New Features of C#

(last 3 versions)...and not an exhaustive list

Michael Johnson (CAETE)
CSCI 5448 Fall 2012

hl

Introducing new C# features in the last (few) versions of C#. | went back as far as the
Language Integrated Query (LINQ) feature, which | believe is a very significant
aggregate feature set. | decided not to go back as far as generics.



Feature Highlights

* What'’s new in C# 3.0
* What's new in C# 3.5
* What's new in C# 4.0
* What's new in C# 4.5

What’s New Visual C# 2.0 : http://msdn.microsoft.com/en-
US/library/7cz8t42e(v=vs.80).aspx

What's New in Visual C# 2008: http://msdn.microsoft.com/en-
us/library/bb383815(v=vs.90).aspx

What's New in Visual C# 2010: http://msdn.microsoft.com/en-
us/library/bb383815(v=vs.100).aspx

What's New in Visual C# 2012: http://msdn.microsoft.com/en-
us/library/hh156499.aspx

These are the versions of both .NET and C# that I’'m going to cover in this
presentation. In the next few slides you will see highlights of new C# features
introduced in each of these versions that | think are significant. This is not an
exhaustive list because it would include too much information to cover in 20 minutes.


http://msdn.microsoft.com/en-US/library/7cz8t42e(v=vs.80).aspx
http://msdn.microsoft.com/en-US/library/7cz8t42e(v=vs.80).aspx
http://msdn.microsoft.com/en-US/library/7cz8t42e(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb383815(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/bb383815(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/bb383815(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/bb383815(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/bb383815(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/bb383815(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/hh156499.aspx
http://msdn.microsoft.com/en-us/library/hh156499.aspx
http://msdn.microsoft.com/en-us/library/hh156499.aspx

C# 3.0 (VS 2008)

e Tnitializers
e Extension Methods

° Anonymous Types

Lambda Expressions

Auto-Implemented Properties

Partial Classes, Methods, Interfaces

All the features you see here listed are nice features in and of themselves, but it’s
important to point out that they all make up the introduction of a major aggregate
feature called LINQ that is introduced in the next version C# 3.5.



Initializers

* Easy way to create both objects and collection without Calling
constructors
® Extcnsivcly used with anonymous types

© Example of List of cats classes being created

List<Cat> cats = new List<Cat>

new Cat(){ Name = “S
® new Cat(){ Name = "Wh
new Cat(){ Name = "S

var v = new { Amount = 108, Message = "Hello" };

Initializers are a compact way to create both objects and collections without their
specific constructors, only default constructors. It’s also used a lot for anonymous
types since they don’t have constructors anyway. The example shown is using both
object initializers and collection initializers. It creates a new list of three cats instead
of calling the Add method of the list API to add three cats. Initializers are only used
during the creation of the object. Each new cat is created by specifying the name and
age. You can use any combinations of the properties to set in the class if you wish.

The anonymous type create a anonymous type “v” with properties Amount and
Message and they are set with the values 108 and Hello respectively.



Extension Methods

* A way to extend an existing class’s behavior without
inheritance
® Adds methods by using a static method, but can be invoked

by using instance method syntax

® Very common in LINQ

Must be in the same namespace for methods to show up

® First parameter of the static method must be the type that

you are extending specified by the this moditier

Example: —

Extension methods are used a lot in LINQ to add query methods to existing classes,
specifically collection classes. Some examples of these methods are Where, Find,
OrderBy, etc. Extension methods are an easy way to add functionality to existing
classes without having to inherit from them. Essentially you’re decorating an existing
class with additional features. All you have to do is create a static method where the
first parameter is the type you’re extending such as String (see example) and proceed
it with the this modifier. You then, in that method, can use the type’s information and
do what you need to do. The example adds a new method called WordCount to the
String class. The only requirement is to make sure that the extension method is used
in the same namespace where you want to use it. It will then show up as a method
whenever you’re using instances of the String class.



Anonymous Types

® “On the ﬂy” types

e Must be typed with keyword var

Structured types. Types with properties but not methods

Example:

¢ Created by using new operator with the object initializer

syntax

var v = new { Amount = 188, Message = “Hello" };

Reference type inheriting directly from Object

Anonymous types are used throughout the language for different reasons. It’s mostly
used by LINQ. It’s a way to save a lot of code by not having to create a concrete type
when you only need a type to temporarily by used to hold a few properties.



