OBJECT-ORIENTED
PROGRAMMING IN C

CSCl 5448
Fall 2012

Introduction

Goal:

To discover how ANSI — C can be used to write object-
oriented code

To revisit the basic concepts in OO like Information
Hiding, Polymorphism, Inheritance etc...

Pre-requisites — A good knowledge of pointers,
structures and function pointers

Table of Contents

Information Hiding

Dynamic Linkage & Polymorphism
Visibility & Access Functions
Inheritance

Multiple Inheritance

Conclusion

Information Hiding

Data types - a set of values and operations to work
on them

OO design paradigm states — conceal internal
representation of data, expose only operations that
can be used to manipulate them

Representation of data should be known only to
implementer, not to user — the answer is Abstract

Data Types

Information Hiding

Make a header file only available to user,
containing

a descriptor pointer (which represents the user-defined
data type)

functions which are operations that can be performed
on the data type

Functions accept and return generic (void) pointers
which aid in hiding the implementation details

Example: Set of elements

operations — add, find
and drop.

Define a header file
Set.h (exposed to user)

Appropriate
Abstractions — Header
file name, function name
reveal their purpose

Return type - void™® helps
in hiding implementation
details

Information Hiding

Set.h _
Type Descriptor

extern const void * Set;

void®* add(void *set, const void
*element);

void™® find(const void *set, const
void *element);

void™® drop(void *set, const void
*element);

int contains(const void *set, const
void *element);

Information Hiding

1 Set.c — Contains
implementation details of
Set data type (Not
exposed to user)

71 The pointer Set (in Set.h) is

passed as an argument to
add, find etc.

Set.c
struct Set { unsigned count; };
static const size_t _Set = sizeof(struct Set);

const void * Set = & _Set;
\ v)
Externed in Set.h

void™® add (void *_set, void *_element)
struct Set *set = _set;
struct Object *element = _element;

if (lelement-> in)

element->in = set;
else
assert(element->in == set);

++set->count; ++element->count;

return element;

}

find(), drop(), contains() etc ...

Set is a pointer, NOT a
data type

Need to define a
mechanism using which
variables of type Set can
be declared

Define a header file —
New.h

new — creates variable
conforming to descriptor
Set

delete — recycles variable
created

Information Hiding

New.h
Takes in pointer ‘Set’

\

void™® new (const void™ type, ...);

. P .
void delete (void *item); Arguments

with which to
initialize the
variable

Information Hiding
I

1 New.c — Contains | void™ new (const void * type, ...)
implementations for {
new() and delete()

const size_t size = * (const size_t *)
type;

void * p = calloc(1, size);

assert(p);

return p;

}

delete() ...

New.h Main.c - Usage

Information Hiding
N

1 Need another data Obiject.h
type to represent an Type Descriptor
Object that will be I
added to a Set

extern const void *Obiject;

o Define a header file Compares variables of type ‘Object’
— Object.h 1
int differ(const void *a, const void
*b);

Object.c Main.c - Usage

Information Hiding
I

1 Object.c — struct Object { unsigned count; struct Set
Contains in; };
implementation static const size_t _Obiject = sizeof(struct
details of Object Obiject);
data type (Not const void * Object = & _Obiject;
exposed to user) ‘ v |

Externed in Object.h
int differ (const void * a, const void * b)

{

return a |= b;

}

Object.h Main.c - Usage

Information Hiding

1 Application to demonstrate
the usage of Set.h,
Object.h & New.h

#Hinclude <stdio.h>
#Hinclude “New.h”
#Hinclude “Set.h”
#Hinclude “Obiject.h”

Only header files
given to user

int main()
Pointer ‘Set’ externed in Set.h

{ I

void *s = new (Set);

void *b = add(s, new(Obiject));

void *c = new(Object);
Pointer ‘Object’ externed in Object.h

if(contains(s, a) && contains(s,b))
puts(“OK”);

delete(drop(s, b));

delete(drop(s, a));

void *a = add(s, new(Obiject); Output:
OK
Set.h Set.c Object.h Object.c New.h New.c

