
 

CSCI 5448: Graduate

Presentation

Smitha Sunil Kamat and Krithika Parthan

 The Java Concurrency framework provides a platform to parallelize
applications effectively. This allows the programmer to make full use of multiple
cores and hence improve the performance of the application.

 The concurrency model allows performance improvement with a single core
machine also since it tasks can be switched in and out of the processor giving
the illusion of parallelism while hiding latencies effectively.

 In order to make the application concurrent, a set of “threads” are created for
each task. These threads share the resources of the task and also have their
own context which is smaller than the parent task. This can be done easily and
effectively using classes and interfaces provided by the Java Concurrency
framework.

 To write thread safe programs that allow multiple threads to work on shared
resources without data corruption, the concurrency library provides a set of
synchronization mechanisms that ensure security of data without costing
performance.

 The object-oriented abstractions provided by the Java platform coupled with
the parallelism offered by the concurrency framework provides a very powerful
set of tools for programmers to develop applications that are modular and fast.

 Introduction

 Motivation

 History

 Classes provided

 Executer

 Thread Factory

 Futures

 Queues

 Synchronizers

 Atomics

 Locks

 Applications

 Concurrent Hash Maps

 References

 The JAVA concurrency framework provides a set of

classes and services which helps JAVA programmers to

design high performance, reliable and maintainable

applications (design) with reduced programming effort.

 This presentation will introduce the various concepts that

are integral parts of the JAVA concurrency framework

along with examples of their usage in JAVA

multithreaded programs.

 In this age of multi-core processors, leveraging work on

all the cores helps obtain a successful, high volume

application.

 Threads are a mechanism that help tasks to run

asynchronously.

 Sequential execution suffers from poor responsiveness

and throughput.

 Multi-threaded programming is required to overcome the

limitations of sequential execution.

 The JAVA concurrency package was developed by Doug

Lea and it comprised Collection-relate classes.

 An updated version of these utilities was included in JDK

5.0 as of JSR 166.

 JAVA SE 6 and JAVA SE 7,both introduced updated

versions of the JSR 166 APIs, inclusive of several new

additions.

 This enabled the JAVA programming language and the

JAVA Virtual Machine (JVM) to support concurrent

programming where the program execution takes place

in the context of threads.

 Following are the JAVA packages that support

concurrent programming

o Java.util.concurrent

o Java.util.concurrent.atomic

o Java.util.concurrent.locks

o Java.lang.Threads

 Multithreaded programs that are tedious to implement

can be easily accomplished using the above packages.

 Each thread created in Java is an instance of class

“Thread” provided in the Java framework as a part of

java.lang.Threads.

 Simple interface providing the primary abstraction for

task execution, supporting launching of new tasks

 Describes tasks using “Runnable”, providing the means

of decoupling “task submission” from “task execution”.

 Executor is based on the “producer-consumer” pattern,

where activities submitting the tasks are producers and

the threads that execute the tasks are consumers

 Following are the two implementations of the Executor

framework:

o ThreadPoolExecutor: Consists of worker threads which have

minimized overhead of creation

o ScheduledThreadPoolExecutor: Consists of worker threads that

can be scheduled to run after a given delay or to execute

periodically

The subinterfaces of the “Executor” framework are:

 ExecutorService: Allows a task to return a value, accepts

Callable objects, facilitates shutting down of the executor

 Runnable interface: Every thread created calls the run()

method which is a part of the “Runnable” interface. The

run() method contains the work that should be performed

by the thread

Example:

public void mainMethod() {

 HelperTask task = new HelperTask(); // Step 1: Create an

object representing the task

 Thread t = new HelperThread(task); // Step 2: Create a new

thread for executing the task

 t.start(); // Step 3: Start the new thread

}

public class HelperTask implements Runnable {

 public void run() {

 doHelperTask();

 }

}

 Callable interface: It represents the asynchronous task to be

executed. Its call() method returns a value (unlike Runnable’s

run() that doesn’t return a value), i.e the task will be able to

return a value once it is done executing. Callable can also

throw an exception if it cannot calculate a result.

