
OBJECT-ORIENTED

PROGRAMMING IN C

Pritha Srivastava
CSCI 5448

Fall 2012

Introduction

 Goal:

 To discover how ANSI – C can be used to write object-

oriented code

 To revisit the basic concepts in OO like Information

Hiding, Polymorphism, Inheritance etc…

 Pre-requisites – A good knowledge of pointers,

structures and function pointers

Table of Contents

 Information Hiding

 Dynamic Linkage & Polymorphism

 Visibility & Access Functions

 Inheritance

 Multiple Inheritance

 Conclusion

Information Hiding

 Data types - a set of values and operations to work

on them

 OO design paradigm states – conceal internal

representation of data, expose only operations that

can be used to manipulate them

 Representation of data should be known only to

implementer, not to user – the answer is Abstract

Data Types

Information Hiding

 Make a header file only available to user,

containing

 a descriptor pointer (which represents the user-defined

data type)

 functions which are operations that can be performed

on the data type

 Functions accept and return generic (void) pointers

which aid in hiding the implementation details

Information Hiding

 Example: Set of elements

 operations – add, find

and drop.

 Define a header file

Set.h (exposed to user)

 Appropriate

Abstractions – Header

file name, function name

reveal their purpose

 Return type - void* helps

in hiding implementation

details

Set.h

extern const void * Set;

void* add(void *set, const void
*element);

void* find(const void *set, const
void *element);

void* drop(void *set, const void
*element);

int contains(const void *set, const
void *element);

Type Descriptor

Set.c Main.c - Usage

Information Hiding

 Set.c – Contains

implementation details of

Set data type (Not

exposed to user)

 The pointer Set (in Set.h) is

passed as an argument to

add, find etc.

void* add (void *_set, void *_element)

{

 struct Set *set = _set;

 struct Object *element = _element;

 if (!element-> in)

 {

 element->in = set;

 }

 else

 assert(element->in == set);

 ++set->count; ++element->count;

 return element;

}

find(), drop(), contains() etc …

Set.c

struct Set { unsigned count; };

static const size_t _Set = sizeof(struct Set);

const void * Set = & _Set;

Externed in Set.h

Set.h Main.c - Usage

Information Hiding

 Set is a pointer, NOT a

data type

 Need to define a

mechanism using which

variables of type Set can

be declared

 Define a header file –

New.h

 new – creates variable

conforming to descriptor

Set

 delete – recycles variable

created

New.h

void* new (const void* type, …);

void delete (void *item);

Takes in pointer ‘Set’

Arguments

with which to

initialize the

variable

New.c Main.c - Usage

Information Hiding

 New.c – Contains

implementations for

new() and delete()

void* new (const void * type, ...)

{

 const size_t size = * (const size_t *)

type;

 void * p = calloc(1, size);

 assert(p);

 return p;

}

delete() …

New.h Main.c - Usage

Information Hiding

 Need another data

type to represent an

Object that will be

added to a Set

 Define a header file

– Object.h

Object.h

extern const void *Object;

int differ(const void *a, const void

*b);

Type Descriptor

Compares variables of type ‘Object’

Object.c Main.c - Usage

Information Hiding

 Object.c –

Contains

implementation

details of Object

data type (Not

exposed to user)

struct Object { unsigned count; struct Set

* in; };

static const size_t _Object = sizeof(struct

Object);

const void * Object = & _Object;

int differ (const void * a, const void * b)

{

return a != b;

}

Externed in Object.h

Object.h Main.c - Usage

Information Hiding

 Application to demonstrate

the usage of Set.h,

Object.h & New.h

 void *b = add(s, new(Object));

 void *c = new(Object);

 if(contains(s, a) && contains(s,b))

 puts(“OK”);

 delete(drop(s, b));

 delete(drop(s, a));

 }

Output:

OK

#include <stdio.h>

#include “New.h”

#include “Set.h”

#include “Object.h”

int main()

{

 void *s = new (Set);

 void *a = add(s, new(Object);