Dynamic Linkage & Polymorphism

A generic function should be able to invoke type-
specific functions using the pointer to the object

Demonstrate with an example how function pointers
can be used to achieve this

Introduce how constructors, destructors and other
such generic functions can be defined and invoked
dynamically

Dynamic Linkage & Polymorphism

Problem:

Implement a String data type to be included/ added to a
Set

Requires a dynamic buffer to hold data

Possible Solution:

new() — can include memory allocation; but will have a chain
of ‘if’ statements to support memory allocations and
initializations specific to each data-type

Similar problems with delete() for reclamation of memory
allocated

Dynamic Linkage & Polymorphism

Elegant Solution:

Each object must be responsible for initializing and deleting
its own resources (constructor & destructor)

new() — responsible for allocating memory for struct String &
constructor responsible for allocating memory for the text
buffer within struct String and other type-specific
initializations

delete() — responsible for freeing up memory allocated for
struct String & destructor responsible for freeing up memory
allocated for text buffer within struct String

How to Locate the
constructor & destructor
within new() & delete() ¢

Define a table of function
pointers which can be
common for each data-
fype

Associate this table with
the data-type itself

Example of table — Struct
Class

Dynamic Linkage & Polymorphism

struct Class {
/* Size of the object */

size_t size;

/* Constructor */

void * (* ctor) (void * self, va_list * app);

/* Destructor */

void * (* dtor) (void * self);

/* Makes a copy of the object self */

void * (* clone) (const void * self);

/* Compares two objects */

int (* differ) (const void * self, const void * b);

}i

Dynamic Linkage & Polymorphism
-

o struct Class has to be struct String {
made a part of the const void * class; /* must be first */
data - type

char * text;

there in the data - type Z

String and Set struct Set {
const void * class; /* must be first */

01 pointer to struct Class is

}i

Dynamic Linkage & Polymorphism

o struct Class pointer at the
beginning of each Obiject is
important, so that it can be used
to locate the dynamically linked
function (constructor & destructor)
as shown

71 new() & delete() can be used to
allocate memory for any data-

type

void delete (void * self)

{

const struct Class ** cp = self;
if (self && * cp && (* cp) —> dtor)
self = (* cp) —> dtor(self);

free(self);

}

void * new (const void * _class, ...)

{

Allocate

memory for p
of size

const struct Class * cla given in _class

void * p = calloc(1, class —> size);
* (const struct Class **) p = class;

if (class —> ctor)

{ Assign class at
. the beginning
va_list ap; of the new
va_start(ap, _class); variable p
p = class —> ctor(p, & ap);
va_end(ap); Locate and
} invoke the
dynamically
return p; linked
constructor

Dynamic Linkage & Polymorphism

int differ (const void * self, const void * b) size_t sizeOf (const void * self)
const struct Class * const * cp = self; const struct Class * const * cp = self;
assert(self && * cp && (* cp) —>differ); assert(self && * cp);
return (* cp) —> differ(self, b); Dynamica return (* cp) —> size; Variable which
lly linked stores size in
} function } struct Class

1 Polymorphism: differ() is a

generic function which takes in
arguments of any type (void
*), and invokes the
appropriate dynamically
linked function based on the
type of the object

Dynamic Linkage/ Late Binding:
the function that does the actual
work is called only during execution

Static Linkage: Demonstrated by
sizeOf(). It can take in any object as
argument and return its size which is
stored as a variable in the pointer
of type struct Class

Dynamic Linkage & Polymorphism
—

11 Define a header file String.h
String.h which defines
the abstract data
type- String:

extern const void * String;

Dynamic Linkage & Polymorphism
—r

01 Define another header | String.r
file String.r which is the

representation file for

truct Stri
String data-type struct String {

/* must be first */
const void * class;

char * text;

