brock, February 1992
SmallTalk Report):

— Information Holders
— Structurers

— Service-Providers

— Controllers

— Coordinators

— Interfacers

* If you find that these role stereotypes don’t help in your
domain, try to identify your own and use those instead

e Common usage constructs like these can be helpful when
working on a team, so we’ll go into some more detail...

11/16/12 Jennifer Wood CSCI 5448

15

Terminology Detour:
Role Stereotypes - Slide 3

 |Information Holders

— Primary Responsibility: To hold and maintain its
information

— Related responsibilities (things the Information Holder
or one of its collaborators may need to do)

Gathering or creating the information

— Does it keeps its own copy or ask for its information again from its
source?

Deriving its held information from other data (calculations,
conversions, or other processing)

Handling any need for information persistence
Updating the information and coordinating any updates

11/16/12 Jennifer Wood CSCl 5448 16

Terminology Detour:
Role Stereotypes - Slide 4

e Structurers

— Primary Responsibility: To structure and organize objects
that the Structurer may or may not own

* Think about if this work is visible or hidden — can the organized
objects be seen/used by other objects?

* Does the structurer need to know about the objects it organizes?
And vice versa?
— Related responsibilities (things the Structurer or one of its
collaborators may need to do)
* Accessing or creating the objects it organizes
* Processing the objects

* Handling any need for persistence of the Structurer or the things it
organizes

* Answering requests for information about the objects it structures

11/16/12 Jennifer Wood CSCl 5448 17

Terminology Detour:
Role Stereotypes - Slide 5

Service Providers

— Primary Responsibility: To perform specialized calculations
or tasks on behalf of its collaborators

 If a task or calculation may change over a system’s life cycle, it may
be better to encapsulate the task or calculation into a Service
Provider
— Related responsibilities (things the Service Provider or one
of its collaborators may need to do)

* Accessing the information to be used
— Does it ask oris it told?

e Configuring the Service Provider for the current task, if required

* Handling related, but different service requests
— Is there a family of Service Providers or is it all performed in one?

11/16/12 Jennifer Wood CSCl 5448 18

Terminology Detour:
Role Stereotypes — Slide 6

e Controller

— Primary Responsibility: To make decisions and
command other objects into action

— Related responsibilities (things the Controller or
one of its collaborators may need to do)
e Gathering the information it uses to make its decisions
* Communicating its commands
* Monitoring in-process events

11/16/12 Jennifer Wood CSCI 5448

19

Terminology Detour:
Role Stereotypes — Slide 7

e Coordinators

— Primary Responsibility: To pass information and to
request action from other objects

* Manages the connections between multiple objects
— Related responsibilities (things the Coordinators or
one of its collaborators may need to do or help
with)
* Passing messages to request action or communicate a
change in state

* Delegating tasks

11/16/12 Jennifer Wood CSCl 5448 20

End of Terminology Detour:
Role Stereotypes — Slide 8

* |nterfacers

— Primary Responsibility: To allow communication between
different components of a system

* User Interfacers
— Pass user requests or display information

— Typically collaborate with event handlers and the objects that update the
information they display

* |nternal Interfacers

— Provide a Facade into their neighborhood of objects for other parts of the
system to communicate through

— Delegates the requests made to it to the appropriate object it
collaborates with

— It may provide an Adapter by translating requests made by external
objects into formats usable by its internal collaboraters

* External Interfacers

— Similar to an Internal Interfacer, but they work with collaborators outside
of the system

— May have to manage its connection to the external systems it assists
11/16/12 Jennifer Wood CSCl 5448 21

Continuing our Tour of RDD:

Exploratory Design Phase

 Now that you know about CRC Cards and Role Stereotypes, let’s move
onto our next design phase: Exploratory Design

* Asyou move out of the analysis phase, you’ll have a handful of object
Candidates noted on CRC cards

— These objects will help you explore the rest of your design
— Ask what supporting objects will your domain-level Candidates need to do
their jobs?
e Discussions your team will have at this stage:
— Finding Objects:

