
Domain-Driven Design

Brett D. Roads

Domain-Driven Design:
Tackling Complexity in
the Heart of Software

– By: Eric Evans

• This text address the
analysis and design of
software the relies on
complex domain
specific knowledge

Motivation

• The Goal
– A domain specific project that needs to leverage multiple realms

of expertise
• Design and Developer expertise
• Domain specific expertise

• The Complication
– Need to enable communication between the two groups.
– Project organization can insulate the transmission of knowledge

and retard the ideal evolution of a project

• The Solution
– Strengthen the communication process and establish a

methodology for making those communication more robust
– This is primarily accomplished by developing a UBIQOUTOUS

LANGUAGE and single model.

The Players

• Throughout the text, there are four main roles in
the development process
– Domain expert
– Designer
– Software developer
– End user

• This approach seeks to leverage the skills of the

designer, developer and the domain expert in
order to create a scalable solution for a domain
specific problem

The Goal

Specific Domain

Design and Developer
Team

Problem that
needs design and

developer
expertise Developed

Solution

The Complication

• Initially, domain experts and developers likely
do no share the same language for discussing
the project.

• Concerns with scalability and quality mean
that the solution must be especially careful to
accurately reflect the domain.

• Therefore, domain experts and developers
must be able to communicate with each other
effectively.

Problematic Communication Structure

Domain Experts Designers Developers

• Developers are insulated from the domain
experts. If a developer does not understand a
concept, it is likely the implementation will
not accurately reflect the domain.

The Solution

• Facilitate communication between domain
experts, designers and developers

• This is accomplished by …

– establishing a common language, i.e. a
UBIQUITOUS LANGUAGE.

– iterating a single model to reflect a shared
understanding across domain experts, designers
and developers.

Domain-Driven Design Communication
Structure

Domain Experts

Designers

Developers

Model
Ubiquitous Language

• Communication between developers and domain
experts is facilitated by the development of a
UBIQUITOUS LANGUAGE and a single model.

Models

• This text expresses a fundamental view of
models that is perhaps at odds with other
ways of thinking
– Models live in people’s heads

– Diagrams, code, speech, etc. utilizes a model

– Models are not a design artifact

• Models are the backbone of a project

• Consequently, Domain-Driven Design highly
overlaps with Model-Driven Design

Knowledge Crunching

• Continuous learning that takes place between
domain experts, designers and developers.

• “Knowledge crunching is an exploration, and
you can’t know where you’ll end up (pg. 21)”

• Gives a starting model.

• Provides a mechanism for initiating model
iterations.

Model0

UBIQUITOUS LANGUAGE

• The language that is used across aspects of
the project.

• The model implies UBIQUITOUS LANGUAGE

• “The use of language on a project is subtle
but all-important. (pg. 23)”

• “… the primary carrier of the aspects of design
that don’t appear in code…(pg. 27)”

UBIQUITOUS LANGUAGE

• “The vocabulary of that UBIQUITUOS
LANGUAGE includes names of classes and
prominent operations. The language includes
terms to discuss rules that have been made
explicit in the model. It is supplemented with
terms from high-level organizing principles
imposed on the model. Finally, this language
is enriched with the names of patterns the
team commonly applies to the domain model
(pg. 25).”

UBIQUITOUS LANGUAGE

• “Persistent use of the UBIQUITOUS
LANGUAGE will force the model’s weaknesses
into the open (pg. 26)”

The One Model Solution

• Why?
– The model is the source

– Control the source, you control the consequences

• Complication
– To work correctly…

– “Anyone responsible for changing code must learn to
express a model through the code. Every developer
must be involved in some level of discussion about the
model and have contact with domain experts (pg.
62).”

Iterative Process

• A model is not a one-shot deal.

• Rather the model emerges out of multiple
iterations of refactoring, discussion and
knowledge evolution.

• Start with an initial model that is a best guess
based on a discussion with domain experts.

• Evolve the model throughout the lifetime of
the project.

Iterative Process

• A model implies
– language to be used in speech
– code implementation
– diagrams
– language in documents

• If the actual speech, code, diagrams and documents used are
different, then the model needs to be revised

Model0

Speech

Code

Model0

Diagrams

Written
Documents

Speech Diagrams

Iterative process

Modeln

Speech
Code

Diagrams

Documents

Modeln+1

Speech
Code

Diagrams

Documents

Modeln+1

δSpeech
δ Code

δ Diagrams

δ Documents

Supported by the model
Actually used
Differences

Knowledge Crunching and Refactoring
δ Speech = Actual Speech – Speech
δ Code = Actual Code - Code
δ Diagrams = Actual Diagrams - Diagrams
δ Documents = Actual Docs - Docs

A Single Model

• “MODEL-DRIVEN DESIGN discards the
dichotomy of analysis model and design to
search out a single model that serves both
purposes. … This requires us to be more
demanding of the chosen model, since it must
fulfill two quite different objectives (pg. 49).”

