
Object Oriented Programming in Python
By Amarjit Singh
 Karanvir Singh

*#%???$%

•Contents

Object Oriented Programming Basics
Basic Concepts of Object Oriented Programming

Object Oriented Programming in Python
How to do Object Oriented Programming in Python

More about Python
More information about the language

Part 1

Part 2

Part 3

Part 4

Design Patterns & Python
How to implement design pattern in Python

2

3

Object Oriented Programming Concepts

Procedural

• Modules, data structures and procedures that
operate upon them

Objectural

• Objects which encapsulate state and behavior and
messages passed between theses objects

Functional
• Functions and closures, recursion, lists, …

Before diving deep into the
concept of Object Oriented
Programming, let’s talk a
little about all the
programming paradigms
which exist in this world.

•Object Oriented Programming Basics
Programming Paradigms

4

It allows the programmer to choose the paradigm
that best suits the problem

It allows the program to mix paradigms

It allows the program to evolve switching paradigm
if necessary

Python is multiparadigm
programming language

•Object Oriented Programming Basics
Programming Paradigms

5

Encapsulation

• dividing the code into a public interface, and a
private implementation of that interface

Polymorphism

• the ability to overload standard operators so that
they have appropriate behavior based on their
context

Inheritance

• the ability to create subclasses that contain
specializations of their parents

A software item that
contains variables and
methods.

Object Oriented Design
focuses on :-

•Object Oriented Programming Basics
What is an Object?

6

Classes(in classic oo) define
what is common for a whole
class of objects, e.g.:
“Snowy is a dog” can be
translated to “The Snowy
object is an instance of the
dog class.” Define once how
a dog works and then reuse
it for all dogs. Classes
correspond to variable
types(they are type
objects).
At the simplest level, classes
are simply namespaces.

•Object Oriented Programming Basics
What is a Class?

7

Snowy

Dog

8

Object Oriented Programming in Python

I have class

• A class is a python object with several characteristics:
• You can call a class as it where a function and this call returns a new

instance of the class
• A class has arbitrary named attributes that can be bound, unbound an

referenced
• The class attributes can be descriptors (including functions) or normal data

objects
• Class attributes bound to functions are also known as methods
• A method can have special python-defined meaning (they’re named with

two leading and trailing underscores)
• A class can inherit from other classes, meaning it delegates to other classes

the look-up of attributes that are not found in the class itself

•Object Oriented Programming in Python
Python Classes

9

• All classes are derived from object (new-style classes).

• Python objects have data and function attributes (methods)

•Object Oriented Programming in Python
Python Classes in Detail (I)

10

class Dog(object):
pass

class Dog(object):

 def bark(self):

 print "Wuff!“

snowy = Dog()

snowy.bark() # first argument (self) is bound to this Dog instance
snowy.a = 1 # added attribute a to snowy

• Always define your data attributes in __init__

• Class attributes are shared across all instances.

•Object Oriented Programming in Python
Python Classes in Detail (II)

11

class Dataset(object):

 def __init__(self):

 self.data = None

 def store_data(self, raw_data):

 ... # process the data
 self.data = processed_data

class Platypus(Mammal):
 latin_name = "Ornithorhynchus anatinus"

• Use super to call a method from a superclass.

•Object Oriented Programming in Python
Python Classes in Detail (III)

12

class Dataset(object):

 def __init__(self, data=None):

 self.data = data

class MRIDataset(Dataset):

 def __init__(self, data=None, parameters=None):

 # here has the same effect as calling

 # Dataset.__init__(self)

 super(MRIDataset, self).__init__(data)

 self.parameters = parameters
mri_data = MRIDataset(data=[1,2,3])

• Special methods start and end with two underscores and customize
standard Python behavior (e.g. operator overloading).