 The example below shows an example of Callable class

returning a random integer

 AbstractExecutorService: Provides default implementations of

the ExecutorService execution method

 ScheduledExecutorService: Supports both the Callable and

Runnable objects with delays

Example:

 The code snippet in the previous slide shows that the

ExecutorExample class implements the Executor

interface.

 The execute() method is overloaded to allow for a

customized version of Executor. This allows the name

and priority of a thread to be controlled or set to a default

value if it is not used in the execute() call.

 The customized version contains a ThreadFactory to

control the creation of new threads used in the executor.

 It also contains an ArrayBlockingQueue used to store the

threads so that if multiple runnable tasks are submitted

to the ExecutorExample, they will by safely handled and

run in the order submitted to the queue.

 The Executor interface provides the ThreadFactory utility

method.

 The default ThreadFactory method creates a

ThreadFactory class instance that can be used to spawn

new threads.

 The Threadfactory allows creation of threads without any

client (producer) intervention.

 The next code snippet shows a ThreadFactory example.

 Here a ThreadFactory instance is created using the

Executor interface’s default ThreadFactory.

 The Runnable instance’s new thread to be spawned is

passed to the ThreadFactory instance’s newThread

method.

 A thread can be created in two ways:

o Providing a Runnable object.

o Creating a subclass of Thread class.

 Advantages of using the Executor interface and the

ThreadFactory class:

o Automatic assignment of the thread pool name, thread group

name and the thread name to the newly created thread.

o Threads can take advantage of the debugging features.

Example:

package com.concurrency.tf.test;

import java.util.concurrent.Executors;

import java.util.concurrent.ThreadFactory;

import com.concurrency.Activity;

public class ThreadFactoryTest {

 public static void main(String[] args) {

 ThreadFactory tf = Executors.defaultThreadFactory();

 Thread t = tf.newThread(new Activity());

 t.start();

 }

}

 This interface represents the result of an asynchronous

task

 The ExecutorService which can execute a Callable task

returns a Future object to return the result of the Callable

task

 The result can be obtained using get() that remains

blocked until the result is computed

 The completion of the task can be checked via isDone()

 Computations can be cancelled via cancel(), if the result

has already been calculated

Example:

public class CallableFutures {

 private static final int NTHREDS = 10;

 public static void main(String[] args) {

 ExecutorService executor =

Executors.newFixedThreadPool(NTHREDS);

 List<Future<Long>> list = new ArrayList<Future<Long>>();

 for (int i = 0; i < 20000; i++) {

 Callable<Long> worker = new MyCallable();

 Future<Long> submit = executor.submit(worker);

 list.add(submit);

 }

Example continued:

long sum = 0;

 System.out.println(list.size());

 // Now retrieve the result

 for (Future<Long> future : list) {

 try {

 sum += future.get();

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (ExecutionException e) {

 e.printStackTrace();

 }

 }

 System.out.println(sum);

 executor.shutdown();

 }

 10 Callable threads are created

 A linked list of future objects are created to store the

results computed by the callable threads

 The result is retrieved from the Future objects using the

get() method

 Queues in the JAVA concurrency framework are data

structures used to hold tasks before they are executed.

 Offer(), poll(), remove() are standard queue methods

 The AbstractQueue provides the basic queue features

 Blocking queues: Can be used to implement

producer/consumer pattern dependent problems

 Non-blocking queues: Queues that don’t require

synchronization, are based on low level hardware atomic

operations such as compare and swap (CAS)

Types of blocking queues:

 PriorityBlockingQueue: Priority queue based on priority

heap, supplying blocking retrieval operations. This class

implements the Collection and the Iterator interfaces.

This class doesn’t permit NULL elements and is thread

safe.

 LinkedBlockingQueue: Queue based on linked nodes,

ordering of elements is FIFO, dynamic in nature.

 DelayQueue: Element(task) at the head of the queue will

be executed if its delay has expired

 ArrayBlockingQueue: Queue based on a fixed size array

of elements, ordering of elements is FIFO, static in

nature. Can be used for Producer/Consumer problems.

Types of non-blocking queues

 ConcurrentLinkedQueue: Thread safe queue based on

linked nodes. Ordering of elements is FIFO.

 PrirorityQueue: Unbounded queue based on priority

heap, doesn’t accept null elements in the queue.

