C++ -> Java

Moving from C++ to Java

Executive Summary

e Introduces Java to a C++ programmer.

* Provides a roadmap for understanding advanced
Java features.

e Links to Java resources.

Background

Developed by James Gosling at Sun
Microsystemes.

n 2011, it was the most popular programming
anguage (as per TIOBE).

nfluenced by C and C++.

Object Oriented programming language.
Portable.

Write once, run anywhere.

Java Virtual Machine

e Java source files are compiled into class files by the
javac compiler.

Unlike C++ object files, class files contains bytecode.

e The java launcher tool then runs the application with
an instance of the JVM.

/ ompiler / . 0100101... | ,
Z Comp / * SN Z J\%‘a ’.>
= =z

MyProgram. java MyProgram.class My Program

Downloading Java and IDE

 Where to download Java compiler:
http://www.oracle.com/technetwork/java/javase/
downloads/index.html

F et tgpo>-/7200
e Some popular IDEs: |

e Netbeans:
http://netbeans.org/features/java/javase.html

e Eclipse:
http://www.eclipse.org/downloads/moreinfo/java.php

e Jedit: http://www.jedit.org
e Jcreator: http://www.jcreator.com

Hello World!

Source File: Test.java

package com.presentation.csci5448;
import java.10.x*;

/% class Test

public class Test {

public statlc void maln(Strlng[] args) {
// prii nello worl
System. out prlntln(“HeLLo World");

Comparing with “Hello World” in C++

 |n C++, main is not a member function, however in
Java it is. Java has no equivalent of non member

functions.

* main method doesn't return a value in Java, so
return type is void. C++ returns a value to indicate

success or return error code to calling process.

Comparing with “Hello World” in C++

* In Java you can call System.exit(int return_code) to
terminate and return a value.

* |In C++, there is usually a header file and source file.
However, in Java there is only one source file and
name of source file always matches the name of the
public class that it contains.

Java Import statement vs. C++ include

* No code is copied in Java from import statements.

 The import statements allow you to refer to the classes

in the two packages without including the package
name every time you use the class name.

* So, import statements can be compared to C++ using.

More on Import

e Just like using in C++, java import is not required, a
class can be referred to by giving the path to the
package:

java.util.Date today = new java.util.Date();

* Canimport whole package or just the class.
import java.util.*; or

import java.util.Date;

Packages

Java has packages. C++ doesn't.
Packages allow you to group classes in a collection

The main reason of packages is to guarantee
uniqueness of class names.

All standard java packages are inside java and javax
package hierarchies.

Packages

e Toinclude a class in a package, you need to put
name of the package at the top of the source file.

e |f name of the package is not included, it is assumed
to be in the default package.

Packages

Naming convention:

— Package names are written in all lower case to
avoid conflict with the names of classes or
interfaces.

— Use reversed internet domain name to begin
package names—for example,
com.presentation.csci5448 (in hello world
example).

Comments

Like C++, Java has block style (/* */) and single line (//) comments.

In addition, comments in Java can be used for documentation. Javadoc
utility program is used to extract the information and put it into an HTML
file. (this is similar to doxygen tool - often used to generate C++ docs)

/**
* This method returns the square of num.
* @param num The value to be squared.
* @return num squared.
*/
public double square (double num) {
return num * num;

Only if...

In C++ you can do something like

int foo = 1;
if (foo) {

// do something
}

e Won't work in Java because zero is not equivalent to false in Java
and non-zero is not equivalent to true.

* InJava, conditional statements must evaluate to either true or
false. Same applies for, while and do while statements in Java.

Arrays

In C++ arrays are primitive types. However, Array is a class in Java. You
can use it's field - length (not function) on it to get it's size.

Syntax:

* type[] identifier; // preferred style by Java programmers.
* typeidentifier[]; // similar to C++

Examples

* int[] foo = new int[4];
* intfoo[] = new int[4];
* int[] foo={1, 2, 3, 4};

Arrays

e To copy an array, can't use an assignment operator, but can use

Java.lang.System.arrayCopy(). It is similar to method memcpy
provided by C++.

e |nJava, operator [] is pre-defined to do bounds checking. If you try
to access any index which is outside the defined range, Java will
throw an “array index out of bounds” exception.

e Java provides for each loop to go through elements of the array.
Example:

for (int element : a)

System.out.printin(element) // prints all the elements in
// the array a.

Strings
In Java, the class similar to std::string is java.lang.String.

String objects can be created with or without new:

String str = "abcd";
String str = new String("abcd");

String classes are immutable. You cannot change the
contents of the string after storage has been allocated.