Pointer ‘Set’ externed in Set.h

New.h New.c Object.c Object.h Set.c Set.h

Only header files

given to user

Pointer ‘Object’ externed in Object.h

Dynamic Linkage & Polymorphism

 A generic function should be able to invoke type-

specific functions using the pointer to the object

 Demonstrate with an example how function pointers

can be used to achieve this

 Introduce how constructors, destructors and other

such generic functions can be defined and invoked

dynamically

Dynamic Linkage & Polymorphism

 Problem:

 Implement a String data type to be included/ added to a

Set

 Requires a dynamic buffer to hold data

 Possible Solution:

 new() – can include memory allocation; but will have a chain

of ‘if’ statements to support memory allocations and

initializations specific to each data-type

 Similar problems with delete() for reclamation of memory

allocated

Dynamic Linkage & Polymorphism

 Elegant Solution:

 Each object must be responsible for initializing and deleting

its own resources (constructor & destructor)

 new() – responsible for allocating memory for struct String &

constructor responsible for allocating memory for the text

buffer within struct String and other type-specific

initializations

 delete() – responsible for freeing up memory allocated for

struct String & destructor responsible for freeing up memory

allocated for text buffer within struct String

Dynamic Linkage & Polymorphism

 How to Locate the

constructor & destructor

within new() & delete() ?

 Define a table of function

pointers which can be

common for each data-

type

 Associate this table with

the data-type itself

 Example of table – Struct

Class

struct Class {

/* Size of the object */

size_t size;

/* Constructor */

void * (* ctor) (void * self, va_list * app);

 /* Destructor */

 void * (* dtor) (void * self);

/* Makes a copy of the object self */

 void * (* clone) (const void * self);

/* Compares two objects */

int (* differ) (const void * self, const void * b);

};

Dynamic Linkage & Polymorphism

 struct Class has to be

made a part of the

data - type

 pointer to struct Class is

there in the data - type

String and Set

struct String {

const void * class; /* must be first */

char * text;

};

struct Set {

const void * class; /* must be first */

...

};

Dynamic Linkage & Polymorphism

 struct Class pointer at the

beginning of each Object is

important, so that it can be used

to locate the dynamically linked

function (constructor & destructor)

as shown

 new() & delete() can be used to

allocate memory for any data-

type

void * new (const void * _class, ...)

{

 const struct Class * class = _class;

 void * p = calloc(1, class —> size);

 * (const struct Class **) p = class;

 if (class —> ctor)

 {

 va_list ap;

 va_start(ap, _class);

 p = class —> ctor(p, & ap);

 va_end(ap);

 }

 return p;

}

Allocate

memory for p

of size

given in _class

Locate and

invoke the

dynamically

linked

constructor

Assign class at

the beginning

of the new

variable p

void delete (void * self)

{

 const struct Class ** cp = self;

 if (self && * cp && (* cp) —> dtor)

 self = (* cp) —> dtor(self);

 free(self);

}

Dynamic Linkage & Polymorphism

int differ (const void * self, const void * b)

{

 const struct Class * const * cp = self;

 assert(self && * cp && (* cp) —>differ);

 return (* cp) —> differ(self, b);

}

 Dynamic Linkage/ Late Binding:

the function that does the actual

work is called only during execution

 Static Linkage: Demonstrated by

sizeOf(). It can take in any object as

argument and return its size which is

stored as a variable in the pointer

of type struct Class

 Polymorphism: differ() is a

generic function which takes in

arguments of any type (void

*), and invokes the

appropriate dynamically

linked function based on the

type of the object

size_t sizeOf (const void * self)

{

 const struct Class * const * cp = self;

 assert(self && * cp);

 return (* cp) —> size;

}

Variable which

stores size in

struct Class

Dynamica

lly linked

function

Dynamic Linkage & Polymorphism

 Define a header file

String.h which defines

the abstract data

type- String:

String.h

extern const void * String;

Dynamic Linkage & Polymorphism

 Define another header

file String.r which is the

representation file for

String data-type

String.r

struct String {

 /* must be first */

 const void * class;

 char * text;