}i

Dynamic Linkage & Polymorphism

0 String.c — Initialize the
function pointer table with
the type-specific functions

71 All the functions have been
qualified with static, since
the functions should not be
directly accessed by the

user, but only through new(),
delete(), differ() etc.
defined in New.h

o static — helps in
encapsulation

String.c

#include "String.r"

static void * String_ctor (void * _self, va_list * app)
{ struct String * self = _self;

const char * text = va_arg(* app, const char *);
self —> text = malloc(strlen(text) + 1);

assert(self —> text);

strcpy(self —> text, text);

return self;

}
String_dtor (), String_clone(), String_differ () ...
static const struct Class _String = {

sizeof(struct String),

String_ctor, String_dotor,

String_clone, String_differ

Yi

const void * String = & _String;

Dynamic Linkage & Polymorphism

1 Add the generic functions — New.h
clone(), differ() and
sizeOf() in New.h

void * clone (const void * self);

int differ (const void * self,
const void * b);

size_t sizeOf (const void * self);

Dynamic Linkage & Polymorphism
=

#include "String.h"

#include "New.h"
demonstrates the usage int main ()

{

1 Sample Application that

o Create variable ‘a’ of type

void * a = new(String, "a");

String, clone it ‘aa’ and * aa = clone(a);

create another variable ‘b’ void * b = new(String, "b");
printf("sizeOf(a) == %u\n", sizeOf(a));
if (differ(a, b))

compare g, b puts("ok™);

delete(a), delete(aa), delete(b);

of type String and

return O;

}

Output :
sizeOf(a) == 8
ok

Inheritance

Inheritance can be achieved by including a structure
at the beginning of another

Demonstrate Inheritance by defining a superclass
Point with rudimentary graphics methods like draw()
and move() and then define a sub-class Circle that
derives from Point

Inheritance
N

1 Define a header file Point.h

Point.h for the super-class
Point - -
extern const void *Point;
o It has the type descriptor , , o
7P P void move (void * point, int

pointer ‘Point’ and functions dx, int dy);

to manipulate it

Inheritance
N

1 Define a second header Point.r
file Point.r which is the
representation file of Point

struct Point {
const void * class;

int x, y; /* coordinates */

}i

Inheritance

71 The function pointer table is

initialized in Point.c

71 It contains implementations
for dynamically linked
functions

1 Move() is not dynamically
linked, hence not pre-fixed
with static, so can be
directly invoked by user

Point.c
static void * Point_ctor (void * _self, va_list * app)
{
struct Point * self = _self;
self —> x = va_arg(* app, int);
self —> y = va_arg(* app, int);
return self;
¥
Point_dtor(), Point_draw() ... etc
static const struct Class _Point = {
sizeof(struct Point), Point_ctor, 0, Point_draw
|7
const void * Point = & _Point;
void move (void * _self, int dx, int dy)
{ struct Point * self = _self;

self —> x += dx, self —>y +=dy;

}

Inheritance
N

New.r

1 struct Class in New.r has

been modified to contain struct Class {

draw() in place of differ() size_t size;
void * (* ctor) (void * self, va_list * app);
void * (* dtor) (void * self);

void (* draw) (const void * self);

}i

New.c

o differ() in New.c has been
replaced with draw()

void draw (const void * self)

{ const struct Class * const * cp = self;
assert(self && * cp && (* cp) —> draw);
(* cp) —> draw(self);

}

Inheritance

Circle is a class that derives from Point

Inheritance can be achieved by placing a variable of
type struct Point at the beginning of struct Class:
struct Circle { const struct Point _; int rad; };

Just so that the user does not access the base class using
the derived class pointer, the variable name is an almost
hidden underscore symbol

‘const’ helps to protect against invalid modification of the
variable of type struct Point

Radius is initialized in its constructor:

self —> radius = va_arg(* app, int);

Inheritance
N

©1 The internal representation Circle.r
file of Circle — Circle.r is
shown

struct Circle {
const struct Point _;

int rad;