•Object Oriented Programming in Python
Python Classes in Detail (IV)

13

class My2Vector(object):

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __add__(self, other):

 return My2Vector(self.x+other.x, self.y+other.y)

v1 = My2Vector(1, 2)

v2 = My2Vector(3, 2)
v3 = v1 + v2

• Properties allow you to add behavior to data attributes:

•Object Oriented Programming in Python
Python Classes in Detail (V)

14

class My2Vector(object):

 def __init__(self, x, y):

 self._x = x

 self._y = y

 def get_x(self):

 return self._x

 def set_x(self, x):

 self._x = x

 x = property(get_x, set_x)

define getter using decorator syntax

@property

 def y(self):

 return self._y

v1 = My2Vector(1, 2)

x = v1.x # use the getter

v1.x = 4 # use the setter
x = v1.y # use the getter

•Object Oriented Programming in Python
Python Example (I)

15

import random

class Die(object): # derive from object for new style classes

"""Simulate a generic die.""“

 def __init__(self, sides=6):

 """Initialize and roll the die.

 sides -- Number of faces, with values starting at one

 (default is 6).

 """

 self._sides = sides # leading underscore signals private

 self._value = None # value from last roll

 self.roll()

 def roll(self):

 """Roll the die and return the result."""

 self._value = 1 + random.randrange(self._sides)
 return self._value

•Object Oriented Programming in Python
Python Example (II)

16

 def __str__(self):

 """Return string with a nice description of the die state."""

 return "Die with %d sides, current value is %d." %

 (self._sides, self._value)

class WinnerDie(Die):

 """Special die class that is more likely to return a 1."""

 def roll(self):

 """Roll the die and return the result."""

 super(WinnerDie, self).roll() # use super instead of

 Die.roll(self)

 if self._value == 1:

 return self._value

 else:
 return super(WinnerDie, self).roll()

•Object Oriented Programming in Python
Python Example (III)

17

>>> die = Die()

>>> die._sides # we should not access this, but nobody will stop us

6

>>> die.roll

<bound method Die.roll of <dice.Die object at 0x03AE3F70>>

>>> for _ in range(10):

... print die.roll()

2 2 6 5 2 1 2 6 3 2

>>> print die # this calls __str__

Die with 6 sides, current value is 2.

>>> winner_die = dice.WinnerDie()

>>> for _ in range(10):

... print winner_die.roll(),

2 2 1 1 4 2 1 5 5 1
>>>

18

Design Patterns & Python

Not
bad!

Iterator
Pattern

• The essence of the Iterator Factory method Pattern is
to "Provide a way to access the elements of an
aggregate object sequentially without exposing its
underlying representation.".

Decorator
Pattern

• The decorator pattern is a design pattern that allows
behavior to be added to an existing object
dynamically.

Strategy
Pattern

• The strategy pattern (also known as the policy
pattern) is a particular software design pattern,
whereby algorithms behavior can be selected at
runtime.

Adapter
Pattern

• The adapter pattern is a design pattern that translates
one interface for a class into a compatible interface

Design Patterns are concrete
solutions for reoccurring
problems.

They satisfy the design
principles and can be used
to understand and illustrate
them.

They provide a NAME to
communicate effectively
with other programmers.

•Design Patterns & Python
What is a Design Pattern?

19

20

Iterator Pattern

• How would you iterate elements from a collection?

• But what if my_collection does not support indexing?

• This violates one of the design principles!

•Iterator Pattern
Problem

21

>>> my_collection = ['a', 'b', 'c']

>>> for i in range(len(my_collection)):

... print my_collection[i],
a b c

>>> my_collection = {'a': 1, 'b': 2, 'c': 3}

>>> for i in range(len(my_collection)):

... print my_collection[i],
What will happen here?

• store the elements in a collection (iterable)

• manage the iteration over the elements by means of an iterator
• object which keeps track of the elements which were already

delivered

• iterator has a next() method that returns an item from the

• collection. When all items have been returned it raises a

• Stop Iteration exception.

• iterable provides an __iter__() method, which returns an iterator
• object.

•Iterator Pattern
Description

22

•Iterator Pattern
Example (I)

23

class MyIterable(object):

"""Example iterable that wraps a sequence."""

def __init__(self, items):

"""Store the provided sequence of items."""

self.items = items

def __iter__(self):

 return MyIterator(self)

class MyIterator(object):

"""Example iterator that is used by MyIterable."""

def __init__(self, my_iterable):

"""Initialize the iterator.

my_iterable -- Instance of MyIterable.