Lambda Expressions

® An anonymous function that contains expressions
® Used to create delegates and expression trees
® Uses operator =>

® Left side specifies the input parameters

° Right side holds expression

S .

Lambdas are another way to write delegates, sometimes known as function pointers.
It’s a much more compact way to write these and can be performed inline. They are
extremely popularin LINQ where you can specify a Lambda expression to specify a
predicate to query a collection or even a database. The syntax looks more declarative
and/or functional than imperative.



Auto-Implemented Properties

® Provides quicker and easier way to implcmcnt propcrtics

® No need to have private variables with wrappers

d from outside the class. class Customer

Auto pl Properties for trivial et public double TotalPurchases { get; set; }
public ring Name { get; set; }
public int CustomerID { get; set; }

{
TotalPurchases = purchases;
Name = name;

CustomerID = ID;

ethods public string GetContactInfo() {return "ContactInfo";}
public string GetTransactionHistory() {return "History";}

ional methods, events, etc.

LY J

Properties are extremely common in OO design. The idea is to have private member
variables with public wrappers so outside callers don’t have direct access. It’s boiler
plate code and in most cases you can substitute auto implemented properties
instead. The syntax is simple. Instead of specifying the private member values in the
getters and setters, you leave the getters and setters blank...per se. See the example
where the Name and Customer ID properties don’t have corresponding private
variables. They use { get; set; } instead. The compiler handles the rest.



Partial Classes, Methods, and
Interfaces

* Not really a language feature, well sort of

® Used a lot with auto generated code

* A way to separate classes, methods, and interface into two
different code files.

® During compilation, it combines the different code files into

a single class, method, or interface.

L% J

This is used extensively when the IDE creates a lot of auto generated code. You would
create a partial class, method, or interface when you need to “hang” something off
the auto generated code. Two common examples are designer classes where you
have a WYSIWYG tool that generates code in the background and a ORM Tool that
might generated a lot of classes based on the database design.



C# 3.5 (VS 2008 SP1)

* LINQ
® Intended to bridge the gap between object in OO and data in
Sets (Databases). .. reduce impedance mismatch

® Leverages previous features:
Extension Methods
Anonymous types
Initializers
Lambdas
Auto implemenred pl‘opel‘ties

Partial classes and methods

Language integrated query (LINQ) is probably the most important C# feature
introduced since it’s inception. It allows you to write a more function (declarative)
code that is easy to read, with fewer lines of code while still being strongly typed so
you can take advantage of things like refactoring.

“Language-Integrated Query (LINQ) is a set of features introduced in Visual Studio
2008 that extends powerful query capabilities to the language syntax of C#” - LINQ
(Language-Integrated Query)(http://msdn.microsoft.com/en-
us/library/vstudio/bb397926.aspx)

Querying using LINQ doesn’t have to be a database. You can query against any sort of
set information that implements IEnumerable<T>. That is, pretty much anything in
the language that is made up of “things.” If it doesn’t implement this interface then
there are extension methods that allow you to convert inline.

10


http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx

C# 4.0 (VS 2010)

. Dynamic

® Covariance / Contravariance

Not much was added in C# 4 other than the “Dynamic” keyword which let’s you do
some late binding typing and the Covariance and Contravariance which has to do with
derived types. Other features includes in this release include some MS Office
enhancements and some type improvements but | won’t focus on them here.

11



Dynamic
® A new static type, but bypasscs static type Chccking
® Primarily used for cases such as
® Working with dynamic languages such as IronPython and
IronRuby
® Working with the COM API
® Working with the HTML DOM

Dynamic is not used much in C# because it’s a strongly typed language. However you
can in some instances use it in cases where you need loosely type, late binding
behavior. Generally this is when you are working with other APIs. IronRuby and
IronPython are not strongly typed and are built on top of the dynamic language
runtime (DLR). C# can interact with the DLR and languages by using the Dynamic
keyword. Other APIs that it’s usually working are the Office runtime components as
well as the COM APIs.

