
Jackie Myrose
CSCI 5448
Fall 2012

iOS Design Patterns

Design Patterns
  A design pattern is a common solution to a software problem
  They are helpful for speeding up problem solving, ensuring

that a developer doesn’t have to re-invent the wheel for every
situation

  They also give developers a common vocabulary with which
to get across high-level ideas with minimal explanation and
full understanding

Why iOS?
  Design patterns are everywhere in iOS
  Because iOS is a fairly specific platform, developers often

face similar problems over and over, so there are a few design
patterns that are extremely common in iOS

In this presentation
  Singleton
  Delegate
  Model View Controller
  Observer
  Façade
  Command
  Template Method

Singleton
  The singleton pattern is very simple but extremely powerful
  It is a very common pattern, but developers have to be

careful not to overuse it
  Because abuse of the singleton pattern is common, some

developers avoid the pattern altogether

Singleton
  When a class is restricted to just one instantiation, that one

object is called a singleton
  In some situations it can be problematic to have two instances

of a class running, this should be the only reason to use the
singleton pattern

  The next slide contains a basic example of creating a
singleton in objective-c, however keep in mind that this code
is not thread safe

Singleton - code

+(ExClass *) singleton{ !
" "static ExClass *sharedInstance = nil; !
" "!
" "if (sharedInstance == nil){ !
" " "sharedInstance = [[ExClass alloc] init]; !
" "} !

" "return sharedInstance; !
} !

Delegate
  The delegate pattern is another simple, yet powerful design

pattern
  As the name indicates, the delegation pattern is used to have

one object delegate control to another object to act on its
behalf

  This is used to keep implementation specific behavior out of
the generic class

Delegate

Image from: https://developer.apple.com/library/mac/#documentation/cocoa/
conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html

Delegate
  Many UI elements in iOS use delegates to control their

behavior
  One example of this is UIScrollView
  The UIScrollView class has no knowledge of what it should

be scrolling as that is an application specific task
  So to notify the application of scrolling events, UIScrollView

uses the UIScrollViewDelegate
  The application can implement the delegate and then

intercept the scrolling events sent to it by the UIScrollView
  The next slide has examples of methods the

UIScrollViewDelegate could implement

Delegate - code

UIScrollViewDelegate!
- scrollViewDidScroll: !
- scrollViewWillBeginDragging: !
- scrollViewWillBeginDecelerating: !
- scrollViewDidEndDecelerating: !
- scrollViewDidZoom:

Model View Controller
  All iOS apps use Model View Controllers (MVCs)
  MVCs are the link between an app’s data and its UI
  The MVC is broken up as such:

 Model – Underlying data
 View – The view the user sees, the UI
 Controller – Determines the interactions between the model

and views

  This keeps the program modularized, allowing for high
cohesion and loose coupling

Model View Controller

Image from: http://developer.apple.com/library/ios/#documentation/general/
conceptual/DevPedia-CocoaCore/MVC.html

Observer
  The observer pattern is used when one object wants to know

when another object changes
  This pattern is build into every NSObject vi Key-Value

Observing
  This is also often used with MVCs because when a model

changes you often will want to update the views

Observer

Image from: http://www.dofactory.com/Patterns/PatternObserver.aspx

Observer
  The observer pattern is similar to the delegate pattern,

however one key difference is that observable objects support
multiple observers, while a delegate is just one object

  However, with this expanded possibility comes one big
pitfall: you must remember to remove an object as an
observer when that object is deallocated, otherwise there
will be a code leak

  The following slide contains a code sample of what the
Observable class looks like

Observer - code

@interface Observable: NSObject!
- (void)addObserver:
(id<NSObject>)observer; !

- (void)removeObserver:
(id<NSObject>)observer; !

- (void)notifyObservers:
(NSInvocation*)invocation; !

@end

Façade
  The façade pattern is used for simplifying a complex system
  It allows for a subsystem to be accessed through one entry

point, allowing the systems using it to be unaware of the
classes in the subsystem

  This is also useful if the classes under the façade are likely to
change, as we can still have the façade class have the same API

Façade
  One example of this in iOS is the NSImage class
  This class is a façade which provides an interface for using

and loading images that can be vector-based or bitmap-based
  So no matter what type of image the application is using, it

can use NSImage and have no knowledge of what’s happening
underneath the class

Façade

Image from: http://www.tutebox.com/2066/computers/
programming/design-patterns-facade-pattern/

Command
  The command pattern is used for request encapsulation
  It allows for the separation of an object sending a message

from the objects receiving the message
  The encapsulated request/message is then much more

flexible and can be passed between objects, stored for later,
dynamically modified, or placed on a queue

Command
  In iOS an example class that is used to encapsulate messages

is NSInvocation
  These objects are used for undo management
  They contain a target, selector, arguments, and the return

value
  These elements can be set directly and the return value is set

automatically when the object is dispatched

Command

Image from: http://developer.apple.com/library/ios/#documentation/Cocoa/
Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html

Template Method
  The Template Method design pattern defines the skeleton of

an algorithm, leaving some parts to be implemented by
subclasses

  This allows subclasses to refine certain parts of the algorithm
without changing the structure

  In iOS this lets parts of a program “hook” into an algorithm,
but the framework still determines how they are needed

Template Method
  One example of this in iOS is the document architecture

defined by AppKit, a framework
  Three classes are key to this architecture: NSDocument,

NSWindowController, and NSDocumentController
  AppKit sends messages to each of these objects at runtime

and then requests it to perform specific operations
  The developer needs to override many methods in these

messages to add behavior specific to their application

Template Method

Image from: http://java.dzone.com/articles/design-patterns-template-method

Further Resources
  https://developer.apple.com/library/mac/

#documentation/cocoa/conceptual/CocoaFundamentals/
CocoaDesignPatterns/CocoaDesignPatterns.html

  http://www.amazon.com/Pro-Objective-C-Design-
Patterns-iOS/dp/1430233303