"""

self._my_iterable = my_iterable
self._position = 0

•Iterator Pattern
Example (II)

24

def next(self):

if self._position < len(self._my_iterable.items):

value = self._my_iterable.items[self._position]

self._position += 1

return value

else:

raise StopIteration()

in Python iterators also support iter by returning self

def __iter__(self):
return self

• First, lets perform the iteration manually:

• A more elegant solution is to use the Python for-loop:

• In fact Python lists are already iterables:

•Iterator Pattern
Example (III)

25

iterable = MyIterable([1,2,3])

iterator = iter(iterable) # or use iterable.__iter__()

try:

while True:

item = iterator.next()

print item

except StopIteration:

pass
print "Iteration done."

for item in iterable:

print item
print "Iteration done."

for item in [1,2,3]:
 print item

26

Decorator Pattern

•Decorator Pattern
Problem (I)

27

class Beverage(object):

imagine some attributes like temperature, amount left,..

.

def get_description(self):

return "beverage“

def get_cost(self):

return 0.00

class Coffee(Beverage):

def get_description(self):

return "normal coffee"

def get_cost(self):

return 3.00

class Tee(Beverage):

def get_description(self):

return "tee"

def get_cost(self):
return 2.50

•Decorator Pattern
Problem (II)

28

class CoffeeWithMilk(Coffee):

def get_description(self):

return super(CoffeeWithMilk, self).get_description() + ", with milk“

def get_cost(self):

return super(CoffeeWithMilk, self).get_cost() + 0.30

class CoffeeWithMilkAndSugar(CoffeeWithMilk):

And so on, what a mess!

We have the following requirements:

• adding new ingredients like soy milk should be easy and work

with all beverages,

• anybody should be able to add new custom ingredients
without touching the original code (open-closed principle),

• there should be no limit to the number of ingredients.

•Decorator Pattern
Description

29

Use the
Decorator

Pattern here
dude!

•Decorator Pattern
Solution

30

class Beverage(object):

def get_description(self):

return "beverage“

def get_cost(self):

return 0.00

class Coffee(Beverage):

#[...]

class BeverageDecorator(Beverage):

def __init__(self, beverage):

super(BeverageDecorator, self).__init__() # not really needed here

self.beverage = beverage

class Milk(BeverageDecorator):

def get_description(self):

#[...]

def get_cost(self):

#[...]
coffee_with_milk = Milk(Coffee())

31

Strategy Pattern

•Strategy Pattern
Problem

32

class Duck(object):

def __init__(self):

for simplicity this example class is stateless

def quack(self):

print "Quack!“

def display(self):

print "Boring looking duck.“

def take_off(self):

print "I'm running fast, flapping with my wings.“

def fly_to(self, destination):

print "Now flying to %s." % destination

def land(self):

print "Slowing down, extending legs, touch down."

• Oh man! The RubberDuck is able to fly!
• Looks like we have to override all the flying related methods.
• But if we want to introduce a DecoyDuck as well we will have to override all

three methods again in the same way (DRY).
• And what if a normal duck suffers a broken wing?
• Idea: Create a FlyingBehavior class which can be plugged into theDuck

class.

•Strategy Pattern
Problem (I)

33

class RedheadDuck(Duck):

def display(self):

print "Duck with a read head.“

class RubberDuck(Duck):

def quack(self):

print "Squeak!“

def display(self):
print "Small yellow rubber duck."

•Strategy Pattern
Solution (I)

34

class FlyingBehavior(object):

"""Default flying behavior."""

def take_off(self):

print "I'm running fast, flapping with my wings."

def fly_to(self, destination):

print "Now flying to %s." % destination

def land(self):

print "Slowing down, extending legs, touch down.“

class Duck(object):

def __init__(self):

self.flying_behavior = FlyingBehavior()

def quack(self):

print "Quack!"

def display(self):

print "Boring looking duck."

def take_off(self):

self.flying_behavior.take_off()

def fly_to(self, destination):

self.flying_behavior.fly_to(destination)

def land(self):
self.flying_behavior.land()

•Strategy Pattern
Solution (II)

35

class NonFlyingBehavior(FlyingBehavior):

"""FlyingBehavior for ducks that are unable to fly."""

def take_off(self):

print "It's not working :-("

def fly_to(self, destination):

raise Exception("I'm not flying anywhere.")

def land(self):

print "That won't be necessary.“

class RubberDuck(Duck):

def __init__(self):

self.flying_behavior = NonFlyingBehavior()

def quack(self):

print "Squeak!"

def display(self):

print "Small yellow rubber duck.“

class DecoyDuck(Duck):

def __init__(self):

self.flying_behavior = NonFlyingBehavior()

def quack(self):

print ""

def display(self):
print "Looks almost like a real duck."