12



Covariance

® Preserves assignmcnt Compatibility
® Allows a more derived type to be converted to a less derived

type for type parameters (generics)

* Example:

Covariance is sort of the opposite of Contravarience. It’s used in generics where type
parameters are passed. If you have a generic with a type parameter that is less
derived from the one used then assignment compatibility is preserved. In the
example above, the type object, which the most basic type is used to create a list of
objects. But a list of strings is passed in that list of objects. Even though string is a
more derived type, it works.

13



Contravariance

® Reserves assignment Compatibility

® An object that’s created from a less derived type that’s
assigned to an object of a more derived type has assignment
compatibility reversed.

* Example

// Assignment compatibility.
string str = "test";

// An object of a more derived type is assigned to an object of a less derived type.
object obj = str;

// Contravariance.
// Assume that the following method is in the class:
// static void SetObject(object o) { }

as

signed to an object instantiated with a more derived type argument.

1/ nment compatibility is reversed.
Action<string> actString = actObject;

%

Contravarience allows a less derived type to be used as a type parameter in a
delegate.



C# 4.5 (VS 2012)

¢ async and await keywords
® Makes writing asynchronous code easier
e Eliminates the need for callback handlers that used when tasks
finish
® Makes exception handling easier and more straightforward

° Compiler does the work

® Used extensively in Windows 8 Store Apps for a responsive UX
(non blocking UI'Threads)

e Exists in .NET and the new Windows RT

The goal of the Async and Wait keywords is to make asynchronous programming
easier.

15



async

® New keyword in C# 4.5
* Applied to a method
¢ ReturnsTask or Task<<TResult>
Represents ongoing work of the async method
® Task contains information for the caller of the async method
such as the status, ID, and the results of the method

16



await

® Is applied to the returned Task of the async method

® Suspends execution of the method until complete (control is

returned to call in the meantime)

17



Example

// Three things to note in the signature:

// - The method has an async modifier.

// - The return type is Task or Task<T>. (See "Return Types" section.)

/7 Here, it is Task<int> because the return statement returns an integer.
// - The method name ends in "Async."

async Task<int> AccessTheWebAsync()

// You need to add a reference to System.Net.Http to declare client.
HttpClient client = new HttpClient();

// GetStringAsync returns a Task<string>. That means that when you await the
// task you'll get a string (urlContents).
Task<string> getStringTask = client.GetStringAsync("http://msdn.microsoft.com");

// You can do work here that doesn't rely on the string from GetStringAsync.

DoIndependentiork();

// The await operator suspends AccessTheWebAsync.

// - AccessTheWebAsync can't continue until getStringTask is complete.

// - Meanwhile, control returns to the caller of AccessTheWebAsync.

// - Control resumes here when getStringTask is complete.

// - The await operator then retrieves the string result from getStringTask.

string urlContents = await getStringTask;

// The return statement specifies an integer result.
// Any methods that are awaiting AccessTheWebAsync retrieve the length value.
return urlContents.Length;

\ }

This example is taken directly from http://msdn.microsoft.com/en-
us/library/hh191443.aspx and is source code.

18


http://msdn.microsoft.com/en-us/library/hh191443.aspx
http://msdn.microsoft.com/en-us/library/hh191443.aspx
http://msdn.microsoft.com/en-us/library/hh191443.aspx

\

Workflow

— StartButton_Click event handler

|

o -

async Task<int> AccessTheWebAsync()

{

HttpClient client = new HttpClient():

}

4—— Normal processing

——a—

1

void DolndependentWork()

resultsTextBox.Text += “Working . .« o AFARTS
Y
|_§_1
= Taskestring> HttpClient.GetStringAsync(string url)) —,})
L=
.

2

skestring> getStringTask = client.GetStringAsync(“http://msdn.microsoft.com*);

DolndependentWork():

[

;lp.!a‘t getStringTask:

string urlContents ¥

return urlCentents.Length;
8

‘— Yielding control to caller at an await

€—— Resuming a suspended process

This example is taken directly from http://msdn.microsoft.com/en-

us/library/hh191443.aspx and illustrates a the workflow of what happens during a

call.

19


http://msdn.microsoft.com/en-us/library/hh191443.aspx
http://msdn.microsoft.com/en-us/library/hh191443.aspx
http://msdn.microsoft.com/en-us/library/hh191443.aspx

New APIs introduced

® Web Access

e Files

® Images

® WCF Programming (Services)

e Sockets

The await and async keywords were introduced in these APIs.

20



