
Scala: An Introduction
By Arianna Jakositz

CSCI 5448 Object-Oriented Analysis and Design

University of Colorado at Boulder - Fall 2012

Outline
• About Scala

• What Is It?

• History

• Syntax

• Object-Oriented Features of Scala

• Inheritance

• Polymorphism

• Encapsulation

• Why Use Scala?

• Scala vs. Java

• Who Is Using Scala?

• Resources To Learn More

ABOUT SCALA

What’s Ahead:

 What Is Scala?

 A Brief History

 A Look At The Syntax

What Is Scala?
• Scala is a mixed programming language, combining features of

functional and object-oriented programming aspects
 Functional because every function is a value

 Object-oriented because every value is an object

 Allows users to program effectively in either style according to their

needs and desires

• Scala runs on the Java Virtual Machine (VM)
 Java and Scala libraries can directly call each other

 Byte code compatibility between the two languages

• Name comes from the combination of “Scalable” and “Language”
 Scala is meant to grow (scalability) as user needs evolve

History of Scala
• Development began in 2001 by Martin Odersky at the École

Polytechnique Fédérale de Lausanne (EPFL) in Lausanne,

Switzerland

• Created with the intent of improving many of the drawbacks

associated with Java.

• Martin Odersky initially worked with developers at Sun to add

Generics functionality, and improve the compiler, for the Java

language

• Efforts truly began in the mid-90s on a language known as Pizza,

that was eventually scrapped in favor of Scala

A Look At The Syntax of Scala
Changing the syntax of Java into that of Scala led to the

following modifications:
o Built-in type inference, where the compiler deduces type from a

variables initialization

o Implicit parameters, methods, and conversions

o Methods can be used like infix operators (+, -, *, etc.), i.e.,

𝑎. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑏)

can be written as

𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑏

Scala Syntax (cont’d)
• Variables are declared by the var keyword: [Note: Semicolons are NOT always required]

𝑣𝑎𝑟 𝑥 = 5

• Constants are declared by the val keyword:

𝑣𝑎𝑙 𝑦 = 10

• Types are explicitly declared as follows:

𝑣𝑎𝑟 𝑥: 𝐼𝑛𝑡 = 15

• Functions are declared by the def keyword: [Note: Semicolons are NOT always required]

𝑑𝑒𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑥: 𝐼𝑛𝑡, 𝑦: 𝐷𝑜𝑢𝑏𝑙𝑒, 𝑧: 𝐴𝑛𝑦) {… }

• Return values of functions are the value of the last line of code contained

within the curly braces. If a function is one line, curly braces are not

required.

Scala Syntax (cont’d)
• Classes are declared with the class keyword:

𝑐𝑙𝑎𝑠𝑠 𝑆𝑜𝑚𝑒𝐶𝑙𝑎𝑠𝑠() {… }

• Constructors are not separate methods, but the entire class bodies. Thus,

any input parameters to a class can be used right away outside of any

explicitly defined method. Overloading the “constructor” is done using

calls to this(…), where “…” may refer to any number of input

parameters, including 0.

• Singleton objects are created by declaring with the object keyword

instead of the class keyword:

𝑜𝑏𝑗𝑒𝑐𝑡 𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛() {… }

• There is no static modifier in Scala!

• Abstract classes are declared with the abstract keyword

OBJECT-ORIENTED SCALA FEATURES

What’s Ahead:

 Inheritance

 Polymorphism

 Encapsulation

Inheritance and Polymorphism In Scala

• Every class inherits from one other class in Scala. When not specifically
declared, this class is scala.AnyRef

• Inheritance is denoted by the extends keyword:

𝑐𝑙𝑎𝑠𝑠 𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠() 𝑒𝑥𝑡𝑒𝑛𝑑𝑠 𝑆𝑢𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠 {… }

• Overridden methods must be explicitly denoted with the override

modifier:

𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑒 𝑑𝑒𝑓 𝑡𝑜𝑆𝑡𝑟𝑖𝑛𝑔() = {… }

• Scala classes can also implement from multiple traits, which are like

interfaces in Java but can contain code. The implementation of traits is

also denoted by the extends keyword. A trait is declared with the trait

keyword:

𝑡𝑟𝑎𝑖𝑡 𝑇𝑟𝑎𝑖𝑡𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛() {… }

Inheritance and Polymorphism In Scala

• In order to keep a class from being subclassed, the final modifier may be

added to its declaration:

𝑓𝑖𝑛𝑎𝑙 𝑐𝑙𝑎𝑠𝑠 𝐸𝑛𝑑𝑂𝑓𝑇ℎ𝑒𝐿𝑖𝑛𝑒() {… }

• Similarly to other object-oriented languages, a subclass can be used in

place of an expected superclass in Scala – that is, polymorphism is fully

supported in Scala

Encapsulation In Scala
• By default, all values in Scala are public

• The private modifier can be used to explicitly declare something private

• Since every function is a value, and every value is an object in Scala,

every value has its own inherent getter and setter. While this initially

appears to be a direct access to a class’s fields, the fields can be defined

as follows to encourage further encapsulation:

private var _field = 1

// Getter:
def field = _field

// Setter
def field_= (value:Int):Unit = _field = value

• The underscore character allows the setter to essentially be “field =“

WHY USE SCALA?

What’s Ahead:

 Scala vs. Java

 Who Is Using Scala?

Scala Compared to Java
• Code written in Scala tends to be two to three times shorter than

code written in Java.

• Scala allows for the following unsupported features in Java:

• No backward-compatibility constraints to limit the functional

programming capabilities

• Unchecked exceptions

• Operator overloading

• No distinction between primitive types and all other types –

all values are objects

• No static modifier in Scala

Who Is Using Scala
Scala is gaining traction in industry, and being used for many

different purposes in many different companies:

• Twitter -- The primary messaging queue transitioned from Ruby to

Scala, which improved performance and reduced lines of code

• LinkedIn – Implemented the Norbert library in Scala, which “provides

easy cluster management and workload distribution” [More]

• Sony Pictures Imageworks – Scala Migrations library for database

schema management [More]

• Xerox – ICE Project, which deals with invitations to Xerox showrooms

in the United Kingdom

• …And much more

http://data.linkedin.com/opensource/norbert
http://opensource.imageworks.com/?p=scalamigrations

Resources To Learn More
• Official Scala website:

http://www.scala-lang.org/

• Scala For Java Refugees (blog to help Java developers to

transition!)
http://www.codecommit.com/blog/scala/roundup-scala-for-java-refugees

• Scala For The Impatient by Cay S. Horstmann; 2012, 1st edition

(introduction to Scala for experienced developers)

• Another Scala Reference

 http://www.simplyscala.com/

http://www.scala-lang.org/
http://www.scala-lang.org/
http://www.scala-lang.org/
http://www.scala-lang.org/
http://www.codecommit.com/blog/scala/roundup-scala-for-java-refugees
http://www.codecommit.com/blog/scala/roundup-scala-for-java-refugees
http://www.codecommit.com/blog/scala/roundup-scala-for-java-refugees
http://www.codecommit.com/blog/scala/roundup-scala-for-java-refugees
http://www.codecommit.com/blog/scala/roundup-scala-for-java-refugees
http://www.codecommit.com/blog/scala/roundup-scala-for-java-refugees
http://www.codecommit.com/blog/scala/roundup-scala-for-java-refugees
http://www.codecommit.com/blog/scala/roundup-scala-for-java-refugees
http://www.codecommit.com/blog/scala/roundup-scala-for-java-refugees
http://www.codecommit.com/blog/scala/roundup-scala-for-java-refugees
http://www.codecommit.com/blog/scala/roundup-scala-for-java-refugees
http://www.simplyscala.com/
http://www.simplyscala.com/