 The synchronous queue is a blocking queue where the

insert operation by one thread (producer) must wait for

the corresponding remove operation by another thread

(consumer)

 Until there exists a consumer and a corresponding

producer, the capacity of the queue is zero

Example:

Example continued:

Output:

 In the given example, the consumer producer is

illustrated using synchronous queues.

 The fundamental concept is that the synchronous queue

has no in-built capacity to store elements. Hence, a

consumer and producer construct is required to enable

extraction and insertion of elements into the queue

respectively.

 From the output of the example code, we can see the

threads execute in a random order with no deterministic

behavior.

 With multiple threads, it is important to write thread safe

code.

 This means that multiple threads should be able to work

on a set of data without any corruption.

 Synchronization mechanisms are used to implement

thread safe practices.

 The Java concurrency framework offers a number of

synchronization methods such as semaphores, mutexes

and barriers.

 Semaphores are binary flags that can be used to

indicate if a resource is available for modification or not.

o A semaphore object can be created using the Semaphore class.

The available or busy state can be set using acquire() which

blocks until a permit is available. The release() method releases

the acquired permit.

o A semaphore that is defined as binary can take the values 0 (on

acquire()) and 1 (on release()). In general, semaphores in Java

are said to be counting semaphores.

 Mutex is implemented as a lock in JAVA. They can be

exclusive locks or locks that allow concurrent access to a

shared resource (ReadWriteLocks).

 Barriers aids synchronization by allowing a set of threads

to wait for each other to reach a common barrier point,

barriers are cyclic since they can be reused after the

waiting threads are released.

 Java provides a cyclic barrier for this purpose. This

allows the same barrier to be reused once all the threads

are released.

 This can be created using CyclicBarrier class. The

method await() is used to act as the actual barrier point.

All threads associated with the Barrier need to invoke

this for the program to move forward.

Example:

Runnable barrier1Action = new Runnable() {

 public void run() {

 System.out.println("BarrierAction 1 executed ");

 }

} //Defines action to be performed after crossing barrier

//Creates a CyclicBarrier object

CyclicBarrier barrier1 = new CyclicBarrier(2, barrier1Action);

CyclicBarrierRunnable barrierRunnable1 =

 new CyclicBarrierRunnable(barrier1);

//Passes barrier to threads

new Thread(barrierRunnable1).start();

new Thread(barrierRunnable1).start();

 As an alternative to CyclicBarrier, a CountDownLatch
can also be used.

 The main difference is that CyclicBarrier can be passed
only when specified number of threads call the await()
method whereas CountDownLatch can be released
based on the absolute number of calls to the function,
independent of the threads calling it.

 CountDownLatch will also need to be reset before being
used again.

 CyclicBarrier also takes an additional parameter
“runnable()” that specifies the action to be carried out
once the barrier is crossed.

 Atomic statements or code blocks are used when certain

operations are required to execute uninterrupted. For

example, writes are atomic for most variables.

 This is a simple synchronization mechanism: specifying

atomic code ensures that the thread executing the

statement cannot be interrupted.

 The programmer can use this to ensure memory

consistency.

 The java.util.concurrent.atomic package provides a

number of classes that can be used to make single

variable accesses atomic.

 For example, consider an atomic integer called value

initialized to 1. This can be accessed atomically.

o private static AtomicInteger value = new AtomicInteger(1);

 At the most basic level, read and write operations need

to be guarded for thread safety.

 For this purpose, Java provided a mechanisms under

java.concurrent.locks package.

 The package provides a simple Lock class and a

ReentrantLock class as well. ReentrantLock takes an

additional optional fairness parameter. Fairness indicates

that when a lock is released, all threads waiting for the

resource get a fair chance of acquiring it.

 A Condition can also be associated with a lock to define

the action that triggers its release.

The Java Concurrency library has several applications:

 One of the classic applications of these Concurrent

libraries is with Web services which match the

consumer-producer model.

 The queue implementation can be integrated into other

applications for the purpose of message-passing or inter-

process communication.

 The combination of multiple abstractions offered by the

Java Concurrency framework coupled with the security

inherent in Java applications makes this well suited for

real time systems. For example, VOIP can be written as

a Java application.

 One other application is to improve the performance of

standard data structures that can be parallelized.

