
-Abhijit Mahajan

• Django web Framework

• is an open source Web 2.0 application framework

• written in Python

• which follows the model-view-controller architectural pattern.

It was originally developed to

manage several news-oriented

sites for The World Company of

Lawrence, Kansas, and was

released publicly under a

BSD license in July 2005;

the framework was named after

guitarist Django Reinhardt.

In June 2008 it was announced

that a newly formed Django

Software Foundation will

maintain Django in the future.

• Django's primary goal:

• ease the creation of complex, database-driven websites.

• emphasizes reusability and pluggability of components

• rapid development

• and the principle of ”don't repeat yourself”

• Python is used throughout

• for settings, files, and data models.

• Django provides an optional administrative interface that is

generated dynamically through introspection and configured via

admin models.

The main Django MVC framework

Is made up of an object-relational

mapper which sits between

data models (defined as Python

classes) and

• a relational database ("Model")

 which processes requests with

• a web templating system ("View")

• and a regex-based

 URL dispatcher ("Controller").

• Django follows this MVC pattern closely enough. This is how M, V, and
C work together in Django:

• “M”:

• is the data-access part

• handled by Django’s database layer

• “V”:

• is the one that selects which data to display and how to do it

• handled by views and templates.

• “C”:

• This part delegates to a view depending on user input

• handled by the framework itself

• follows URLconf and calls the appropriate Python function for the given URL
(explained in the later slides).

• Since “Controller” is handled by the framework and most of the

things in Django happens in models, templates and views,

Django has been referred to as an MTV framework where,

• “Model”:

• Is the data access layer.

• contains all details about accessing/validating the data, behavior of

data, and their relationships.

• “Template”:

• Is the presentation layer.

• decides how something should be displayed on a Web page or other

type of document.

• “View”:

• Is the business logic layer.

• has the logic that access the model and gives to the appropriate

template(s).

• it is a bridge between models and templates.

Also included in the core framework are:

• Web server

• It is lightweight and standalone

• A form serialization and validation system

• translates between HTML forms and values suitable for storage in the

database.

• A caching framework

• any of several cache methods can be used

• Support for middleware classes

• Help is providing custom functionalities

• An internal dispatcher system

• Facilitates component communication via pre-defined signals.

• An internationalization system

• Has translations of Django's own components into a variety of languages.

• A serialization system

• produces and reads XML and/or JSON representations of Django model

objects.

• A system for extending the capabilities of the template engine.

• An interface

• to Python's built-in unit test framework.

The main Django distribution also bundles a number of

applications in its "contrib" package, including:

• An authentication system.

• The dynamic admin interface.

• RSS and Atom syndication feed generation tools.

• A flexible commenting system.

• A sites framework

• allows us to run multiple websites, each with their own content and

applications.

• Tools for generating Google Sitemaps.

• Tools for preventing cross-site request forgery.

• Template libraries

• enable the use of lightweight markup languages (Textile and Markdown)

• A framework for creating GIS applications.

• Django officially supports four database backends:

• PostgreSQL

• MySQL

• SQLite

• Oracle.

• Microsoft SQL Server can be used with django-mssql

in Microsoft OS.

• External backends exist for IBM DB2, SQL Anywhere and

Firebird.

• “django-nonrel” supports NoSQL databases, such

as MongoDB and Google App Engine's Datastore.

• Django may also be run in conjunction with Jython on

any Java EE application server such

as GlassFish or Jboss

• in this case django-jython must be installed which will provide

JDBC drivers for database connectivity.

• and also provides functionality to compile Django in to a .war

suitable for deployment.

• Text editors such as Vim, Emacs or TextMate with Django Bundle

can be used

• Specialized tools providing debugging, refactoring, unit testing,

etc can also be used like:

• Komodo IDE

• Eclipse with PyDev

• PyCharm

• NetBeans with Django Plugin

• Wing IDE

• Eric Python IDE

• Microsoft Visual Studio with Python Tools for Visual Studio

Quick install guide

• Install Python – Any version from 2.5 to 2.7

• Set up a database – PostgreSQL, MySQL, Oracle, etc. SQLite is

already installed in Python 2.5 or later.

• Remove any old versions of Django (if upgrading)

• Install Django using any 1 of these options:

• Install a version of Django provided by the OS.

• Install an official release.

• Install the latest development version.

• Verify

• Creating a project

• Project is a collection of settings for an instance of Django, including
database configuration, Django-specific options and application-specific
settings

• Run the command “django-admin.py startproject mysite”

• A ”mysite” directory is created with the following 4 files:

• __init__.py - An empty file that tells Python that this directory should
be considered a Python package.

• settings.py - Settings/configuration for this Django project.

• urls.py - The URL declarations for this Django project; a "table of
contents" of your Django-powered site.

• wsgi.py - An entry-point for WSGI-compatible webservers to serve
your project.

• Every website will have its own corresponding project.

• The development server

• Django comes with a lightweight web-server written purely in Python

• Run the command “python manage.py runserver” to start it.