};

Dynamic Linkage & Polymorphism

 String.c – Initialize the

function pointer table with

the type-specific functions

 All the functions have been

qualified with static, since

the functions should not be

directly accessed by the

user, but only through new(),

delete(), differ() etc.

defined in New.h

 static – helps in

encapsulation

String.c

#include "String.r"

static void * String_ctor (void * _self, va_list * app)

{ struct String * self = _self;

const char * text = va_arg(* app, const char *);

self —> text = malloc(strlen(text) + 1);

assert(self —> text);

strcpy(self —> text, text);

return self;

}

String_dtor (), String_clone(), String_differ () …

static const struct Class _String = {

sizeof(struct String),

String_ctor, String_dtor,

String_clone, String_differ

};

const void * String = & _String;

Dynamic Linkage & Polymorphism

 Add the generic functions –

clone(), differ() and

sizeOf() in New.h

New.h

void * clone (const void * self);

int differ (const void * self,

const void * b);

size_t sizeOf (const void * self);

 Sample Application that

demonstrates the usage

 Create variable ‘a’ of type

String, clone it ‘aa’ and

create another variable ‘b’

of type String and

compare a, b

#include "String.h"

#include "New.h"

int main ()

{

 void * a = new(String, "a");

 * aa = clone(a);

 void * b = new(String, "b");

 printf("sizeOf(a) == %u\n", sizeOf(a));

 if (differ(a, b))

 puts("ok");

 delete(a), delete(aa), delete(b);

 return 0;

}

Output :

sizeOf(a) == 8

ok

Dynamic Linkage & Polymorphism

Inheritance

 Inheritance can be achieved by including a structure

at the beginning of another

 Demonstrate Inheritance by defining a superclass

Point with rudimentary graphics methods like draw()

and move() and then define a sub-class Circle that

derives from Point

 Define a header file

Point.h for the super-class

Point

 It has the type descriptor

pointer ‘Point’ and functions

to manipulate it

Point.h

extern const void *Point;

void move (void * point, int

dx, int dy);

Inheritance

 Define a second header

file Point.r which is the

representation file of Point

Point.r

struct Point {

 const void * class;

 int x, y; /* coordinates */

};

Inheritance

 The function pointer table is

initialized in Point.c

 It contains implementations

for dynamically linked

functions

 Move() is not dynamically

linked, hence not pre-fixed

with static, so can be

directly invoked by user

Point.c

static void * Point_ctor (void * _self, va_list * app)

{

 struct Point * self = _self;

 self —> x = va_arg(* app, int);

 self —> y = va_arg(* app, int);

 return self;

}

Point_dtor(), Point_draw() … etc

static const struct Class _Point = {

sizeof(struct Point), Point_ctor, 0, Point_draw

};

const void * Point = & _Point;

void move (void * _self, int dx, int dy)

{ struct Point * self = _self;

self —> x += dx, self —> y += dy;

}

Inheritance

 struct Class in New.r has

been modified to contain

draw() in place of differ()

 differ() in New.c has been

replaced with draw()

New.r

struct Class {

size_t size;

void * (* ctor) (void * self, va_list * app);

void * (* dtor) (void * self);

void (* draw) (const void * self);

};

New.c

void draw (const void * self)

{ const struct Class * const * cp = self;

assert(self && * cp && (* cp) —> draw);

(* cp) —> draw(self);

}

Inheritance

 Circle is a class that derives from Point

 Inheritance can be achieved by placing a variable of

type struct Point at the beginning of struct Class:

struct Circle { const struct Point _; int rad; };

 Just so that the user does not access the base class using

the derived class pointer, the variable name is an almost

hidden underscore symbol

 ‘const’ helps to protect against invalid modification of the

variable of type struct Point

 Radius is initialized in its constructor:

self —> radius = va_arg(* app, int);

Inheritance

 The internal representation

file of Circle – Circle.r is

shown

Circle.r

struct Circle {

const struct Point _;

int rad;

};