 Java provides a Hashtable implementation that maps keys to

values. however the sequential version of this allows only

single access to the entire object at any point in time.

 ConcurrentHashMaps can improve this performance

significantly. This works on the principle that consistency can

be maintained by blocking access to the single bucket in use,

known as lock striping.

 ConcurrentHashMaps provide 16 such locks for concurrent

access by threads in a program. This means that a maximum

of 16 threads can access the HashMap object simultaneously.

 This concurrent accesses help performance significantly since

reads and lock-free and can proceed simultaneously.

 http://www.vogella.com/articles/JavaConcurrency/article.html

 http://multiverse.codehaus.org/overview.html

 http://stackoverflow.com/questions/3900941/open-source-

software-transactional-memory

 http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/E

xchanger.html

 http://www.cs.rice.edu/~cork/book/node97.html

 http://www.javapractices.com/topic/TopicAction.do?Id=118

 http://www.e-zest.net/blog/writing-thread-safe-programs-

using-concurrenthashmap/

 http://www.baptiste-wicht.com/2010/08/java-concurrency-part-

4-semaphores/

 http://tutorials.jenkov.com/java-util-

concurrent/cyclicbarrier.html

http://www.vogella.com/articles/JavaConcurrency/article.html
http://www.vogella.com/articles/JavaConcurrency/article.html
http://multiverse.codehaus.org/overview.html
http://stackoverflow.com/questions/3900941/open-source-software-transactional-memory
http://stackoverflow.com/questions/3900941/open-source-software-transactional-memory
http://stackoverflow.com/questions/3900941/open-source-software-transactional-memory
http://stackoverflow.com/questions/3900941/open-source-software-transactional-memory
http://stackoverflow.com/questions/3900941/open-source-software-transactional-memory
http://stackoverflow.com/questions/3900941/open-source-software-transactional-memory
http://stackoverflow.com/questions/3900941/open-source-software-transactional-memory
http://stackoverflow.com/questions/3900941/open-source-software-transactional-memory
http://stackoverflow.com/questions/3900941/open-source-software-transactional-memory
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Exchanger.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Exchanger.html
http://www.cs.rice.edu/~cork/book/node97.html
http://www.cs.rice.edu/~cork/book/node97.html
http://www.javapractices.com/topic/TopicAction.do?Id=118
http://www.javapractices.com/topic/TopicAction.do?Id=118
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.e-zest.net/blog/writing-thread-safe-programs-using-concurrenthashmap/
http://www.baptiste-wicht.com/2010/08/java-concurrency-part-4-semaphores/
http://www.baptiste-wicht.com/2010/08/java-concurrency-part-4-semaphores/
http://www.baptiste-wicht.com/2010/08/java-concurrency-part-4-semaphores/
http://www.baptiste-wicht.com/2010/08/java-concurrency-part-4-semaphores/
http://www.baptiste-wicht.com/2010/08/java-concurrency-part-4-semaphores/
http://www.baptiste-wicht.com/2010/08/java-concurrency-part-4-semaphores/
http://www.baptiste-wicht.com/2010/08/java-concurrency-part-4-semaphores/
http://www.baptiste-wicht.com/2010/08/java-concurrency-part-4-semaphores/
http://www.baptiste-wicht.com/2010/08/java-concurrency-part-4-semaphores/
http://www.baptiste-wicht.com/2010/08/java-concurrency-part-4-semaphores/
http://www.baptiste-wicht.com/2010/08/java-concurrency-part-4-semaphores/
http://www.baptiste-wicht.com/2010/08/java-concurrency-part-4-semaphores/
http://tutorials.jenkov.com/java-util-concurrent/cyclicbarrier.html
http://tutorials.jenkov.com/java-util-concurrent/cyclicbarrier.html
http://tutorials.jenkov.com/java-util-concurrent/cyclicbarrier.html
http://tutorials.jenkov.com/java-util-concurrent/cyclicbarrier.html
http://tutorials.jenkov.com/java-util-concurrent/cyclicbarrier.html
http://tutorials.jenkov.com/java-util-concurrent/cyclicbarrier.html
http://tutorials.jenkov.com/java-util-concurrent/cyclicbarrier.html