Developer Model

• Developers must buy-in and feel responsible for the
model
– “If developers don’t realize that changing code changes

the model, then their refactoring will weaken the model
rather than strengthen it (pg 61).”

– The abstractions will not accurately reflect the domain
knowledge

• “With a MODEL-DRIVEN DESIGN, a portion of the code
is an expression of the model; changing the code
changes the model. Programmers are modelers,
whether anyone likes it or not. So it is better to set up
the project so that the programmers do good modeling
work (pg. 61).”

User Model

• “In theory, perhaps, you could present a user
with any view of a system, regardless of what
lies beneath. But in practice, a mismatch
causes confusion at best – bugs at worst (pg.
57).”

A Single Model

• Although the initial model may not be
identical in all cases, over iterations, the
models should converge

Domain Expert
Model

Why One Model?

• “The single model reduces the chances of
error, because the design is now a direct
outgrowth of the carefully considered model.
The design, and even the code itself, has the
communicativeness of a model (pg. 50).”

• Note the one model view does not mean that
different sub-systems cannot have their own
model, but that all those involved in the sub-
system need to use one model.

Hands-On Modelers

• “All teams have specialized roles for members, but over
separation of responsibility for analysis, modeling,
design, and programming interferes with MODEL-
DRIVEN DESIGN (pg. 60).”

• Model’s intent can be lost in the handoff
– “The overall effect of a model can be very sensitive to

details, and those details don’t always come across in a
UML diagram or a general discussion (pg. 60).”

• Indirectness of Feedback
– Certain aspects of the model can be wildly inefficient, the

project leader needs to know about this so the model can
be reformulated. Otherwise the developers might
abandon the model

The Building Blocks of a Model-Driven
Design

• To maintain the correspondence between
model and implementation there are specific
techniques that Eric Evans suggests.

– Isolate the domain using a layered architecture

– Domain layer techniques

• Use associations wisely

• Use appropriate model elements

• Utilize Modules

Isolating the Domain

• “To apply our best thinking, we need to be able
to look at the elements of our model and see
them as a system. We must not be forced to pick
them out of a much larger mix of objects, like
trying to identify constellations in the night sky.
We need to decouple the domain objects from
other functions of the system, so we can avoid
confusing the domain concepts with other
concepts related only to software technology or
losing sight of the domain altogether in the mass
of the system (pg. 67).”

Layered Architecture

• The architecture can be separated into layers
with specific responsibilities,

– User Interface

– Application

– Domain

– Infrastructure

Layered Architecture

• The domain layer should be isolated
– This allows domain objects to be designed without

simultaneously thinking about he user interface

• “But the main benefit is simplifying the
application layer, keeping it narrowly focused
on its job: knowing when to send a message,
but no burdened with how (pg 73).”

• Services should be loosely coupled to the rest
of the system.

Domain Layer Building Blocks

• Associations
• Three patterns of model elements

– Entities
• An object that represents something with continuity and identity – something that is

tracked through different states or even across different implementations

– Value Objects
• Attribute that describes the state of a particular object aspect

– Services
• Actions or operations
• “Although it is a slight departure from object-oriented modeling tradition, it is often best

to express theses as SERVICES, rather than forcing responsibility for an operation onto
some ENTITY or VALU OBJECT (pg. 82).”

• Modules
– “The ideas of hgh cohesion and low coupling, foten thought of as technical

metirics, can be applied to the concepts themselves. In a MODEL-DRIVEN
DESIGN, MODULES are part of the model, and they should reflect concepts in
the domain (pg. 82).”

Associations

• A model typically has many associations which
can make implementation and maintenance
complicated (especially many-to-many
associations)

• Making associations more tractable
– Impose a traversal direction

– Add a qualifier

– Eliminate nonessential associations

• This makes associations more expressive of the
model as well as more tractable

Entity Pattern

• “An object defined primarily by its identity is called an
ENTITY (pg. 91).”

• “They have life cycles that can radically change their
form and content, but a thread of continuity must be
maintained (pg. 91).”

• “Their class definitions, responsibilities, attributes, and
associations should revolve around who they are,
rather than the particular attributes they carry (pg.
91).”

• Entity should be stripped down to characteristics that
uniquely identify it and commonly used to find and
match it

Value Objects

• Could make all objects entities…
– “Software design is a constant battle with complexity.

We must make distinctions so that special handling is
applied only where necessary (pg. 98).”

– Only use entities where necessary

• An object that represents a descriptive aspect of
the domain with no conceptual identity

• “[I]nstantiated to represent elements of the
design that we care about only for what they are,
not who or which they are (pg. 98).”