* What execution-related objects will the domain-level objects identified previously need?
— What responsibilities will these objects have?
— How will the work flow through the system?
* What other “Core” objects can we find? From Wirfs-Brock and Kean, Object Design:
Roles, Responsibilities and Collaborations, they might be:
— Key domain objects, concepts, and processes
— Objects implementing complex algorithms
— Technical infrastructure
— Objects managing application tasks
— Custom user interface objects

11/16/12 Jennifer Wood CSCl 5448 22

RDD Analysis System Defil

Detail Descri

v

Continuing our Tour of RDD:

Design Refinement

xxxxx

Exploratory Design Phase

e Stage discussions, continued:
— Finding responsibilities:

11/16/12

e Wirfs-Brock and Kean in Object Design: Roles, Responsibilities and
Collaborations suggest that responsibilities can be uncovered by:

Examining system functionality called upon either explicitly or implicitly
stated in use cases and user stories

Looking for objects tied to important events in the system
Looking for important events in the life of an object

- “When an object is created and when it is no longer used are
common places to find responsibilities for gracefully entering and
leaving the scene.” (Wirfs-Brock, ‘03)

Providing identified stereotype players with their stereotypical
responsibilities

Identifying responsibilities needed to cover edge cases in your design
Creating the private responsibilities that will support the public ones

Filling gaps between the subsystems, objects or responsibilities identified

in earlier sweeps
Jennifer Wood CSCl 5448 23

RDD Analysis

Detail Descri

- Continuing our Tour of RDD:

Design Refinement

Exploratory Design Phase

e Stage discussions, continued:
— Assigning responsibilities:

11/16/12

* Wirfs-Brock and Kean in Object Design: Roles, Responsibilities and
Collaborations provide some suggestions for dividing up
responsibilities in your system:

— If the object is responsible for holding the information, make it

responsible for maintaining and performing operations with that
information

— Try to give objects as much intelligence and responsibility as they can
handle, but avoid centralizing all your decision-making in one place

— Don’t duplicate information: make one object responsible for keeping a
piece of information and allow others to make copies

— The set of responsibilities an object hold should fit into a role — they
should be related and coherent

— Keep objects and their responsibilities at the same level (don’t give a
high-level task to a low-level object)

— Each object should take on only as much responsibility as it must to
complete its job Jenniferwood cscl 5448 24

Continuing our Tour of RDD:

Exploratory Design Phase

e Stage discussions, continued:

What obvious collaborations (objects working together) can we identify?
What subsystems can we identify?

Are there any concepts/implementations we want to use, but aren’t sure will
work?
* Build working prototypes of these objects or collaborations

Do we have any responsibilities that we can’t assign to an object yet?

* Keep them written on a stack of Post-Its so you can try different assignment
combinations as you narrow down your design

* Keep trying to assign them to likely Candidates as you add to your system

e Stage Results:

11/16/12

More CRC Cards for the additional Candidates we’ve identified for our system

Unassigned responsibilities on Post-Its
Collaboration model for your system
Sequence diagrams

Working prototypes for important concepts or potential problem areas in your

system solution

Jennifer Wood CSCl 5448

25

Development Stage | Phase

RDD Analysis System Definition

Finishing our

Object Analysis

— - Responsibility-Driven Design:

Design Refinement Phase

e At this point in your design process:
— Majority of the Candidates defined for your system and documented on CRC Cards
— Collaborations and subsystems built around core Candidates of your system established

* Now you iterate on your model until you have the arrangement you can implement
with confidence

* May have to return to higher levels in the Analysis & Design sequence briefly if you
uncover an area of your system not previously explored

e Discussions your team will have at this stage:

— Are there design trade-offs we’ve had to make? Are we confident in our choices

— How will control be distributed in this system?
* Centralized
— Decision-making and intelligence of system concentrated in a small number of objects, maybe even just one
* Delegated
— System intelligence divided among a moderate number of objects
— Considered the most desirable control style for most systems designed with RDD
* Distributed

— system intelligence and decision making capabilities spread throughout the whole system

11/16/12 Jennifer Wood CSCl 5448 26

Development Stage

RDD Analysis

Exploratory Design

Phase

System Definition

Detail Description

Object Analysis

Finishing our

Design Refinement

Responsibility-Driven Design:

Design Refinement Phase

Possible stage discussions, continued:
— Which attributes and methods will be private? Which will be public?