Java also provides a StringBuffer class which has methods
that allow modification of strings.

Operators

No operator overloading in Java.

Cannot apply the arithmetic operators to object references.

Some important C++ operators missing in Java: unary *, unary &, ->
Does not support sizeof operator either.

Does not support scope operator (::). The dot operator is used to
call a method, regardless of whether it is a class or an instance

variable.

Keywords

e No const in Java. Although, it is a reserved as a
keyword in Java, it is not used and has no function.

* Final is the closest equivalent to const in Java. When
applying to method or a class Java keyword final has
a very different meaning that C++ const.

Keywords

Java does not let you use the access specifier as labels for a group of
declarations.

Example:

C++:
public:
void al();
void a2();

Java:
public void a1();
public void a2();

Functions

In Java you cannot specify default value for arguments:
Example:

C++:
void foo(int i, int j=5)
{}

However, you can workaround this in Java:

void foo(int i, int j) {}
void foo(int i) { foo(i, 5); }

Types

e |nJava, you cannot re-declare a variable in inner
blocks:

public static void main(String[] args) {

int x =1;

{ //innerloop

int x = 4; // This will give an error in Java.

}
}

e C++ supports both signed and unsigned integral types.
However, integral types are only signed in Java.

Types

Java provides wrapper classes for all primitive types.
Example, Integer for int.

Java platform defines the size of the primitive types
and the JVM gives them the same representation on
all the machines.

No typedef in Java.

Equivalent of bool in Java : boolean

Casts

Java doesn't implicitly cast a smaller type into a
larger type (C++ usually gives a warning).

import java.10.x*;
public class Test {

public static void main(String[] args) {
int value = 20;
short i = value; cast should be explicit ii

Test.java:9: error: possible loss of precision

short i = value;
N

required: short found: int
1 error

Classes and Objects

Tomato Tamato

e C++ - member functions
Java - method

e C++-data member
Java - field

e C++-baseclass
Java - superclass

e (C++ - derived class
Java - subclass

Classes and Objects

* |n C++, you don't have to use classes and can code procedurally,
but Java you have to use classes and hence encourages object

oriented programming

e Java does not support struct, enum or union.

* No initializer lists in Java. So you can't do something like:
public class A {

private al_, a2_;
A::A(int al, int a2) : a1 _(al), a2 _(a2){...}

Classes and Objects

e All Java objects are constructed on the heap and a constructor must
be combined with new.

In C++, you can create an object by:
Myobject obj;

However in Java, obj will refer to an object only when it is initialized
with new or copy constructed.

Myobject obj = new Object; OR
obj = anotherObj;

e C(lass definitions don't end with a semicolon in Java.

Classes and Objects

e Objects are passed by reference ALWAYS.

e Think of Java references as similar to C++ pointers.
But, without the book keeping.

* Automatic garbage collection, so NO destructors.

Abstract Class

In C++, a class is said to be abstract when you initialize
one or more function to O (pure virtual function). In Java,

abstract keyword is used to specify an abstract class.

abstract class Animal {
public getName() {
return name;

}
public abstract String getGroup();

private name;

Abstract Class

* Just like C++, you can’t make an instance of an
abstract class.

* To make a method abstract, use abstract keyword in
function definition.

e Subclass can either implement abstract methods or

leave them undefined. In later case, the class has to
be defined abstract.

Interfaces

C++ doesn’t have anything similar.

“This is what all classes that implement this particular
interface will look like.” (Reference: Thinking in Java)

Not a class, but set of requirements (contract). Keyword
interface is used to define an interface. Keyword
implements is used by class that implements it.

Completely abstract, no implementation at all. It cannot be
instantiated.

interface Shape {

public double area();

}

public class Rectangle implements Shape {

static double length, breadth;

public Rectangle(double x, double y) {
length = x;

y breadth = y;;

public double area() {
return length * breadth;

}

public void printArea() {
System.out.println("Area = " + area());

}

public static void main(String args[]) {
Rectangle r = new Rectangle(2, 4);
r.printArea();

Interfaces

* A class can implement more than one interfaces.

e An interface can extend one or more interfaces
(using extends).

* Aclass that implements an interfaces has to provide
implementation of ALL the methods defined in an
interface.

Interfaces

interface A {
public void foo();
}

interface B {
public void foo();
}

class C implements A, B

{

// Does C implement A or B?
public void foo() {

System.out.println("foo!");
}

public static void main(String args([]) {
C c =new C();
c.fool();

Inheritance

Cannot override and overload methods in inherited
classes.

Java doesn't support multiple inheritance.

