I0S Design Patterns

Jackie Myrose

CSCI 5448
Fall 2012

Design Patterns

o A design pattern is a common solution to a software problem

® They are helptul for speeding up problem solving, ensuring

that a developer doesn’t have to re-invent the wheel for every
situation
o They also give developers a common Vocabulary with which

to get across high—level ideas with minimal explanation and

full understanding

Why i0S?

L Design patterns are everywhere in iOS

® Because iOS is a fairly specific platform, developers often
face similar problems over and over, so there are a few design

patterns that are extremely common in i1OS

In this presentation

® Singleton

® Delegate

® Model View Controller
® Observer

® Facade

® Command

* Template Method

Singleton

® The singleton pattern is very simple but extremely powertful

® Itis a very common pattern, but developers have to be

careful not to overuse it

® Because abuse of the singleton pattern is common, some

developers avoid the pattern altogether

Singleton

® When a class is restricted to just one instantiation, that one

object is called a singleton

® |n some situations it can be problematic to have two instances

of a class running, this should be the only reason to use the

singleton pattern

® The next slide contains a basic example of creating a
singleton in objective-c, however keep in mind that this code

is not thread safe

Singleton - code

+(ExClass *) singleton{
static ExClass xsharedInstance = nil;

if (sharedInstance == nil){
sharedInstance = [[ExClass alloc] init];

return sharedInstance;

Delegate

® The delegate pattern is another simple, yet powertful design
pattern

® As the name indicates, the delegation pattern is used to have

one object delegate control to another object to act on its

behalf

® This is used to keep implementation specific behavior out of

the generic class

o

Delegate

4 Framework object

Task
Step 1
Step 2
Step3 e

:willDoStepd:

o

Step 4
Step 5

——

Delegate

Image from: https://developer.apple.com/library/mac/ H#documentation/ cocoa/

conceptual/ CocoaFundamentals/ CocoaDesignPatterns/ CocoaDesignPatterns.html

/

Delegate

® Many Ul elements in iOS use delegates to control their
behavior

® One example of this is UlScrollView

® The UlScrollView class has no knowledge of what it should
be scrolling as that is an application specific task

® So to notity the application of scrolling events, UlScrollView
uses the UlScrollViewDelegate

® The application can implement the delegate and then
intercept the scrolling events sent to it by the UlScrollView

® The next slide has examples of methods the
UIScrollVieWDelegate could implement

Delegate - code

UIScrollViewDelegate
-scrollViewDidScroll:
-scrollViewWillBeginDragging:
-scrollViewWillBeginDecelerating:
- scrollViewDidEndDecelerating:
-scrollViewDidZoom:

Model View Controller

* All'iOS apps use Model View Controllers (MVCs)
® MVCs are the link between an app’s data and its Ul

® The MVC is broken up as such:
® Model — Underlying data
® View —The view the user sees, the Ul
® Controller — Determines the interactions between the model
and views
® This keeps the program modularized, allowing for high

cohesion and loose coupling

o

Model View Controller

N\

—— User action—{ Controller

.

(View)e——0 Update f

)

Image from: http://developer.apple.com/library/ios/ Hdocumentation/ general/

conceptual /DevPedia-CocoaCore/MVC.html

Notify

Update —1

(

.

~

Observer

® The observer pattern is used when one object wants to know

when another object changes

® This pattern is build into every NSObject vi Key-Value
Observing

® This is also often used with MV Cs because when a model

changes you often will want to update the views

Observer

Subject
observer Observer
+Attach(in Observer) >'
+Detach(in Observer) +Updale()
+Notify() S 7\
AN N
foreach o in observers
o.Update()

ICom:reteSubject subject [ConcreteObserver

-subjectState K observerStale

+GetState() . +Update()

observerState =

relurn subjectStale subject. GelState()

K Image from: http: // WWW.dofactory.com/ Patterns/ PatternObserver.aspx

Observer

® The observer pattern is similar to the delegate pattern,
however one key difference is that observable objects support

multiple observers, while a delegate is just one object

* However, with this expanded possibility comes one big
pitfall: you must remember to remove an object as an
observer when that object is deallocated, otherwise there

will be a code leak

® The following slide contains a code sample of what the

Observable class looks like

Observer - code

@interface Observable: NSObject

- (void)addObserver:
(id<NSObject>)observer;

- (void) removeQObserver:
(id<NSObject>)observer;

- (void)notifyObservers:
(NSInvocationx)invocation;

@end

Facade

® The facade pattern is used for simplitying a complex system

e It allows for a subsystem to be accessed through one entry
point, allowing the systems using it to be unaware of the

classes in the subsystem

® This is also useful if the classes under the fagade are likely to
change, as we can still have the facade class have the same API

Facade

® One example of this in iOS is the NSImage class

® This class is a facade which provides an interface for using

and loading images that can be vector-based or bitmap-based

® So no matter what type of image the application is using, it
can use NSImage and have no knowledge of what’s happening

underneath the class

o

Facade

Facade

Subsyslem‘/ \L

Image from: http://www.tutebox.com/2066/computers/

programming/ design—patterns—facade—pattern/

Command

® The command pattern is used for request encapsulation

e |t allows for the separation of an object sending a message

from the objects receiving the message

® The encapsulated request/message is then much more
flexible and can be passed between objects, stored for later,

dynamically modified, or placed on a queue

Command

¢ [niOS an example class that is used to encapsulate messages

is NSInvocation
® These objects are used for undo management

® They contain a target, selector, arguments, and the return

value

® These elements can be set directly and the return value is set

automatically when the object is dispatched

o

Command

receiver—:-Action()ﬁ

™ - ™ 4 B
Client — Invoker —»{ Command
Execute()
_ |) \) \ J
|
|
|
|
I 4>(Receiver]
| s
I {Action() J-— Concretocommanﬂ
|
| Execute() 0——-—'---
L e e - state J
-

Image from: http://developer.apple.com/library/ios/ Hdocumentation/ Cocoa/

Conceptual/ CocoaFundamentals/ CocoaDesignPatterns/ CocoaDesignPatterns.html

/

Template Method

® TheTemplate Method design pattern defines the skeleton of
an algorithm, leaving some parts to be implemented by

subclasses

e This allows subclasses to refine certain parts of the algorithm

without changing the structure

® IniOS this lets parts of a program “hook” into an algorithm,

but the framework still determines how they are needed

Template Method

® One example of this in iOS is the document architecture

defined by AppKit, a framework

® Three classes are key to this architecture: NSDocument,
NSWindowController, and NSDocumentController

* AppKit sends messages to cach of these objects at runtime

and then requests it to perform specific operations

® The developer needs to override many methods in these

messages to add behavior speciﬁc to their application

Template Method

«abstracts
AbstractClass

«abstracts
+ phmitive Cpetion()
+ phmitive Qperation 2()

«final»
+ templatedMethod(

ConcreteClass

+ primitiveOperation()
+ primitiveOperation2()

Image from: http://java.dzone.com/articles/ design—patterns—template—method

o

Further Resources
® https://developer.apple.com/library/mac/

Hdocumentation/cocoa/ conceptual/ CocoaFundamentals/

CocoaDesignPatterns/ CocoaDesignPatterns.html

S http: / /www.amazon.com/ Pro-Obj ective—C—Design—

Patterns-iOS/dp/ 1430233303