SERVICES

• “In some cases, the clearest and most pragmatic design
includes operations that do not conceptually belong to an
object. Rather than force the issue, we can follow the
natural contours of the problem space and include
SERVICES explicitly in the model (pg. 104).”

• Operation names should come from the UBIQUITOUS
LANGUAGE

• Parameters and results should be domain objects
• Should be used judiciously
• Note: There is a distinction between services discussed

here that are used in the domain layer and those of other
layers. Technical SERVICES lack business meaning.

A Good SERVICE

1. The operation relates to a domain concept
that is not a natural part of an ENTITY or
VALUE OBJECT

2. The interface is defined in terms of other
elements of the domain model

3. The operation does not maintain an internal
state that affects its own behavior (stateless).

MODULES (a.k.a PACKAGES)

• “MODULES give people two views of the model: They can look at
detail within a MODULE without being overwhelmed by the whole,
or they can look at relationships between MODULES in views that
exclude interior detail (pg. 109).”

• The MODULES in the domain layer should emerge as a meaningful
part of the model, telling the story of the domain on a larger scale
(pg. 109).”

• MODULES can be dangerous since the cost of refactoring MODULES
can be prohibitive

• “If your model is telling a story, the MODULES are chapters (pg.
110).”

• “Give the MODULES names that become part of the UBIQUITOUS
LANGUAGE (pg. 111).”

Refactoring Towards Deeper Insight

• The real challenge it to find an incisive model

• Success developing useful models comes down to
three points
1. Sophisticated domain models are achievable and

worth the trouble

2. They are seldom developed except through an
iterative process of refactoring, including close
involvement of the domain experts with developers
interested in learning about the domain.

3. They may call fro sophisticated design skills to
implement and to use effectively. (pg.188)

Types of Refactoring

• Micro-refactorings

• Refactoring to a design pattern

• Refactoring to a deeper model

– Superimposed on micro-refactoring and
refactoring to a design pattern

– Occasionally characterized by a breakthrough

Breakthroughs

• Breakthroughs are brought about by
increasing clarity of the domain and result in
changes to the model that are a much better
reflection of the domain

• Breakthroughs are often scary because they
often require changing a lot of supporting
code with few if any stable stopping points, all
in the context of a looming deadline

Making Implicit Concepts Explicit

• Deep modeling often comes about by realizing
that an important concept is present implicitly in
the design and would be better expressed if
present explicitly

• “Process starts with recognizing implied concepts
in some form, however crude (pg. 205).”

• Identifying missing concepts is aided by…
– Listening to the language of the domain experts
– Scrutinizing awkwardness in the design
– Listening for seeming contradictions in the statements

of experts

Making Implicit Concepts Explicit

• Non-obvious implicit concepts
– Explicit Constraints

• Can factor out constraints into methods with intention
revealing names or into a separate object entirely

– Processes
• Make explicit an important domain process that is otherwise

obscured

– SPECIFICATION
• a separate VALUE OBJECT that contains business logic in the

form of a method that resembles a predicate.

• “A SPECIFICATION is a predicate that determines if an objet
does or does not satisfy some criteria (pg. 226).”

Supple Design

• Although the ultimate purpose of the
software is to serve users, which are often the
domain experts themselves, the software
must first serve developers.

• A supple design is one that is a pleasure to
work with and is inviting to change

Supple Design:
INTENTION-REVEALING INTERFACE

• “Type names, method names, and argument
names all combine to form an INTENTION-
REVEALING INTERFACE (pg. 247).”

• “Name classes and operations to describe their
effect and purpose, without reference to the
means by which they do what they promise (pg.
247).”

• “Write a test for a behavior before creating it, to
force your thinking into client developer mode
(pg. 247).”

Supple Design:
SIDE-EFFECT-FREE FUNCTIONS

• “Interactions of multiple rules or compositions
of calculations become extremely difficult to
predict (pg. 250.)”

• To make code easier to use, separate
calculations and state change into different
operations.

Supple Design:
ASSERTIONS

• “Assertions make side effects explicit and
easier to deal with (pg. 255).”

• “State post-conditions of operations and
invariants of classes and AGGREGATES. If
ASSERTIONS cannot be coded directly in you
programming language, write automated unit
tests for them (pg. 256).”

Summary

• Communication is key
– A UBIQUITOUS LANUAGE facilitates the transfer of

knowledge between domain experts, designers and
developers.

– A good design and a single model ameliorates cognitive
overload.

– Everything in domain-driven design is a communication
mechanism

• A single model encourages a solution that accurately
reflects the subtleties of the domain.

• An accurate model results in a quality product that is
scalable.