36

Adapter Pattern

• Lets say we obtained the following class from our collaborator:

How to integrate it with our Duck Simulator: turkeys can fly and gobble
but they can not quack!

•Adapter Pattern
Problem

37

class Turkey(object):

def fly_to(self):

print "I believe I can fly...“

def gobble(self, n):
print "gobble " * n

•Adapter Pattern
Description

38

Adapter Pattern applies several good design principles:
• uses composition to wrap the adaptee (Turkey) with an altered interface,
• binds the client to an interface not to an implementation

•Adapter Pattern
Solution

39

class TurkeyAdapter(object):

def __init__(self, turkey):

self.turkey = turkey

self.fly_to = turkey.fly_to #delegate to native Turkey method

self.gobble_count = 3

def quack(self): #adapt gobble to quack

self.turkey.gobble(self.gobble_count)

>>> turkey = Turkey()

>>> turkeyduck = TurkeyAdapter(turkey)

>>> turkeyduck.fly_to()

I believe I can fly...

>>> turkeyduck.quack()
gobble gobble gobble

40

More About Python

Since Python2.2 there co-exist two slightly dierent object models in
the language

Old-style (classic) classes : This is the model existing prior to
Python2.2

New-style classes :This is the preferred model for new code

•More About Python
Object models

41

Old Style

>>> class A: pass

>>> class B: pass

>>> a, b = A(), B()

>>> type(a) == type(b)

True

>>> type(a)

<type 'instance'>

New Style

>>> class A(object): pass

>>> class B(object): pass

>>> a, b = A(), B()

>>> type(a) == type(b)

False

>>> type(a)

<class ' main .A'>

• Defined in the type and class unification effort in python2.2
• (Introduced without breaking backwards compatibility)
• Simpler, more regular and more powerful

• Built-in types (e.g. dict) can be subclassed

• Properties: attributes managed by get/set methods

• Static and class methods (via descriptor API)

• Cooperative classes (sane multiple inheritance)

• Meta-class programming
• It will be the default (and unique) in the future
• Documents:

• Unifying types and classes in Python 2.2

• PEP-252: Making types look more like classes

• PEP-253: Subtyping built-in types
•

•More About Python
New-style classes

42

• classname is a variable that gets (re)bound to the class object after the
class statement finishes executing

• base-classes is a comma separated series of expressions whose values must
be classes

• if it does not exists, the created class is old-style

• if all base-classes are old-style, the created class is old-style

• otherwise it is a new-style class1

• since every type subclasses built-in object, we can use object to

• mark a class as new-style when no true bases exist
• The statements (a.k.a. the class body) dene the set of class attributes which

will be shared by all instances of the class

•More About Python
The class statement

43

class classname(base-classes):

statement(s)

• When a statement in the body (or in a method in the body) uses an
identifier starting with two underscores (but not ending with them) such as
__private, the Python compiler changes it to _classname__private

• This lets classes to use private names reducing the risk of accidentally
duplicating names used elsewhere

• By convention all identifiers starting with a single underscore are

• meant to be private in the scope that binds them

•More About Python
Class-private attributes

44

>>> class C5(object):
... private = 23
>>> print C5.__private
AttributeError: class A has no attribute ' private'
>>> print C5. C5 private
23

• A descriptor is any new-style object whose class supplies a special method
named __get__

• Descriptors that are class attributes control the semantics of accessing and
setting attributes on instances of that class

• If a descriptor's class also supplies method __set__ then it is called an
overriding descriptor (a.k.a. data descriptor)

• If not, it is called non-overriding (a.k.a. non-data) descriptor

• Function objects (and methods) are non-overriding descriptors

• Descriptors are the mechanism behind properties, methods, static
methods, class methods, and super (cooperative super-classes)

• The descriptor protocol also contains method __delete__ for unbinding
attributes but it is seldom used

•More About Python
Descriptors

45

Thank You

46