• Database setup

• Edit ”mysite/settings.py”

• Change the ENGINE, NAME, USER, PASSWORD and HOST keys in

the DATABASES 'default' item to match your database connection

settings.

• INSTALLED_APPS setting holds the names of all Django applications

activated in the Django instance.

• Execute “python manage.py startapp app-name” to create an app

• Apps can be used in multiple projects.

• They can be packaged and distributed for use by others in their projects.

• By default, INSTALLED_APPS contains few apps:

• Every application uses at least one database table, so, create the tables in

the database by running “python manage.py syncdb”.

• A Django model is a description of the data in your database,
represented as Python code.

• Django uses a model to execute SQL code in the background
and return Python data structures representing the rows of the
database tables.

• Relation between Django Model and Table in DB:

• Each model generally corresponds to a single database table.

• Each attribute on a model generally corresponds to a column in that
database table.

• The attribute name corresponds to the column’s name

• The type of field corresponds to the database column type

• Django gives an automatically-generated database-access API.

• Each model is represented by a class which is a subclass of

django.db.models.Model.

• Class variables of a model represent a database field in the

model.

• Each field is represented by an instance of a Field class --

e.g., CharField for character fields and DateTimeField for

datetimes.

• The name of each Field instance is the field's name. This value is

used in the Python code, and the database will use it as the

column name.

• As we can see in the class “Album”, Django allows the use of

relations. Here the Musician is used as a foreign key in Album

class.

• Objects can be used to access the models.

• After defining models, Django has to be informed that they will
be used.

• This is done by editing the settings file: add the name of the
module that contains your models.py to the INSTALLED_APPS
setting.

• Ex: if the models are in the module mysite.myapp.models,
INSTALLED_APPS should have

INSTALLED_APPS = (

#...

'mysite.myapp',

#...)

• After adding new apps to INSTALLED_APPS, run “manage.py
syncdb”.

• “View” is just a Python function that takes an HttpRequest as
and returns an HttpResponse.

• Views is nothing but a webpage

• Views retrieve data according to some parameters, load
templates and render them (with the data that is retrieved).

• It’s a good practice to keep the View unaware of the template
system being used.

• GET and POST should be easily differentiable by the view.

• To hook a view function to a particular URL with Django,

URLconf is used.

• URLconf is a mapping between the URLs and their

corresponding view function.

• When “django-admin.py startproject” is executed, a URLconf is

created automatically (the file urls.py).

• This is how URL’s are interpreted by Django when a request
comes in for , say, /news/

• Django determines root URLconf by looking at the
ROOT_URLCONF in settings.py

• Django looks at all of the URLpatterns in the URLconf for the
first one that matches /news/.

• If it finds a match, it calls the view function associated with the
URL.

• Django converts the HttpResponse to the proper HTTP response
and gives the webpage. The following is the urls.py file:

• The command “python manage.py runserver” is used to test to
see if the url function’s

• Templates are used to separate logic from the presentation

• they are reusable because of this.

• Templates render the details given by the HTTPResponse

• Templates are strings which are merged with data to produce

the output.

• Django templates contain place holders for information from the

database.

• After the placeholders are substituted with values, the result is

returned as HTML.

• Since building the admin site is not fun, Django provides an automatic
admin interface.

• This works by reading metadata in the model to provide a powerful
and production-ready interface that is ready for immediate use by
site admins.

• Since the Django admin site is optional, certain steps have to be
taken.
• First, Make the following canges to settings file:

• Add 'django.contrib.admin' to the INSTALLED_APPS setting.

• Make sure INSTALLED_APPS contains 'django.contrib.auth',
'django.contrib.contenttypes‘ and 'django.contrib.sessions'.

• Make sure MIDDLEWARE_CLASSES contains
'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware‘ and
'django.contrib.auth.middleware.AuthenticationMiddleware'.

• Second, run python manage.py syncdb. This step will install the extra

database tables that the admin interface uses.

• Third, add the admin site to your URLconf (in urls.py, remember).

• “urls.py” generated by “django-admin.py startproject“ contains

commented-out code for the Django admin, just uncomment it.

• Run the development server and visit http://127.0.0.1:8000/admin/ in

the Web browser.

• There is a twice-yearly conference for Django developers and

users, named "DjangoCon"

• It has been held since September 2008.

• One DjangoCon a year is held in Europe, in May or June;

• The other is held in the United States in September, usually

in Portland, Oregon.

• The 2012 DjangoCon took place in Washington D.C from 3 to 8

September.

Some well known sites that use Django include:

• Pinterest

• Instagram

• The Washington Times

• Public Broadcasting Service

• Wikipedia

• www.djangoproject.com – This site is the best place to start. Has

a lot of material to understand things better.

• www.djangobook.com – Has explanation about everything in

detail.

• Google Images – Used it for a few images in this presentation.

http://www.djangoproject.com/
http://www.djangobook.com/