No protected or private inheritance. All inheritance in
Java is public.

Inheritance syntax is different from that of C++.
C++ uses :

Java uses extends.

Inheritance

* Classes can be final in Java. That implies that they
cannot be inherited. The wrapper classes for
primitive types are final in Java.

* In C++ you can call a method from any class in
inheritance hierarchy. However, in Java you can only
call immediate super class using keyword super.

Access Specifiers

e public access - provides unlimited access to all
classes.

* protected access - gives unlimited access to all
classes in same package. For classes outside the
package, they can inherit the fields but cannot access
them directly. A class in a different package and
doesn't inherit, has no access to protected specifiers.

Access Specifiers

default access - if no access specifier is mentioned,
the access level is package. At package level, you
have unlimited access to all the classes in the same

package. But, classes outside the package cannot
access the classes.

Note: C++ doesn't have the rule that access specifier of
the overridden method is same or less restrictive.

Exceptions

 An exception object is always an instance of a class
derived from Throwable. In C++, exception could be of

any type.

e Types of Exceptions:
e RuntimeException
- Similar to C++ logic_error class.
- Programming error.

- Unchecked exception: Any exception that derives
from RuntimeException.

Exceptions

e Non RuntimeException:
- Similar to C++ runtime_error class.
-1/0 error, EOF, etc.

- Checked Exceptions (a method must declare all
checked exceptions).

Exceptions

e throws

void myException() throws ArraylndexOutOfBoundsException {

}

- Compilers gives an error if the throws clause doesn't list uncaught
exception. In C++ this is optional

- Overriding method cannot list more exception types in the throws
clause than the overridden method.

Exceptions

e Java has a finally clause, C++ doesn’t.

e Cleanup resource allocations like database
connection.

e finally executes whether or not the exception is
caught.

import java.io.x;
public class FinallyTest {

public static void main(String args(]) throws IOException {
FinallyTest f = new FinallyTest("C:\\test.txt");
}

public FinallyTest(String fileName) throws IOException {
BufferedReader reader = new BufferedReader(new FileReader(fileName));
try {
String line = null;
while ((line = reader.readLine()) !'= null) {

}
}
finally {
\ reader.close();

Exceptions

Output :

Exception in thread "main" java.io.FileNotFoundException: C:\test.txt (No
such file or directory)

at java.io.FileInputStream.open(Native Method)

at java.io.FileInputStream.<init>(FileInputStream.java:138)

at java.io.FilelInputStream.<init>(FileInputStream.java:97)

at java.io.FileReader.<init>(FileReader. java:58)

at FinallyTest.<init>(FinallyTest.java:10)

at FinallyTest.main(FinallyTest. java:6)

Java interpreter outputs the stack trace when an
exception is un-caught.

Reflection

To inspect classes, interfaces, fields and methods at
runtime, without knowing the names of the classes,
methods etc. at compile time.

The class that holds this information is called Class - not a
typo! Example: Class c = myObj.getClass();

Similar to type_info in C++, but type _info doesn’t give as
much information.

A good overview of Reflection:
http://www.ibm.com/developerworks/library/j-dyn0603/

ANT (Another Neat Tool)

Preferred build tool used for compiling Java programs.

James Duncan Davidson, Ant's original author, states that
Ant is "like make without make's wrinkles"

By default ant uses build.xml as the name for a build file.

To compile, package and run:
— ant compile

— ant jar

— ant run

<project>

<target name="clean'>
<delete dir="build"/>
</target>

<target name="compile">

<mkdir dir="build/classes"/>

<javac srcdir="src" destdir="build/classes"/>
</target>

<target name="jar">

<mkdir dir="build/jar"/>

<jar destfile="build/jar/Test.jar" basedir="build/classes">
<manifest>

<attribute name="Main-Class" value='"com.presentation.csci5448.Test"/
>

</manifest>

</jar>

</target>

<target name="run">
<java jar="build/jar/Test.jar" fork="true"/>
</target>

</project>

JUNIT

e JUnitis a simple framework to write repeatable tests.

e JUnit assumes that all test methods can be executed in an
arbitrary order. Therefore tests should not depend on
other tests.

Installation:
http://www.junit.org/

Getting Started with Junit:
http://junit.sourceforge.net/doc/cookbook/cookbook.htm

References

Core Java Volume 1 by Cay S. Horstmann and Gary
Cornell

Thinking in Java by Bruce Eckel

Heads first Java by Kathy Sierra and Bert Bates
nttp://ant.apache.org

Wttp://www.junit.org/
nttp://docs.oracle.com/javase/tutorial/