— Can we rearrange our Candidates, responsibilities or collaborations to make the system more consistent?
Easier to maintain? Flexible?
* What interfaces/protocols can we implement?
* What additional abstractions can we create?
* What design patterns can we implement?
* Some factors that can contribute to a consistent, comprehensible design (Wirfs-Brock, '03):
— Objects are grouped in neighborhoods

— There are few lines of communication [messages passed] between neighborhoods (logical groupings of collaborators,
possibly as subsystems)

— No one object knows, does or controls too much

— Objects perform according to their designated role

— When one solution is designed, variants will be applied to other parts that are similar
— There are few patterns of collaboration that repeat throughout the design

— And at last, are we ready to finalize our design and go implement it?

Stage Results:

— Control style
* Agreed to patterns for assigning decision making responsibilities throughout the system
— Finalized CRC Cards
* Blueprints for implementation of actual objects in system
— Reflect final control style in the assignments of decisions-making responsibilities
— Include decision results of public/private responsibilities
— Document any design patterns or role stereotypes we’ve identified for the object

— Any other formal documentation the project might require before beginning implementation

11/16/12 Jennifer Wood CSCl 5448 27

Yikes! That was a lot of A & D!

* Even so, this tour through Responsibility-Driven Design was a very
brief summary of the design advice and tips Wirfs-Brock and Kean
have compiled in their book Object Design: Roles, Responsibilities,
and Collaborations

 The process, when written out in a linear set of steps, can appear

cumbersome, but in practice many of these steps will occur
simultaneously

— Working through the design, you will cycle between higher and
lower levels of design quickly and often

11/16/12 Jennifer Wood CSCl 5448 28

Using Responsibility-Driven Design

* Focus on describing your system by its responsibilities and the objects that
will hold them

— In your design process, expand out from a handful of high level/important
objects and/or responsibilities to discover the rest of your model

— You will not find every responsibility before you begin implementation
* That’s okay!

* Finding and assigning responsibilities is an iterative process

— Don’t be afraid to explode roles or objects and reassign their responsibilities to
others

Keep trying new arrangements and combinations until you see the system emerge that
meets your requirements and design sensibilities

 The ideas and concepts of Responsibility-Driven Design can be integrated
into common design life cycles like Agile

— RDD provides a unigue viewpoint into breaking down user stories into
implementable objects

* Note that you may not need to use all of the tools in RDD in every design,
but they can be helpful in your analysis and design process

11/16/12 Jennifer Wood CSCl 5448 29

References

* For more information on Responsibility-Driven Design

11/16/12

Wirfs-Brock, Rebecca and Alan McKean. Object Design: Roles, Responsibilities,
and Collaborations. Addison-Wesley, 2003.

* Includes orders of magnitude more detail on each aspect of RDD than could be included
in this presentation

Wirfs-Brock, Rebecca and Brian Wilkerson. (1989) “Object-Oriented Design: A
Responsibility Driven Approach,” OOPSLA 1989 Proceedings, October, 1989, pp
71 -75.

* This paper is where Responsibility-Driven Design was first put forth

Wirfs-Brock, Rebecca. “What Drives Design?” Presented at OOPSLA 2008
Conference, January, 2009.
http://http://www.infog.com/presentations/What-Drives-Design-Rebecca-
Wirfs-Brock

* Talk includes her recent views on the evolution of RDD and compares it with other design
techniques like Test-Driven Design and Event-Driven Design

Wirfs-Brock Associates. http://http://www.wirfs-brock.com/index.html

* Provides links to a number of Wirfs-Brock’s articles on design as well as to her blog: The
Responsible Designer

Jennifer Wood CSCl 5448 30