}i

Inheritance

1 Circle.c contains the table
of function pointers

71 It contains the
implementation of the
dynamically linked functions

1 draw() method has been
over-ridden in this case

Circle.c
static void * Circle_ctor (void * _self, va_list * app)
{
struct Circle * self =
((const struct Class *) Point) —> ctor(_self, app);
self —> rad = va_arg(* app, int);
return self;

}

static void Circle_draw (const void * _self)
{
const struct Circle * self = _self;
printf("circle at %d,%d rad %d\n",
x(self), y(self), self —> rad);
}
static const struct Class _Circle = {
sizeof(struct Circle), Circle_ctor, 0, Circle_draw
Yi

const void * Circle = & _Circle;

Inheritance

Since the initial address of the sub-class always
contains a variable of the superclass, the sub-class

variable can always behave like the super-class
variable

Functionality of move() remains exactly the same for
Point and Circle, hence we can look for code re-use

Passing the sub-class variable to a function like move()
is fine, since move() will be able to operate only on
the super-class() part which is embedded in the sub-
class

Struct Circle can be converted to struct Point by up-
conversion and using void™ as intermediate mechanisms

Inheritance

Sub-classes inherit statically linked functions like
move() from Super-class

Statically linked functions can not be over-ridden in a sub-
class

Sub-classes inherit dynamically linked functions like
draw() also from super-class

Dynamically linked functions can be over-ridden in sub-class

Visibility and Access functions

A data-type has three files:

‘.h’ file - contains declaration of abstract data type and
other functions that can be accessed by the user; application
can include this file & a sub-class’s .h file will include a
super-class’s .h file

‘.’ file - contains internal representation of the class; a sub-
class’s .r file will include a super-class’s .r file

‘.c’ file - contains implementation of the functions belonging
to the data — type; a sub-class’s .c file include its own .h and
.r file and its super-class’s .h and .r file

Visibility and Access functions

We have an almost invisible super-class variable * ’
within the sub-class, but we need to make sure that
the sub-class part does not access and make changes
to the super-class part.

We define the following macros for this purpose in
Point.r:

Hdefine x(p) (((const struct Point *)(p)) —> x)

Hdefine y(p) (((const struct Point *)(p)) —> vy)

While accessing x and y of Point within Circle, ‘const’
prevents any assignment to x and y

Multiple Inheritance

Can be achieved by including the structure variables
of all the super-class objects

The downside is that we need to perform address
manipulations apart from up-cast (from a sub-class
variable to a super-class) , to obtain the appropriate
super-class object

Inheritance vs. Aggregation

Inheritance is shown by having struct Circle contain struct
Point at its starting address:

struct Circle { const struct Point _; int rad; };
Delegation can be achieved by the following
mechanism:

struct Circle2 { struct Point * point; int rad; };

Circle2 cannot re-use the methods of Point. It can just apply
Point methods to the Point component, but not to itself

We need to decide whether to use Inheritance or
Delegation using the ‘is-a’ or ‘has-a’ test

Conclusion

ANSI-C has all the language level — mechanisms to
implement object-oriented concepts

Static keyword

Function pointers

Structures etc...
The downside is that implementing object-oriented

concepts in C is not very straightforward and can be
complex in certain situations (Multiple inheritance)

References
N

0 http://www.cs.rit.edu/~ats/books/ooc.pdf

0 http://www.eventhelix.com /realtimemantra/basics /object ori

ented programming in c.htm

0 http://stackoverflow.com/questions /2181079 /object-
oriented-programming-in-c

http://www.cs.rit.edu/~ats/books/ooc.pdf
http://www.cs.rit.edu/~ats/books/ooc.pdf
http://www.eventhelix.com/realtimemantra/basics/object_oriented_programming_in_c.htm
http://www.eventhelix.com/realtimemantra/basics/object_oriented_programming_in_c.htm
http://www.eventhelix.com/realtimemantra/basics/object_oriented_programming_in_c.htm
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c