Inheritance

 Circle.c contains the table

of function pointers

 It contains the

implementation of the

dynamically linked functions

 draw() method has been

over-ridden in this case

Circle.c

static void * Circle_ctor (void * _self, va_list * app)

{

 struct Circle * self =

 ((const struct Class *) Point) —> ctor(_self, app);

 self —> rad = va_arg(* app, int);

 return self;

}

 static void Circle_draw (const void * _self)

{

 const struct Circle * self = _self;

 printf("circle at %d,%d rad %d\n",

 x(self), y(self), self —> rad);

}

static const struct Class _Circle = {

sizeof(struct Circle), Circle_ctor, 0, Circle_draw

};

const void * Circle = & _Circle;

Inheritance

 Since the initial address of the sub-class always

contains a variable of the superclass, the sub-class

variable can always behave like the super-class

variable

 Functionality of move() remains exactly the same for

Point and Circle, hence we can look for code re-use

 Passing the sub-class variable to a function like move()

is fine, since move() will be able to operate only on

the super-class() part which is embedded in the sub-

class

 Struct Circle can be converted to struct Point by up-

conversion and using void* as intermediate mechanisms

Inheritance

 Sub-classes inherit statically linked functions like

move() from Super-class

 Statically linked functions can not be over-ridden in a sub-

class

 Sub-classes inherit dynamically linked functions like

draw() also from super-class

 Dynamically linked functions can be over-ridden in sub-class

Inheritance

Visibility and Access functions

 A data-type has three files:

 ‘.h’ file - contains declaration of abstract data type and

other functions that can be accessed by the user; application

can include this file & a sub-class’s .h file will include a

super-class’s .h file

 ‘.r’ file - contains internal representation of the class; a sub-

class’s .r file will include a super-class’s .r file

 ‘.c’ file - contains implementation of the functions belonging

to the data – type; a sub-class’s .c file include its own .h and

.r file and its super-class’s .h and .r file

 We have an almost invisible super-class variable ‘_’

within the sub-class, but we need to make sure that

the sub-class part does not access and make changes

to the super-class part.

 We define the following macros for this purpose in

Point.r:

#define x(p) (((const struct Point *)(p)) —> x)

#define y(p) (((const struct Point *)(p)) —> y)

 While accessing x and y of Point within Circle, ‘const’

prevents any assignment to x and y

Visibility and Access functions

Multiple Inheritance

 Can be achieved by including the structure variables

of all the super-class objects

 The downside is that we need to perform address

manipulations apart from up-cast (from a sub-class

variable to a super-class) , to obtain the appropriate

super-class object

Inheritance vs. Aggregation

 Inheritance is shown by having struct Circle contain struct

Point at its starting address:

struct Circle { const struct Point _; int rad; };

 Delegation can be achieved by the following

mechanism:

struct Circle2 { struct Point * point; int rad; };

 Circle2 cannot re-use the methods of Point. It can just apply

Point methods to the Point component, but not to itself

 We need to decide whether to use Inheritance or

Delegation using the ‘is-a’ or ‘has-a’ test

Conclusion

 ANSI-C has all the language level – mechanisms to

implement object-oriented concepts

 Static keyword

 Function pointers

 Structures etc…

 The downside is that implementing object-oriented

concepts in C is not very straightforward and can be

complex in certain situations (Multiple inheritance)

References

 http://www.cs.rit.edu/~ats/books/ooc.pdf

 http://www.eventhelix.com/realtimemantra/basics/object_ori

ented_programming_in_c.htm

 http://stackoverflow.com/questions/2181079/object-

oriented-programming-in-c

http://www.cs.rit.edu/~ats/books/ooc.pdf
http://www.cs.rit.edu/~ats/books/ooc.pdf
http://www.eventhelix.com/realtimemantra/basics/object_oriented_programming_in_c.htm
http://www.eventhelix.com/realtimemantra/basics/object_oriented_programming_in_c.htm
http://www.eventhelix.com/realtimemantra/basics/object_oriented_programming_in_c.htm
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c

